1 | MODULE limdyn_2 |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limdyn_2 *** |
---|
4 | !! Sea-Ice dynamics : |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 01-04 (LIM) Original code |
---|
7 | !! 2.0 ! 02-08 (C. Ethe, G. Madec) F90, mpp |
---|
8 | !! 2.0 ! 03-08 (C. Ethe) add lim_dyn_init |
---|
9 | !! 2.0 ! 06-07 (G. Madec) Surface module |
---|
10 | !!--------------------------------------------------------------------- |
---|
11 | #if defined key_lim2 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_lim2' : LIM 2.0 sea-ice model |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! lim_dyn_2 : computes ice velocities |
---|
16 | !! lim_dyn_init_2 : initialization and namelist read |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE dom_oce ! ocean space and time domain |
---|
19 | USE sbc_oce ! |
---|
20 | USE phycst ! |
---|
21 | USE ice_2 ! |
---|
22 | USE dom_ice_2 ! |
---|
23 | USE limistate_2 ! |
---|
24 | USE limrhg_2 ! ice rheology |
---|
25 | |
---|
26 | USE lbclnk ! |
---|
27 | USE lib_mpp ! |
---|
28 | USE in_out_manager ! I/O manager |
---|
29 | USE prtctl ! Print control |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC lim_dyn_2 ! routine called by sbc_ice_lim |
---|
35 | |
---|
36 | !! * Module variables |
---|
37 | REAL(wp) :: rone = 1.e0 ! constant value |
---|
38 | |
---|
39 | # include "vectopt_loop_substitute.h90" |
---|
40 | !!---------------------------------------------------------------------- |
---|
41 | !! LIM 2.0, UCL-LOCEAN-IPSL (2006) |
---|
42 | !! $Id$ |
---|
43 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | SUBROUTINE lim_dyn_2( kt ) |
---|
49 | !!------------------------------------------------------------------- |
---|
50 | !! *** ROUTINE lim_dyn_2 *** |
---|
51 | !! |
---|
52 | !! ** Purpose : compute ice velocity and ocean-ice friction velocity |
---|
53 | !! |
---|
54 | !! ** Method : |
---|
55 | !! |
---|
56 | !! ** Action : - Initialisation |
---|
57 | !! - Call of the dynamic routine for each hemisphere |
---|
58 | !! - computation of the friction velocity at the sea-ice base |
---|
59 | !! - treatment of the case if no ice dynamic |
---|
60 | !!--------------------------------------------------------------------- |
---|
61 | INTEGER, INTENT(in) :: kt ! number of iteration |
---|
62 | !! |
---|
63 | INTEGER :: ji, jj ! dummy loop indices |
---|
64 | INTEGER :: i_j1, i_jpj ! Starting/ending j-indices for rheology |
---|
65 | REAL(wp) :: zcoef ! temporary scalar |
---|
66 | REAL(wp), DIMENSION(jpj) :: zind ! i-averaged indicator of sea-ice |
---|
67 | REAL(wp), DIMENSION(jpj) :: zmsk ! i-averaged of tmask |
---|
68 | REAL(wp), DIMENSION(jpi,jpj) :: zu_io, zv_io ! ice-ocean velocity |
---|
69 | !!--------------------------------------------------------------------- |
---|
70 | |
---|
71 | IF( kt == nit000 ) CALL lim_dyn_init_2 ! Initialization (first time-step only) |
---|
72 | |
---|
73 | IF( ln_limdyn ) THEN |
---|
74 | ! |
---|
75 | ! Mean ice and snow thicknesses. |
---|
76 | hsnm(:,:) = ( 1.0 - frld(:,:) ) * hsnif(:,:) |
---|
77 | hicm(:,:) = ( 1.0 - frld(:,:) ) * hicif(:,:) |
---|
78 | ! |
---|
79 | ! ! Rheology (ice dynamics) |
---|
80 | ! ! ======== |
---|
81 | |
---|
82 | ! Define the j-limits where ice rheology is computed |
---|
83 | ! --------------------------------------------------- |
---|
84 | |
---|
85 | IF( lk_mpp .OR. nbit_cmp == 1 ) THEN ! mpp: compute over the whole domain |
---|
86 | i_j1 = 1 |
---|
87 | i_jpj = jpj |
---|
88 | IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) |
---|
89 | CALL lim_rhg_2( i_j1, i_jpj ) |
