1 | MODULE sbcana |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcana *** |
---|
4 | !! Ocean forcing: analytical momentum, heat and freshwater forcings |
---|
5 | !!===================================================================== |
---|
6 | !! History : 3.0 ! 2006-06 (G. Madec) Original code |
---|
7 | !! 3.2 ! 2009-07 (G. Madec) Style only |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! sbc_ana : set an analytical ocean forcing |
---|
12 | !! sbc_gyre : set the GYRE configuration analytical forcing |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce ! ocean dynamics and tracers |
---|
15 | USE dom_oce ! ocean space and time domain |
---|
16 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
17 | USE phycst ! physical constants |
---|
18 | USE in_out_manager ! I/O manager |
---|
19 | USE lib_mpp ! distribued memory computing library |
---|
20 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
21 | USE lib_fortran |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC sbc_ana ! routine called in sbcmod module |
---|
27 | PUBLIC sbc_gyre ! routine called in sbcmod module |
---|
28 | |
---|
29 | ! !!* Namelist namsbc_ana * |
---|
30 | INTEGER :: nn_tau000 = 1 ! nb of time-step during which the surface stress |
---|
31 | ! ! increase from 0 to its nominal value |
---|
32 | REAL(wp) :: rn_utau0 = 0._wp ! constant wind stress value in i-direction |
---|
33 | REAL(wp) :: rn_vtau0 = 0._wp ! constant wind stress value in j-direction |
---|
34 | REAL(wp) :: rn_qns0 = 0._wp ! non solar heat flux |
---|
35 | REAL(wp) :: rn_qsr0 = 0._wp ! solar heat flux |
---|
36 | REAL(wp) :: rn_emp0 = 0._wp ! net freshwater flux |
---|
37 | |
---|
38 | !! * Substitutions |
---|
39 | # include "domzgr_substitute.h90" |
---|
40 | # include "vectopt_loop_substitute.h90" |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
43 | !! $Id$ |
---|
44 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | SUBROUTINE sbc_ana( kt ) |
---|
49 | !!--------------------------------------------------------------------- |
---|
50 | !! *** ROUTINE sbc_ana *** |
---|
51 | !! |
---|
52 | !! ** Purpose : provide at each time-step the ocean surface boundary |
---|
53 | !! condition, i.e. the momentum, heat and freshwater fluxes. |
---|
54 | !! |
---|
55 | !! ** Method : Constant and uniform surface forcing specified from |
---|
56 | !! namsbc_ana namelist parameters. All the fluxes are time |
---|
57 | !! independant except the stresses which increase from zero |
---|
58 | !! during the first nn_tau000 time-step |
---|
59 | !! CAUTION : never mask the surface stress field ! |
---|
60 | !! |
---|
61 | !! ** Action : - set the ocean surface boundary condition, i.e. |
---|
62 | !! utau, vtau, taum, wndm, qns, qsr, emp, emps |
---|
63 | !!---------------------------------------------------------------------- |
---|
64 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
65 | ! |
---|
66 | REAL(wp) :: zfacto ! local scalar |
---|
67 | REAL(wp) :: zrhoa = 1.22_wp ! Air density kg/m3 |
---|
68 | REAL(wp) :: zcdrag = 1.5e-3_wp ! drag coefficient |
