Changeset 12205 for NEMO/branches/2019/dev_r11943_MERGE_2019/doc
- Timestamp:
- 2019-12-12T11:52:50+01:00 (5 years ago)
- Location:
- NEMO/branches/2019/dev_r11943_MERGE_2019/doc
- Files:
-
- 1 deleted
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/branches/2019/dev_r11943_MERGE_2019/doc/latex/NEMO/subfiles/chap_DIA.tex
r11693 r12205 1580 1580 1581 1581 %% ================================================================================================= 1582 \section[Harmonic analysis of tidal constituents (\texttt{\textbf{key\_diaharm}})]{Harmonic analysis of tidal constituents (\protect\key{diaharm})}1583 \label{sec:DIA_diag_harm}1584 1585 \begin{listing}1586 \nlst{nam_diaharm}1587 \caption{\forcode{&nam_diaharm}}1588 \label{lst:nam_diaharm}1589 \end{listing}1590 1591 A module is available to compute the amplitude and phase of tidal waves.1592 This on-line Harmonic analysis is actived with \key{diaharm}.1593 1594 Some parameters are available in namelist \nam{_diaharm}{\_diaharm}:1595 1596 - \np{nit000_han}{nit000\_han} is the first time step used for harmonic analysis1597 1598 - \np{nitend_han}{nitend\_han} is the last time step used for harmonic analysis1599 1600 - \np{nstep_han}{nstep\_han} is the time step frequency for harmonic analysis1601 1602 % - \np{nb_ana}{nb\_ana} is the number of harmonics to analyse1603 1604 - \np{tname}{tname} is an array with names of tidal constituents to analyse1605 1606 \np{nit000_han}{nit000\_han} and \np{nitend_han}{nitend\_han} must be between \np{nit000}{nit000} and \np{nitend}{nitend} of the simulation.1607 The restart capability is not implemented.1608 1609 The Harmonic analysis solve the following equation:1610 1611 \[1612 h_{i} - A_{0} + \sum^{nb\_ana}_{j=1}[A_{j}cos(\nu_{j}t_{j}-\phi_{j})] = e_{i}1613 \]1614 1615 With $A_{j}$, $\nu_{j}$, $\phi_{j}$, the amplitude, frequency and phase for each wave and $e_{i}$ the error.1616 $h_{i}$ is the sea level for the time $t_{i}$ and $A_{0}$ is the mean sea level. \\1617 We can rewrite this equation:1618 1619 \[1620 h_{i} - A_{0} + \sum^{nb\_ana}_{j=1}[C_{j}cos(\nu_{j}t_{j})+S_{j}sin(\nu_{j}t_{j})] = e_{i}1621 \]1622 1623 with $A_{j}=\sqrt{C^{2}_{j}+S^{2}_{j}}$ and $\phi_{j}=arctan(S_{j}/C_{j})$.1624 1625 We obtain in output $C_{j}$ and $S_{j}$ for each tidal wave.1626 1627 %% =================================================================================================1628 1582 \section[Transports across sections (\texttt{\textbf{key\_diadct}})]{Transports across sections (\protect\key{diadct})} 1629 1583 \label{sec:DIA_diag_dct}
Note: See TracChangeset
for help on using the changeset viewer.