---|
90 | ! |
---|
91 | ELSE ! optimization of the computational area |
---|
92 | ! |
---|
93 | DO jj = 1, jpj |
---|
94 | zind(jj) = SUM( frld (:,jj ) ) ! = FLOAT(jpj) if ocean everywhere on a j-line |
---|
95 | zmsk(jj) = SUM( tmask(:,jj,1) ) ! = 0 if land everywhere on a j-line |
---|
96 | END DO |
---|
97 | ! |
---|
98 | IF( l_jeq ) THEN ! local domain include both hemisphere |
---|
99 | ! ! Rheology is computed in each hemisphere |
---|
100 | ! ! only over the ice cover latitude strip |
---|
101 | ! Northern hemisphere |
---|
102 | i_j1 = njeq |
---|
103 | i_jpj = jpj |
---|
104 | DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) |
---|
105 | i_j1 = i_j1 + 1 |
---|
106 | END DO |
---|
107 | i_j1 = MAX( 1, i_j1-1 ) |
---|
108 | IF(ln_ctl) WRITE(numout,*) 'lim_dyn : NH i_j1 = ', i_j1, ' ij_jpj = ', i_jpj |
---|
109 | ! |
---|
110 | CALL lim_rhg_2( i_j1, i_jpj ) |
---|
111 | ! |
---|
112 | ! Southern hemisphere |
---|
113 | i_j1 = 1 |
---|
114 | i_jpj = njeq |
---|
115 | DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) |
---|
116 | i_jpj = i_jpj - 1 |
---|
117 | END DO |
---|
118 | i_jpj = MIN( jpj, i_jpj+2 ) |
---|
119 | IF(ln_ctl) WRITE(numout,*) 'lim_dyn : SH i_j1 = ', i_j1, ' ij_jpj = ', i_jpj |
---|
120 | ! |
---|
121 | CALL lim_rhg_2( i_j1, i_jpj ) |
---|
122 | ! |
---|
123 | ELSE ! local domain extends over one hemisphere only |
---|
124 | ! ! Rheology is computed only over the ice cover |
---|
125 | ! ! latitude strip |
---|
126 | i_j1 = 1 |
---|
127 | DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) |
---|
128 | i_j1 = i_j1 + 1 |
---|
129 | END DO |
---|
130 | i_j1 = MAX( 1, i_j1-1 ) |
---|
131 | |
---|
132 | i_jpj = jpj |
---|
133 | DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) |
---|
134 | i_jpj = i_jpj - 1 |
---|
135 | END DO |
---|
136 | i_jpj = MIN( jpj, i_jpj+2) |
---|
137 | |
---|
138 | IF(ln_ctl) WRITE(numout,*) 'lim_dyn : one hemisphere: i_j1 = ', i_j1, ' ij_jpj = ', i_jpj |
---|
139 | ! |
---|
140 | CALL lim_rhg_2( i_j1, i_jpj ) |
---|
141 | ! |
---|
142 | ENDIF |
---|
143 | ! |
---|
144 | ENDIF |
---|
145 | |
---|
146 | IF(ln_ctl) CALL prt_ctl(tab2d_1=u_ice , clinfo1=' lim_dyn : u_ice :', tab2d_2=v_ice , clinfo2=' v_ice :') |
---|
147 | |
---|
148 | ! computation of friction velocity |
---|
149 | ! -------------------------------- |
---|
150 | ! ice-ocean velocity at U & V-points (u_ice v_ice at I-point ; ssu_m, ssv_m at U- & V-points) |
---|
151 | |
---|
152 | DO jj = 1, jpjm1 |
---|
153 | DO ji = 1, jpim1 ! NO vector opt. |
---|
154 | zu_io(ji,jj) = 0.5 * ( u_ice(ji+1,jj+1) + u_ice(ji+1,jj ) ) - ssu_m(ji,jj) |
---|
155 | zv_io(ji,jj) = 0.5 * ( v_ice(ji+1,jj+1) + v_ice(ji ,jj+1) ) - ssv_m(ji,jj) |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | ! frictional velocity at T-point |
---|
159 | DO jj = 2, jpjm1 |
---|
160 | DO ji = 2, jpim1 ! NO vector opt. |
---|
161 | ust2s(ji,jj) = 0.5 * cw & |
---|
162 | & * ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & |
---|
163 | & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) * tms(ji,jj) |
---|
164 | END DO |
---|
165 | END DO |
---|
166 | ! |
---|
167 | ELSE ! no ice dynamics : transmit directly the atmospheric stress to the ocean |
---|
168 | ! |
---|
169 | zcoef = SQRT( 0.5 ) / rau0 |
---|
170 | DO jj = 2, jpjm1 |
---|
171 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
172 | ust2s(ji,jj) = zcoef * tms(ji,jj) * SQRT( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & |
---|
173 | & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | ! |
---|
177 | ENDIF |
---|
178 | ! |
---|
179 | CALL lbc_lnk( ust2s, 'T', 1. ) ! T-point |
