Soil hydrology

Agnès Ducharne

UMR METIS, UPMC

agnes.ducharne@upmc.fr

Outline

1. Introduction

Scope of this specific training

2. The multi-layer « CWRR » scheme

- Processes (soil moisture diffusion, boundary fluxes)
- Parameters and options

3. Forcing conditions

Vegetation/LC, soil texture, slope

More details on the Wiki

http://forge.ipsl.jussieu.fr/orchidee/attachment/wiki/Documentation/eqs hydrol.pdf

Reference papers: de Rosnay et al., 2000; de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013 ; Tafasca et al., 2019 ; Ducharne et al. in prep

PhD theses: de Rosnay, 1999; d'Orgeval, 2006; Campoy, 2013

Land surface hydrology

Soil hydrology and water budget

We will focus on soil water and the related water fluxes (soil hydrology)

No interception, no snow, no soil water freezing today

Two versions of soil hydrology

Two-layer = Choisnel = ORC2

Ducoudré et al., 1993; Ducharne et al., 1998; de Rosnay et al. 1998

- Conceptual description of soil moisture storage
- 2-m soil and 2-layers
- Top layer can vanish
- Constant available water holding capacity (between FC and WP)
- Runoff when saturation
- No drainage from the soil
 We just diagnose a drainage as 95%
 of runoff for the routing scheme

Multi-layer = CWRR = ORC11

de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013

- Physically-based description of soil water fluxes using Richards equation
- 2-m soil and 11-layers
- Formulation of Fokker-Planck
- Hydraulic properties based on van Genuchten-Mualem formulation
- Related parameter based on texture
- Surface runoff = P Esol Infiltration
- Free drainage at the bottom

Two versions of soil hydrology

Two-layer = Choisnel = ORC2

Ducoudré et al., 1993; Ducharne et al., 1998; de Rosnay et al. 1998

- Constant available water holding capacity (between FC and WP)
- Runoff when saturation
- No drainage from the soil
 We just diagnose a drainage as 95%
 of runoff for the routing scheme

Multi-layer = CWRR = ORC11

de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013

- Physically-based description of soil water fluxes using Richards equation
- 2-m soil and 11-layers
- Formulation of Fokker-Planck
- Hydraulic properties based on van Genuchten-Mualem formulation
- Related parameter based on texture
- Surface runoff = P Esol Infiltration
- Free drainage at the bottom

What is modeled?

What is modeled?

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

 θ : volumetric water content in m³.m-³

q: flux density in m. s⁻¹

h: hydraulic potential in m

K: hydraulic conductivity in m.s⁻¹ s: transpiration sink in m³.m⁻³.s⁻¹

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

2. Continuity:

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

 θ : volumetric water content in $\text{m}^\text{3}.\text{m}^\text{-3}$

q: flux density in m. s⁻¹

h: hydraulic potential in m

K: hydraulic conductivity in m.s⁻¹ s: transpiration sink in m³.m⁻³.s⁻¹

Richards equation

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

2. Continuity:

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

 θ : volumetric water content in $m^3.m^{\text{-}3}$

q: flux density in m. s⁻¹

h: hydraulic potential in m

K: hydraulic conductivity in m.s⁻¹ s: transpiration sink in m³.m⁻³.s⁻¹

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

2. Continuity:

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

4. Hydraulic head h quantifies the gravity and pressure potentials

$$h=$$
 - $z+\psi$ ψ is the matric potential (in m, <0)

 θ : volumetric water content in $m^3.m^{\text{-}3}$

q: flux density in m. s-1

h: hydraulic potential in m

K: hydraulic conductivity in m.s⁻¹ s: transpiration sink in m³.m⁻³.s⁻¹

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

 θ : volumetric water content in $m^3.m^{-3}$

q: flux density in m. s-1

h: hydraulic potential in m

K: hydraulic conductivity in m.s⁻¹ s: transpiration sink in m³.m⁻³.s⁻¹ 2. Continuity:

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

4. Hydraulic head h quantifies the gravity and pressure potentials

$$h=$$
 - $z+\psi$ ψ is the matric potential (in m, <0)

Richards equation

5. K and ψ depend on θ (unsaturated soils)

$$q(z) = -K(\theta) \left[\frac{\partial \psi}{\partial z} - 1 \right]$$

$$q(z) = -D(\theta)\frac{\partial \theta}{\partial z} + K(\theta)$$

$$D(\theta) = K(\theta) rac{\partial \psi}{\partial \theta}$$
 D is the diffusivity (in m².s-¹)

Finite difference integration

The differential equations of continuity and motion are solved using finite differences:

$$\frac{W_i(t+dt)-W_i(t)}{dt}=Q_{i-1}(t+dt)-Q_i(t+dt)-S_i \qquad \text{Si = transpiration sink}$$

$$\frac{Q_i}{A}=-\frac{D(\theta_{i-1})+D(\theta_i)}{2}\underbrace{\frac{\theta_i-\theta_{i-1}}{\Delta Z_i}+\frac{K(\theta_{i-1})+K(\theta_i)}{2}}_{\text{Clumn is discretized using N nodes, where we calculate θi}}_{\text{tridiagonal}}$$