---|
69 | REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables |
---|
70 | !! |
---|
71 | NAMELIST/namsbc_ana/ nn_tau000, rn_utau0, rn_vtau0, rn_qns0, rn_qsr0, rn_emp0 |
---|
72 | !!--------------------------------------------------------------------- |
---|
73 | ! |
---|
74 | IF( kt == nit000 ) THEN |
---|
75 | ! |
---|
76 | REWIND( numnam ) ! Read Namelist namsbc : surface fluxes |
---|
77 | READ ( numnam, namsbc_ana ) |
---|
78 | ! |
---|
79 | IF(lwp) WRITE(numout,*)' ' |
---|
80 | IF(lwp) WRITE(numout,*)' sbc_ana : Constant surface fluxes read in namsbc_ana namelist' |
---|
81 | IF(lwp) WRITE(numout,*)' ~~~~~~~ ' |
---|
82 | IF(lwp) WRITE(numout,*)' spin up of the stress nn_tau000 = ', nn_tau000, ' time-steps' |
---|
83 | IF(lwp) WRITE(numout,*)' constant i-stress rn_utau0 = ', rn_utau0 , ' N/m2' |
---|
84 | IF(lwp) WRITE(numout,*)' constant j-stress rn_vtau0 = ', rn_vtau0 , ' N/m2' |
---|
85 | IF(lwp) WRITE(numout,*)' non solar heat flux rn_qns0 = ', rn_qns0 , ' W/m2' |
---|
86 | IF(lwp) WRITE(numout,*)' solar heat flux rn_qsr0 = ', rn_qsr0 , ' W/m2' |
---|
87 | IF(lwp) WRITE(numout,*)' net heat flux rn_emp0 = ', rn_emp0 , ' Kg/m2/s' |
---|
88 | ! |
---|
89 | nn_tau000 = MAX( nn_tau000, 1 ) ! must be >= 1 |
---|
90 | ! |
---|
91 | ENDIF |
---|
92 | |
---|
93 | qns (:,:) = rn_qns0 |
---|
94 | qsr (:,:) = rn_qsr0 |
---|
95 | emp (:,:) = rn_emp0 |
---|
96 | emps(:,:) = rn_emp0 |
---|
97 | |
---|
98 | ! Increase the surface stress to its nominal value during the first nn_tau000 time-steps |
---|
99 | IF( kt <= nn_tau000 ) THEN |
---|
100 | zfacto = 0.5 * ( 1. - COS( rpi * FLOAT( kt ) / FLOAT( nn_tau000 ) ) ) |
---|
101 | zcoef = 1. / ( zrhoa * zcdrag ) |
---|
102 | ztx = zfacto * rn_utau0 |
---|
103 | zty = zfacto * rn_vtau0 |
---|
104 | zmod = SQRT( ztx * ztx + zty * zty ) |
---|
105 | utau(:,:) = ztx |
---|
106 | vtau(:,:) = zty |
---|
107 | taum(:,:) = zmod |
---|
108 | zmod = SQRT( zmod * zcoef ) |
---|
109 | wndm(:,:) = zmod |
---|
110 | ENDIF |
---|
111 | ! |
---|
112 | END SUBROUTINE sbc_ana |
---|
113 | |
---|
114 | |
---|
115 | SUBROUTINE sbc_gyre( kt ) |
---|
116 | !!--------------------------------------------------------------------- |
---|
117 | !! *** ROUTINE sbc_ana *** |
---|
118 | !! |
---|
119 | !! ** Purpose : provide at each time-step the GYRE surface boundary |
---|
120 | !! condition, i.e. the momentum, heat and freshwater fluxes. |
---|
121 | !! |
---|
122 | !! ** Method : analytical seasonal cycle for GYRE configuration. |
---|
123 | !! CAUTION : never mask the surface stress field ! |
---|
124 | !! |
---|
125 | !! ** Action : - set the ocean surface boundary condition, i.e. |
---|
126 | !! utau, vtau, taum, wndm, qns, qsr, emp, emps |
---|
127 | !! |
---|
128 | !! Reference : Hazeleger, W., and S. Drijfhout, JPO, 30, 677-695, 2000. |
---|
129 | !!---------------------------------------------------------------------- |
---|
130 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
131 | !! |
---|
132 | INTEGER :: ji, jj ! dummy loop indices |
---|
