New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6322 for branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2016-02-18T08:38:04+01:00 (8 years ago)
Author:
gm
Message:

#1629: DOC of v3.6_stable : update the introduction and Qsr, add new tidal mixing param.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r6317 r6322  
    13131313 
    13141314% ================================================================ 
     1315% Internal wave-driven mixing 
     1316% ================================================================ 
     1317\section{Internal wave-driven mixing (\key{zdftmx\_new})} 
     1318\label{ZDF_tmx_new} 
     1319 
     1320%--------------------------------------------namzdf_tmx_new------------------------------------------ 
     1321\namdisplay{namzdf_tmx_new} 
     1322%-------------------------------------------------------------------------------------------------------------- 
     1323 
     1324The parameterization of mixing induced by breaking internal waves is a generalization  
     1325of the approach originally proposed by \citet{St_Laurent_al_GRL02}.  
     1326A three-dimensional field of internal wave energy dissipation $\epsilon(x,y,z)$ is first constructed,  
     1327and the resulting diffusivity is obtained as  
     1328\begin{equation} \label{Eq_Kwave} 
     1329A^{vT}_{wave} =  R_f \,\frac{ \epsilon }{ \rho \, N^2 } 
     1330\end{equation} 
     1331where $R_f$ is the mixing efficiency and $\epsilon$ is a specified three dimensional distribution  
     1332of the energy available for mixing. If the \np{ln\_mevar} namelist parameter is set to false,  
     1333the mixing efficiency is taken as constant and equal to 1/6 \citep{Osborn_JPO80}.  
     1334In the opposite (recommended) case, $R_f$ is instead a function of the turbulence intensity parameter  
     1335$Re_b = \frac{ \epsilon}{\nu \, N^2}$, with $\nu$ the molecular viscosity of seawater,  
     1336following the model of \cite{Bouffard_Boegman_DAO2013}  
     1337and the implementation of \cite{de_lavergne_JPO2016_efficiency}. 
     1338Note that $A^{vT}_{wave}$ is bounded by $10^{-2}\,m^2/s$, a limit that is often reached when the mixing efficiency is constant. 
     1339 
     1340In addition to the mixing efficiency, the ratio of salt to heat diffusivities can chosen to vary  
     1341as a function of $Re_b$ by setting the \np{ln\_tsdiff} parameter to true, a recommended choice).  
     1342This parameterization of differential mixing, due to \cite{Jackson_Rehmann_JPO2014},  
     1343is implemented as in \cite{de_lavergne_JPO2016_efficiency}. 
     1344 
     1345The three-dimensional distribution of the energy available for mixing, $\epsilon(i,j,k)$, is constructed  
     1346from three static maps of column-integrated internal wave energy dissipation, $E_{cri}(i,j)$,  
     1347$E_{pyc}(i,j)$, and $E_{bot}(i,j)$, combined to three corresponding vertical structures  
     1348(de Lavergne et al., in prep): 
     1349\begin{align*} 
     1350F_{cri}(i,j,k) &\propto e^{-h_{ab} / h_{cri} }\\ 
     1351F_{pyc}(i,j,k) &\propto N^{n\_p}\\ 
     1352F_{bot}(i,j,k) &\propto N^2 \, e^{- h_{wkb} / h_{bot} } 
     1353\end{align*}  
     1354In the above formula, $h_{ab}$ denotes the height above bottom,  
     1355$h_{wkb}$ denotes the WKB-stretched height above bottom, defined by 
     1356\begin{equation*} 
     1357h_{wkb} = H \, \frac{ \int_{-H}^{z} N \, dz' } { \int_{-H}^{\eta} N \, dz'  } \; , 
     1358\end{equation*} 
     1359The $n_p$ parameter (given by \np{nn\_zpyc} in \ngn{namzdf\_tmx\_new} namelist)  controls the stratification-dependence of the pycnocline-intensified dissipation.  
     1360It can take values of 1 (recommended) or 2. 
     1361Finally, the vertical structures $F_{cri}$ and $F_{bot}$ require the specification of  
     1362the decay scales $h_{cri}(i,j)$ and $h_{bot}(i,j)$, which are defined by two additional input maps.  
     1363$h_{cri}$ is related to the large-scale topography of the ocean (etopo2)  
     1364and $h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of  
     1365the abyssal hill topography \citep{Goff_JGR2010} and the latitude. 
     1366 
     1367% ================================================================ 
     1368 
     1369 
     1370 
Note: See TracChangeset for help on using the changeset viewer.