The Global Land Surface Model ORCHIDEE

(ORganizing Carbon and Hydrology In Dynamic Ecosystems Environment)

Presented by Nicolas Vuichard

LSCE/IPSL

Outline

- A brief history of ORCHIDEE & motivations
- Formalism
- Main processes
- Configurations & Inputs requirements

A brief history

ORCHIDEE

Introduction - Training on ORCHIDEE model – February 2024

Laplace

Objective

- Simulate Energy, Water, Carbon and Nitrogen fluxes at the land surface/atmosphere interface.
 - To be used for being the 'land surface' component of a Earth system model (IPSL-CM6).
 - Global => to represent the main vegetation cover.
 - Regional => to study feedback processes.
 - For past, present and future climates
 - Module of vegetation dynamic
 - Process-based modeling
- Conservation of mass and energy is a guiding principle for ORCHIDEE.

Outline

A brief history of ORCHIDEE & motivations

- Formalism
- Main processes

Configurations & Inputs requirements

A mosaïc of vegetation and soil moisture

A mosaïc of vegetation and soil moisture

Tiling for soil hydrology

5' USDA texture map (Reynolds et al., 2000)

2: All Forest PFTs

3: All grassland and cropland PFTs

A single energy budget

- One surface temperature per grid cell
- No vertical discretization within the canopy

Vertical discretization in the soils

ORCHIDEE used to have different vertical discretizations for moisture and temperature. The physics require different numerical choices !

This was not tenable any more with soil freezing processes, permafrost and complex snow schemes.

- Users are now provided with a set of parameters to configure the soils.
 - zmax_t (DEPTH_MAX_T = 10)
 - zmax_h (DEPTH_MAX_H = 2)
 - depth_topthickness (~1 mm)
 - refinebottom
 - ratio_geom_below

Surface variability representation ?

- In each grid cell, we account for:
 - Bare soil : veget_max(1)
 - Vegetated lands : veget_max(2:nvm)
 - Other lands (so far, only the continental ice)

frac_nobio

$$\sum_{i=1}^{nvm} (veget _max_i) + frac_nobio = 1$$

Use also of veget_cov_max = veget_max/(1-frac_nobio)

 One soil type per grid cell but different soil moisture profiles.

Vegetated lands

- Concept of 'Plant Functional Types' (PFT)
- Defined according to systematic, physiological, phenological, climatic conditions

Plant Functional Types

- A same set of equations governs PFT
- But parameter values differ among PFT's

PFT	V _{cmax,opt}	T_{opt}	λ_{max}	Z _{root}	α_{leaf}	h	A_c	T_s	H_s
TrBE	50	37	10	1.25	0.12	25	910	-	0.3
TrBR	60	37	10	1.25	0.14	25	180	-	0.3
TeNE	37.5	27	5	1.	0.14	15	910	-	-
TeBE	37.5	32	5	1.25	0.14	15	730	-	-
TeBS	37.5	28	5	1.25	0.14	15	180	12.5	-
BoNE	37.5	25	4.5	1.	0.14	10	910	-	-
BoBS	37.5	25	4.5	1.	0.14	10	180	5	-
BoNS	35	25	4	1.25	0.14	10	180	7	-
NC3	70	$27.5 + 0.25T_l$	2.5	0.25	0.20	0.2	120	4	0.2
NC4	70	36	2.5	0.25	0.20	0.2	120	5	0.2
AC3	90	$27.5 + 0.25T_l$	6	0.25	0.18	0.4	150	10	0.2
AC4	90	36	3	0.25	0.18	0.4	120	10	0.2

Response to environmental conditions

Concept of externalization

- By default 13 PFT's (named Metaclass) with predefined parameters setting
- Most of the parameters can be modified by the USEr (see orchidee.default file in the config/PARAM directory) The number of PFT's can be extended
 - By setting the NVM parameter and PFT_TO_MTC (correspondence array linking a PFT to MTC)
 - => More info : technical note

orchidee.pdf

https://forge.ipsl.jussieu.fr/orchidee/raw-

attachment/wiki/GroupActivities/Training/parameterizatio

Outline

A brief history of ORCHIDEE & motivations

Formalism

- Main processes
- Configurations & Inputs requirements

Main processes

Resistance terms & Energy budget

diffuco module

- vbeta1 : sublimation
- vbeta2 : interception loss
- vbeta3 : transpiration
- vbeta4 : bare soil evaporation
- vbeta5 : flood plains

enerbil module

- Calculation of :
 - Net radiation
 - Sensible heat flux
 - Latent heat flux
 - Transpiration
 - Evaporation of bare soil
 and leaf water
 - Sublimation
 - Soil and surface temperature

thermosoil module

- Calculates the soil temperatures by solving the heat diffusion equation within the soil
 - the soil is divided into several layers, reaching at least 10m down within the soil. The user can adapt the model to the application.
 - Thickness follows a geometric series.