133 | INTEGER :: zyear0 ! initial year |
---|
134 | INTEGER :: zmonth0 ! initial month |
---|
135 | INTEGER :: zday0 ! initial day |
---|
136 | INTEGER :: zday_year0 ! initial day since january 1st |
---|
137 | REAL(wp) :: ztau , ztau_sais ! wind intensity and of the seasonal cycle |
---|
138 | REAL(wp) :: ztime ! time in hour |
---|
139 | REAL(wp) :: ztimemax , ztimemin ! 21th June, and 21th decem. if date0 = 1st january |
---|
140 | REAL(wp) :: ztimemax1, ztimemin1 ! 21th June, and 21th decem. if date0 = 1st january |
---|
141 | REAL(wp) :: ztimemax2, ztimemin2 ! 21th June, and 21th decem. if date0 = 1st january |
---|
142 | REAL(wp) :: ztaun ! intensity |
---|
143 | REAL(wp) :: zemp_s, zemp_n, zemp_sais, ztstar |
---|
144 | REAL(wp) :: zcos_sais1, zcos_sais2, ztrp, zconv, t_star |
---|
145 | REAL(wp) :: zsumemp, zsurf |
---|
146 | REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 |
---|
147 | REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient |
---|
148 | REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables |
---|
149 | REAL(wp) :: zyydd ! number of days in one year |
---|
150 | !!--------------------------------------------------------------------- |
---|
151 | zyydd = REAL(nyear_len(1),wp) |
---|
152 | |
---|
153 | ! ---------------------------- ! |
---|
154 | ! heat and freshwater fluxes ! |
---|
155 | ! ---------------------------- ! |
---|
156 | !same temperature, E-P as in HAZELEGER 2000 |
---|
157 | |
---|
158 | zyear0 = ndate0 / 10000 ! initial year |
---|
159 | zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 ! initial month |
---|
160 | zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 ! initial day betwen 1 and 30 |
---|
161 | zday_year0 = ( zmonth0 - 1 ) * 30.+zday0 ! initial day betwen 1 and 360 |
---|
162 | |
---|
163 | ! current day (in hours) since january the 1st of the current year |
---|
164 | ztime = REAL( kt ) * rdt / (rmmss * rhhmm) & ! total incrementation (in hours) |
---|
165 | & - (nyear - 1) * rjjhh * zyydd ! minus years since beginning of experiment (in hours) |
---|
166 | |
---|
167 | ztimemax1 = ((5.*30.)+21.)* 24. ! 21th june at 24h in hours |
---|
168 | ztimemin1 = ztimemax1 + rjjhh * zyydd / 2 ! 21th december in hours |
---|
169 | ztimemax2 = ((6.*30.)+21.)* 24. ! 21th july at 24h in hours |
---|
170 | ztimemin2 = ztimemax2 - rjjhh * zyydd / 2 ! 21th january in hours |
---|
171 | ! ! NB: rjjhh * zyydd / 4 = one seasonal cycle in hours |
---|
172 | |
---|
173 | ! amplitudes |
---|
174 | zemp_S = 0.7 ! intensity of COS in the South |
---|
175 | zemp_N = 0.8 ! intensity of COS in the North |
---|
176 | zemp_sais = 0.1 |
---|
177 | zTstar = 28.3 ! intemsity from 28.3 a -5 deg |
---|
178 | |
---|
179 | ! 1/2 period between 21th June and 21th December and between 21th July and 21th January |
---|
180 | zcos_sais1 = COS( (ztime - ztimemax1) / (ztimemin1 - ztimemax1) * rpi ) |
---|
181 | zcos_sais2 = COS( (ztime - ztimemax2) / (ztimemax2 - ztimemin2) * rpi ) |
---|
182 | |
---|
183 | ztrp= - 40.e0 ! retroaction term on heat fluxes (W/m2/K) |
---|
