The equation of deriving soil heat capacity in current model is:

The heat capacity of a soil is calculated as the sum of the heat capacities of its different constituents,

$$m_t C_t = m_d C_d + m_w C_w \tag{1}$$

The specific soil heat capacity is converted to volumetric heat capacity by dividing Eq. 30 with the total soil volume $V_T (V_T = V_d + V_w)$,

$$\rho_t C_t = \rho_d C_d + \frac{m_w}{V_T} C_w = \rho_d C_d + \frac{V_w}{V_T} \rho_w C_w$$
⁽²⁾

 ρ_t , ρ_d , ρ_w : the total bulk density, soil bulk density, water density (kg m⁻³); C_t , C_d , C_w : the specific heat capacity for total, dry soil, water (Jkg⁻¹K⁻¹); $\rho_t C_t$, $\rho_d C_d$, $\rho_w C_w$: the volumetric heat capacity for total, dry soil, and water (Jm⁻³K⁻¹); m_t , m_d , m_w : the masses in kg of total, dry soil and water, respectively (kg); V_T , V_d , V_w : the volume of total soil, dry soil and water (m³).

Recalling the V_w/V_T term in Eq. 2 is the volumetric soil moisture θ , the equation for volumetric soil heat capacity is written by:

$$C_{\nu,t} = C_{\nu,d} + \theta C_{\nu,w} \tag{3}$$

 $C_{v,t}$, $C_{v,d}$, $C_{v,w}$: the volumetric heat capacity for total, dry soil, and water (Jm⁻³K⁻¹). The value for $C_{v,d}$ was obtained from *Pielke* [2002, 2013]. It varies with different soil types. $C_{v,w}$ is constant.

The problem is in equations (2) and (3). The ρ_d used by *Pielke* [2002, 2013] is not bulk density as defined by m_d/V_T , but it is defined by m_d/V_d . The corrected equations are:

$$\rho_t C_t = \frac{m_d}{V_T} C_d + \frac{m_w}{V_T} C_w = \frac{m_d}{V_d} \frac{V_d}{V_T} C_d + \frac{V_w}{V_T} \rho_w C_w = \rho_d (1 - \frac{V_w}{V_T}) C_d + \frac{V_w}{V_T} \rho_w C_w$$
(2')

$$C_{\nu,t} = (1 - \theta)C_{\nu,d} + \theta C_{\nu,w}$$
(3')

It means the $(1 - \theta)$ is missing in front of $C_{v,d}$.