Introduction - Training on ORCHIDEE model – February 2024

Soil water balance

- Physically-based description of soil water fluxes using Richards equation : 2m soil discretized in at least 11-layers.
- Hydraulic properties based on van Genuchten-Mualem formulation
- Related parameter based on texture (fine, medium, coarse)
 - Surface runoff = P Esol Infiltration
- Free drainage at the bottom

Hydrol module

ablace

Routing / Irrigation

routing module

 Routing parametrization to calculate water discharge to river

- 9 pools of living biomass
 - Leaves, fine roots, above and below sapwood, above and below heartwood, 'fruits' and short- and long-term 'reserves'
- 4 pools of litter + Deadwood pool
 - Above/below, Structural & Metabolic
- 4 pools of soil
 - Surface, Active, Slow and Passive

x2 Carbon
 Nitrogen

C assimilation/stomatal conductance

diffuco module: diffuco_trans_co2 routine

- A and G_s are calculated at each LAI level:
- Decrease of light in the canopy based on Pgap model
- N-limitation of assimilation:

 $N_L = f(N_{leaf})$

$$N_L = \frac{k_N \times N_{leaf}}{1 - exp^{-k_N \times LAI_{Lc}}} \times exp^{-k_N \times LAI_{Lc}}$$

With $k_{\scriptscriptstyle N}$ values around 0.1-0.2 (Carrswell et al., 2000; Dewar et al. 2012)

- N_{leaf} : leaf nitrogen content m⁻²_[ground]
- N_L : leaf nitrogen content $m^{\text{-2}}_{\text{[leaf]}}$ at level L

From the leaf to canopy

Photosynthesis

diffuco module: diffuco_trans_co2 routine

- Based on Farquahr model
- Vc_{max} : photosynthetic capacity (µmol CO₂ m⁻² s⁻¹)

$$Vc_{max} = NUE \times N_L$$

with *NUE* the Nitrogen Use Efficiency (PFT-dependant) and N_L the leaf N content (gN m⁻ ${}^2_{[leaf]}$)

Soil mineral N pools

- Nitrogen_dynamics module
- Based on the DNDC model (Li et al., 1992, 2000).
- It accounts for:
 - Inputs of mineral through
 - mineralisation
 - N deposition
 - N fertilizers
 - Biological nitrogen fixation
 - Emissions of NH₃, NO, N₂O, N₂
 by Nitrification and

denitrification processes

- Loss of soil mineral N through
 - Plant N uptake

Leaching

Plant N uptake

 Based on the experimental work of Kronzucker et al. (1995, 1996)

Allocation of assimilates

Functional allocation

stomate_growth_fun_all module

- Allometric relationship between sapwood, leaf and root biomass pools
- Based on Forestry allocation scheme (Dhote and Deleuze)
- N allocation is function of
 - Allocation scheme for Carbon
 - N availability:
 - Leaf C/N ratio is a key variable
 - Varies across two constrained boundaries : CN_{leaf,min} and CN_{leaf,max}

 CNmin (high N)
 Image: CNmax (low N)
 Nreserve > Nalloc needed for maintaining CN

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

 Image: CNmax (low N)
 Image: CNmax (low N)
 Image: CNmax (low N)

Allocation of assimilates

Functional allocation

stomate_growth_fun_all module

- Allometric relationship between sapwood, leaf and root biomass pools
- Based on Forestry allocation scheme (Dhote and Deleuze)
- N allocation is function of
 - Allocation scheme for Carbon
 - N availability:
 - Leaf C/N ratio is a key variable
 - Varies across two constrained boundaries : CN_{leaf,min} and CN_{leaf,max}

- Bud-burst model (Botta el al. 2000)
 - Defined for each PFT based on Growing degree days, Number of chilling days, soil water, ...
 - Calibrated at global scale from bud-burst estimated by satellite
- Senescence

stomate_turnover module

- Function of leaf age and environmental conditions
- For trees, a senescence stage is considered until all leaves fall (while for grass senescence it is a continuous process)

Respirations

- Autotrophic respiration
 - Maintenancestomate_resp module
 - linear response to temperature with potential adaptation to longterm temperature
 - function of Nitrogen content
- Heterotrophic respiration

ORCHIDEE

- Growth stomate_growth_fun_all
 - a fixed part of assimilates

Land-use and land-use change

Vegetation dynamic

lpj_kill, lpj_pftinout, lpj_constraints modules

- Taken from LPJ model
- All PFT's are able to growth in each grid cell
 - Climate constraints define regeneration and adaptation of PFT's
 - Light competition when canopy closure (PFT with NPPmax dominate)
 - Trees always dominate grasses

A brief history of ORCHIDEE & motivations

Formalism

Main processes

Configurations & Inputs requirements

Tasks performed by ORCHIDEE

Infrastructure surrounding ORCHIDEE

Structure of the code

- Use of a modular structure
 - All the variables are dynamics (allocatable)
 - For each module:
 - A main entry point : <module>_main
 - An initialisation procedure : <module>_initialize
 - An end procedure : <module>_finalize
 - An procedure to clear memory : <module>_clear
 - All the variables are transmitted by subroutine parameters.
 - Prognostic variables are local to the modules.

Subroutine Call graph

Atmospheric Interface

Meteorological forcing (from monthly to half-hourly)

Forcing files

- Meteorological data
 - One often uses reanalysis or in-situ data with different time resolution (3h, 6h, ½ hour, ...)
 - The spatial resolution of the simulation is driven by the resolution of the meteo forcing file.
 - The time step of a simulation is defined by the parameter TIME_STEP (30 min by default).
 - The meteorological data often needs to be interpolated in time to the ORCHIDEE time step.

Ancillary data

- Ancillary data needed will depend on the configuration chosen.
- All variables will be interpolated to the grid of ORCHIDEE.
- Some exemples :
 - PFT map and land use
 - Wood harvest intensity
 - Soil texture
 - Soil pH
 - Soil bulk density

- Background albedo
- River graphs
- Topographic slopes
- Nitrogen deposition
- Nitrogen fertilisation

Conclusions

- **ORCHIDEE** is a complex system !
 - too many options / configurations
 - \Rightarrow You may get lost!
- But you have the chance to use a system which was developed at IPSL and by people who are still present.
 - \Rightarrow Do not hesitate to ask advices
 - To your supervisor
 - To the core developers team orchidee-

ablace