184 | zconv = 3.16e-5 ! convertion factor: 1 m/yr => 3.16e-5 mm/s |
---|
185 | DO jj = 1, jpj |
---|
186 | DO ji = 1, jpi |
---|
187 | ! domain from 15 deg to 50 deg between 27 and 28 degC at 15N, -3 |
---|
188 | ! and 13 degC at 50N 53.5 + or - 11 = 1/4 period : |
---|
189 | ! 64.5 in summer, 42.5 in winter |
---|
190 | t_star = zTstar * ( 1 + 1. / 50. * zcos_sais2 ) & |
---|
191 | & * COS( rpi * (gphit(ji,jj) - 5.) & |
---|
192 | & / ( 53.5 * ( 1 + 11 / 53.5 * zcos_sais2 ) * 2.) ) |
---|
193 | ! 23.5 deg : tropics |
---|
194 | qsr (ji,jj) = 230 * COS( 3.1415 * ( gphit(ji,jj) - 23.5 * zcos_sais1 ) / ( 0.9 * 180 ) ) |
---|
195 | qns (ji,jj) = ztrp * ( tb(ji,jj,1) - t_star ) - qsr(ji,jj) |
---|
196 | IF( gphit(ji,jj) >= 14.845 .AND. 37.2 >= gphit(ji,jj) ) THEN ! zero at 37.8 deg, max at 24.6 deg |
---|
197 | emp (ji,jj) = zemp_S * zconv & |
---|
198 | & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (24.6 - 37.2) ) & |
---|
199 | & * ( 1 - zemp_sais / zemp_S * zcos_sais1) |
---|
200 | ELSE |
---|
201 | emp (ji,jj) = - zemp_N * zconv & |
---|
202 | & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (46.8 - 37.2) ) & |
---|
203 | & * ( 1 - zemp_sais / zemp_N * zcos_sais1 ) |
---|
204 | ENDIF |
---|
205 | END DO |
---|
206 | END DO |
---|
207 | emps(:,:) = emp(:,:) |
---|
208 | |
---|
209 | ! Compute the emp flux such as its integration on the whole domain at each time is zero |
---|
210 | IF( nbench /= 1 ) THEN |
---|
211 | zsumemp = GLOB_SUM( emp(:,:) ) |
---|
212 | zsurf = GLOB_SUM( tmask(:,:,1) ) |
---|
213 | ! Default GYRE configuration |
---|
214 | zsumemp = zsumemp / zsurf |
---|
215 | ELSE |
---|
216 | ! Benchmark GYRE configuration (to allow the bit to bit comparison between Mpp/Mono case) |
---|
217 | zsumemp = 0.e0 ; zsurf = 0.e0 |
---|
218 | ENDIF |
---|
219 | |
---|
220 | !salinity terms |
---|
221 | emp (:,:) = emp(:,:) - zsumemp * tmask(:,:,1) |
---|
222 | emps(:,:) = emp(:,:) |
---|
223 | |
---|
224 | |
---|
225 | ! ---------------------------- ! |
---|
226 | ! momentum fluxes ! |
---|
227 | ! ---------------------------- ! |
---|
228 | ! same wind as in Wico |
---|
229 | !test date0 : ndate0 = 010203 |
---|
230 | zyear0 = ndate0 / 10000 |
---|
231 | zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 |
---|
232 | zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 |
---|
233 | !Calculates nday_year, day since january 1st |
---|
234 | zday_year0 = (zmonth0-1)*30.+zday0 |
---|
235 | |
---|
236 | !accumulates days of previous months of this year |
---|
237 | ! day (in hours) since january the 1st |
---|
238 | ztime = FLOAT( kt ) * rdt / (rmmss * rhhmm) & ! incrementation in hour |
---|
239 | & - (nyear - 1) * rjjhh * zyydd ! - nber of hours the precedent years |
---|
240 | ztimemax = ((5.*30.)+21.)* 24. ! 21th june in hours |
---|
241 | ztimemin = ztimemax + rjjhh * zyydd / 2 ! 21th december in hours |
---|
242 | ! ! NB: rjjhh * zyydd / 4 = 1 seasonal cycle in hours |
---|
243 | |
---|
244 | ! mean intensity at 0.105 ; srqt(2) because projected with 45deg angle |
---|
245 | ztau = 0.105 / SQRT( 2. ) |
---|
