Changes between Version 201 and Version 202 of DevelopmentActivities/ORCHIDEE-DOFOCO


Ignore:
Timestamp:
2019-03-01T10:10:44+01:00 (5 years ago)
Author:
luyssaert
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DevelopmentActivities/ORCHIDEE-DOFOCO

    v201 v202  
    132132}}} 
    133133 
    134 === Albedo === 
     134=== Albedo (general) === 
    135135ORCHIDEE-CN-CAN makes use of a two stream radiative transfer scheme through the canopy. The scheme is based on Pinty et al 2006. This approach accounts not only for the leaf mass but also for the vertical and horizontal distribution of the leaf mass (=canopy structure). In ORCHIDEE-CN-CAN the same scheme is used to simulate the reflected, transmitted and absorbed light. This implies that albedo and photosynthesis are now fully consistent as well as the light reaching the forest floor (the latter is used in for example recruitment). ORCHIDEE-CN-CAN cannot revert to previous approaches for calculating albedo. 
    136136  
    137137The radiative transfer through the canopy is controlled by 3 parameters for each wavelength/band: single leaf scattering '''leaf_ssa_xxx''', forward scattering '''leaf_psd_xxx''' and background reflectance '''bgrd_ref_xxx'''. At present VIS and NIR have been parameterized. Parameterization is based on running an inverse radiation scheme on the MODIS albedo product while accounting for the different land cover types. The inverted parameters are provided by the JRC as the JRC TIP product. Seasonal variation in the background albedo was observed but small and therefore not accounted for. 
    138138 
    139 When sow is present in a pixel, all snow is assumed to reach the ground and the background albedo and the snow albedo (calculated as a function of snow age) are weighted according to their cover fractions (see Background albedo).   
    140  
    141 === Allocation === 
    142 ORCHIDEE-CN-CAN uses the allometric allocation as developed in OCN. In ORCHIDEE-CAN the approach was adjusted to work for more than one diameter class. Since it was developed this allocation has been used in ORCHIDEE-CN, and ORCHIDEE-CNP. In those branches only a single diameter class was used. Except for the way the reserves and labile pools are calculated, the allocation scheme is identical between all aforementioned versions. The model is, however, very sensitive to the way the reserves and labile pools are calculated. The allocation makes use of a labile pool for which the activity is calculated based on the temperature. As such the model addresses the sink/source discussion initiated by Körner. Whereas this approach resulted in an acceptable interannual variability in for example NPP in ORCHIDEE-CAN, adding N seems to have dampen the interannual variability too much. This dampening was observed in ORCHIDEE-CN  and ORCHIDEE-CN-CAN. IN ORCHIDEE-CNP this temperature relationship was removed because the interannual variability became unrealistic.  
    143  
    144 ORCHIDEE-CN-CAN calculates the number of individuals and uses this as a criterion to initiate a stand replacing disturbance. This approach, guided by the self-thinning relationship, avoids the need for a stand-level turnover time. ORCHIDEE-CN, and ORCHIDEE-CNP still make use of stand-level turnover. 
    145  
    146 There are no options to revert to the allocation based on resource limitation. All references and parameters for allocation based on resource limitation have been removed from the code (those that were overlloked can be removed). Allometric allocation makes use of the following PFT-specific parameters: '''sla''', '''tau_root''', '''tau_leaf''', '''tau_sap''', '''pipe_density''', '''tree_ff''', '''pipe_tune_x''', '''k_latosa_max''', and '''k_latosa_min'''. In addition to this set of parameters that mainly describe the allometric relationships and the longevity of the different tissues, the calculation of the allocation coefficients makes use PFT-specific tissue conductivities, i.e., '''k_sap''', '''k_root''', and '''k_leaf''' (see also plant water stress). As such there is a functional link between C and N-allocation and the hydraulic architecture of a plant. Details on the parameters can be found in the SI of Naudts et al 2015 in GMD or in src_parameters/constantes_mtc.f90. 