---|
180 | ! |
---|
181 | IF(ln_ctl) CALL prt_ctl(tab2d_1=ust2s , clinfo1=' lim_dyn : ust2s :') |
---|
182 | |
---|
183 | END SUBROUTINE lim_dyn_2 |
---|
184 | |
---|
185 | |
---|
186 | SUBROUTINE lim_dyn_init_2 |
---|
187 | !!------------------------------------------------------------------- |
---|
188 | !! *** ROUTINE lim_dyn_init_2 *** |
---|
189 | !! |
---|
190 | !! ** Purpose : Physical constants and parameters linked to the ice |
---|
191 | !! dynamics |
---|
192 | !! |
---|
193 | !! ** Method : Read the namicedyn namelist and check the ice-dynamic |
---|
194 | !! parameter values |
---|
195 | !! |
---|
196 | !! ** input : Namelist namicedyn |
---|
197 | !!------------------------------------------------------------------- |
---|
198 | NAMELIST/namicedyn/ epsd, alpha, & |
---|
199 | & dm, nbiter, nbitdr, om, resl, cw, angvg, pstar, & |
---|
200 | & c_rhg, etamn, creepl, ecc, ahi0 |
---|
201 | !!------------------------------------------------------------------- |
---|
202 | |
---|
203 | REWIND ( numnam_ice ) ! Read Namelist namicedyn |
---|
204 | READ ( numnam_ice , namicedyn ) |
---|
205 | |
---|
206 | IF(lwp) THEN ! Control print |
---|
207 | WRITE(numout,*) |
---|
208 | WRITE(numout,*) 'lim_dyn_init_2: ice parameters for ice dynamics ' |
---|
209 | WRITE(numout,*) '~~~~~~~~~~~~~~' |
---|
210 | WRITE(numout,*) ' tolerance parameter epsd = ', epsd |
---|
211 | WRITE(numout,*) ' coefficient for semi-implicit coriolis alpha = ', alpha |
---|
212 | WRITE(numout,*) ' diffusion constant for dynamics dm = ', dm |
---|
213 | WRITE(numout,*) ' number of sub-time steps for relaxation nbiter = ', nbiter |
---|
214 | WRITE(numout,*) ' maximum number of iterations for relaxation nbitdr = ', nbitdr |
---|
215 | WRITE(numout,*) ' relaxation constant om = ', om |
---|
216 | WRITE(numout,*) ' maximum value for the residual of relaxation resl = ', resl |
---|
217 | WRITE(numout,*) ' drag coefficient for oceanic stress cw = ', cw |
---|
218 | WRITE(numout,*) ' turning angle for oceanic stress angvg = ', angvg, ' degrees' |
---|
219 | WRITE(numout,*) ' first bulk-rheology parameter pstar = ', pstar |
---|
220 | WRITE(numout,*) ' second bulk-rhelogy parameter c_rhg = ', c_rhg |
---|
221 | WRITE(numout,*) ' minimun value for viscosity etamn = ', etamn |
---|
222 | WRITE(numout,*) ' creep limit creepl = ', creepl |
---|
223 | WRITE(numout,*) ' eccentricity of the elliptical yield curve ecc = ', ecc |
---|
224 | WRITE(numout,*) ' horizontal diffusivity coeff. for sea-ice ahi0 = ', ahi0 |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! Initialization |
---|
228 | usecc2 = 1.0 / ( ecc * ecc ) |
---|
229 | rhoco = rau0 * cw |
---|
230 | angvg = angvg * rad ! convert angvg from degree to radian |
---|
231 | sangvg = SIN( angvg ) |
---|
232 | cangvg = COS( angvg ) |
---|
233 | pstarh = pstar / 2.0 |
---|
234 | ! |
---|
235 | ahiu(:,:) = ahi0 * umask(:,:,1) ! Ice eddy Diffusivity coefficients. |
---|
236 | ahiv(:,:) = ahi0 * vmask(:,:,1) |
---|
237 | ! |
---|
238 | END SUBROUTINE lim_dyn_init_2 |
---|
239 | |
---|
240 | #else |
---|
241 | !!---------------------------------------------------------------------- |
---|
242 | !! Default option Empty module NO LIM 2.0 sea-ice model |
---|
243 | !!---------------------------------------------------------------------- |
---|
244 | CONTAINS |
---|
245 | SUBROUTINE lim_dyn_2 ! Empty routine |
---|
246 | END SUBROUTINE lim_dyn_2 |
---|
247 | #endif |
---|
248 | |
---|
249 | !!====================================================================== |
---|
250 | END MODULE limdyn_2 |
---|