246 | ! seasonal oscillation intensity |
---|
247 | ztau_sais = 0.015 |
---|
248 | ztaun = ztau - ztau_sais * COS( (ztime - ztimemax) / (ztimemin - ztimemax) * rpi ) |
---|
249 | DO jj = 1, jpj |
---|
250 | DO ji = 1, jpi |
---|
251 | ! domain from 15deg to 50deg and 1/2 period along 14deg |
---|
252 | ! so 5/4 of half period with seasonal cycle |
---|
253 | utau(ji,jj) = - ztaun * SIN( rpi * (gphiu(ji,jj) - 15.) / (29.-15.) ) |
---|
254 | vtau(ji,jj) = ztaun * SIN( rpi * (gphiv(ji,jj) - 15.) / (29.-15.) ) |
---|
255 | END DO |
---|
256 | END DO |
---|
257 | |
---|
258 | ! module of wind stress and wind speed at T-point |
---|
259 | zcoef = 1. / ( zrhoa * zcdrag ) |
---|
260 | !CDIR NOVERRCHK |
---|
261 | DO jj = 2, jpjm1 |
---|
262 | !CDIR NOVERRCHK |
---|
263 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
264 | ztx = utau(ji-1,jj ) + utau(ji,jj) |
---|
265 | zty = vtau(ji ,jj-1) + vtau(ji,jj) |
---|
266 | zmod = 0.5 * SQRT( ztx * ztx + zty * zty ) |
---|
267 | taum(ji,jj) = zmod |
---|
268 | wndm(ji,jj) = SQRT( zmod * zcoef ) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | CALL lbc_lnk( taum(:,:), 'T', 1. ) ; CALL lbc_lnk( wndm(:,:), 'T', 1. ) |
---|
272 | |
---|
273 | ! ---------------------------------- ! |
---|
274 | ! control print at first time-step ! |
---|
275 | ! ---------------------------------- ! |
---|
276 | IF( kt == nit000 .AND. lwp ) THEN |
---|
277 | WRITE(numout,*) |
---|
278 | WRITE(numout,*)'sbc_gyre : analytical surface fluxes for GYRE configuration' |
---|
279 | WRITE(numout,*)'~~~~~~~~ ' |
---|
280 | WRITE(numout,*)' nyear = ', nyear |
---|
281 | WRITE(numout,*)' nmonth = ', nmonth |
---|
282 | WRITE(numout,*)' nday = ', nday |
---|
283 | WRITE(numout,*)' nday_year = ', nday_year |
---|
284 | WRITE(numout,*)' ztime = ', ztime |
---|
285 | WRITE(numout,*)' ztimemax = ', ztimemax |
---|
286 | WRITE(numout,*)' ztimemin = ', ztimemin |
---|
287 | WRITE(numout,*)' ztimemax1 = ', ztimemax1 |
---|
288 | WRITE(numout,*)' ztimemin1 = ', ztimemin1 |
---|
289 | WRITE(numout,*)' ztimemax2 = ', ztimemax2 |
---|
290 | WRITE(numout,*)' ztimemin2 = ', ztimemin2 |
---|
291 | WRITE(numout,*)' zyear0 = ', zyear0 |
---|
292 | WRITE(numout,*)' zmonth0 = ', zmonth0 |
---|
293 | WRITE(numout,*)' zday0 = ', zday0 |
---|
294 | WRITE(numout,*)' zday_year0 = ', zday_year0 |
---|
295 | WRITE(numout,*)' zyydd = ', zyydd |
---|
296 | WRITE(numout,*)' zemp_S = ', zemp_S |
---|
297 | WRITE(numout,*)' zemp_N = ', zemp_N |
---|
298 | WRITE(numout,*)' zemp_sais = ', zemp_sais |
---|
299 | WRITE(numout,*)' zTstar = ', zTstar |
---|
300 | WRITE(numout,*)' zsumemp = ', zsumemp |
---|
301 | WRITE(numout,*)' zsurf = ', zsurf |
---|
302 | WRITE(numout,*)' ztrp = ', ztrp |
---|
303 | WRITE(numout,*)' zconv = ', zconv |
---|
304 | WRITE(numout,*)' ndastp = ', ndastp |
---|
305 | WRITE(numout,*)' adatrj = ', adatrj |
---|
306 | ENDIF |
---|
307 | ! |
---|
308 | END SUBROUTINE sbc_gyre |
---|
309 | |
---|
310 | !!====================================================================== |
---|
311 | END MODULE sbcana |
---|