    147  
    148 === Background albedo === 
     139When sow is present in a pixel, all snow is assumed to reach the ground and the background albedo and the snow albedo (calculated as a function of snow age) are weighted according to their cover fractions (see Background albedo).  
     140 
     141=== Albedo (background) === 
    149142If covered by snow, the background albedo is calculated by the snow module and accounts for snow age and snow density (needs to be checked – last time snow did not account for NIR). If not covered by snow the background albedo is not simulated but prescribed by the parameters '''bgrd_ref_vis''' and '''bgrd_ref_nir'''. In deciduous forest, grasslands and croplands, the background albedo is known to be strongly affected by the phenology and senescence of the understory vegetation. ORCHIDEE-CN-CAN has two options to prescribe the background albedo: 
    150143* The background albedo is prescribed per PFT but is constant throughout the year. This is the option that has been used in ORCHIDEE-CAN and is the option that has been validated over Europe. Set '''alb_bg_modis''' = n. 
    151144* The background albedo is constant across PFTs. This option reads background maps. Given that those maps are based on the JRC TIP product, they should be compatible with the new albedo scheme. This option, however, has not been validated yet. Set '''alb_bg_modis''' = y. 
     145  
     146=== Albedo (snow) === 
     147The snow albedo could be either prescribed (in condveg_init.f90) or calculated following Chalita and Treut (1994) '''do_new_snow_albedo = n ''' or calculated following CLM3 '''do_new_snow_albedo = y'''. The difference between the latter two methods has not been tested yet. The CLM method was added to CN-CAN, the Chalita and Treut method was added in parallel to the runk. When merging both versions we ended up with two options. 
     148 
     149=== Allocation === 
     150ORCHIDEE-CN-CAN uses the allometric allocation as developed in OCN. In ORCHIDEE-CAN the approach was adjusted to work for more than one diameter class. Since it was developed this allocation has been used in ORCHIDEE-CN, and ORCHIDEE-CNP. In those branches only a single diameter class was used. Except for the way the reserves and labile pools are calculated, the allocation scheme is identical between all aforementioned versions. The model is, however, very sensitive to the way the reserves and labile pools are calculated. The allocation makes use of a labile pool for which the activity is calculated based on the temperature. As such the model addresses the sink/source discussion initiated by Körner. Whereas this approach resulted in an acceptable interannual variability in for example NPP in ORCHIDEE-CAN, adding N seems to have dampen the interannual variability too much. This dampening was observed in ORCHIDEE-CN  and ORCHIDEE-CN-CAN. IN ORCHIDEE-CNP this temperature relationship was removed because the interannual variability became unrealistic.  
     151 
     152ORCHIDEE-CN-CAN calculates the number of individuals and uses this as a criterion to initiate a stand replacing disturbance. This approach, guided by the self-thinning relationship, avoids the need for a stand-level turnover time. ORCHIDEE-CN, and ORCHIDEE-CNP still make use of stand-level turnover. 
     153 
     154There are no options to revert to the allocation based on resource limitation. All references and parameters for allocation based on resource limitation have been removed from the code (those that were overlloked can be removed). Allometric allocation makes use of the following PFT-specific parameters: '''sla''', '''tau_root''', '''tau_leaf''', '''tau_sap''', '''pipe_density''', '''tree_ff''', '''pipe_tune_x''', '''k_latosa_max''', and '''k_latosa_min'''. In addition to this set of parameters that mainly describe the allometric relationships and the longevity of the different tissues, the calculation of the allocation coefficients makes use PFT-specific tissue conductivities, i.e., '''k_sap''', '''k_root''', and '''k_leaf''' (see also plant water stress). As such there is a functional link between C and N-allocation and the hydraulic architecture of a plant. Details on the parameters can be found in the SI of Naudts et al 2015 in GMD or in src_parameters/constantes_mtc.f90. 
    152155 
    153156=== Anthropogenic species change ===