- The soil column is discretized using N **nodes**, where we calculate θi
- Each node is contained in one layer, with a total water content Wi
- The fluxes **Qi** are calculated at the **interface** between two layers

tridiagonal matrix

Wi is obtained by vertical integration of $\theta(z)$ in layer i, assuming a linear variation of $\theta(z)$ between 2 nodes

$$W_{i} = \left[\Delta Z_{i} \left(3 \, \theta_{i} + \theta_{i-1} \right) + \Delta Z_{i+1} \left(3 \, \theta_{i} + \theta_{i+1} \right) \right] / 8$$

$$W_{1} = \left[\Delta Z_{2} \left(3 \, \theta_{1} + \theta_{2} \right) \right] / 8$$

$$W_{N} = \left[\Delta Z_{N} \left(3 \, \theta_{N} + \theta_{N-1} \right) \right] / 8$$

Vertical discretization

- The vertical discretization must permit an accurate calculation of θ i and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together!

By default, in hydrol, we use:

- 2-m soil
- 11 nodes (layers) with geometric increase of internode distance

(cf. de Rosnay et al., 2000)

i	≈ hi (mm)	
1	1	
2	3	
3	6	
4	12	
5	23,5	
6	47	
7	94	
8	188	
9	375	
10	751	
11	500	

Vertical discretization

- The vertical discretization must permit an accurate calculation of θ i and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together!
- Alternative discretizations can be defined by externalized parameters

DEPTH_MAX_H	2.0 or 4.0 depending on hydrol_cwrr	m	Maximum depth of soil moisture	Maximum depth of soil for soil moisture (CWRR).
DEPTH_MAX_T	10.0	m	Maximum depth of the soil thermodynamics	Maximum depth of soil for temperature.
DEPTH_TOPTHICK	9.77517107e-04	m	Thickness of upper most Layer	Thickness of top hydrology layer for soil moisture (CWRR).
DEPTH_CSTTHICK	DEPTH_MAX_H	m	Depth at which constant layer thickness start	Depth at which constant layer thickness start (smaller than zmaxh/2)
DEPTH_GEOM	DEPTH_MAX_H	m	Depth at which we resume geometrical increases for temperature	Depth at which the thickness increases again for temperature.

The hydrodynamic parameters

- K and D depend on saturated properties (measured on saturated soils) and on θ
- Their dependance on θ is very non linear
- In ORCHIDEE, this is decribed by the so-called **Van Genuchten-Mualem relationships**:

$$K(\theta) = K_s \sqrt{\theta_f} \left(1 - \left(1 - \theta_f^{1/m}\right)^m\right)^2 \qquad \theta_f = (\theta - \theta_r)/(\theta_s - \theta_r)$$

$$\psi(\theta) = -\frac{1}{\alpha} \left(\theta_f^{-1/m} - 1\right)^{1/n} \qquad m = 1 - 1/n$$

$$D(\theta) = \frac{(1 - m)K(\theta)}{\alpha m} \frac{1}{\theta - \theta_r} \theta_f^{-1/m} \cdot \left(\theta_f^{-1/m} - 1\right)^{-m}$$
 The parameters
$$\theta_s \; \theta_r \; K_s \; n$$

$$\alpha = -1/\psi_{ae}$$
 depend on soil texture

depend on soil texture

(1) K_s^{ref} is defined based on soil texture
Here 1060 mm/d for Sandy Loam [Zobler class Coarse]

To sum up water diffusion

- The soil is assumed to be unsaturated
- The prognostic variables are θi (at the nodes)
- They are updated simultaneously (by solving a tridiagonal matrix)
- Their evolution is driven by
 - the soil properties K(z) and D(z)
 - the vertical discretization (soil depth and node position Zi)
 - four boundary fluxes

To sum up water diffusion

- The soil is assumed to be unsaturated
- The prognostic variables are θi (at the nodes)
- They are updated simultaneously (by solving a tridiagonal matrix)
- Their evolution is driven by
 - the soil properties K(z) and D(z)
 - the vertical discretization (soil depth and node position Zi)
 - four boundary fluxes 2
 - transpiration sink s_i
 - top and bottom boundary conditions:

$$\mathbf{Q}_0 = \mathbf{I} - \mathbf{E}_g$$
 and $\mathbf{Q}_N = \mathbf{D}$

I: infiltration

E_g: soil evaporation

D: drainage

Which all depend on soil moisture

By default :
$$Q_N = K(\theta_N)$$

Based on the motion equation, this corresponds to a situation where $\boldsymbol{\theta}$ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

By default :
$$Q_N = K(\theta_N)$$

Based on the motion equation, this corresponds to a situation where $\boldsymbol{\theta}$ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

The code is also apt to use reduced drainage:

$$Q_N = F.K(\theta_N)$$
 F in [0,1]

F is externalized by **free_drain_coef (1,1,1)**

By default :
$$Q_N = K(\theta_N)$$

Based on the motion equation, this corresponds to a situation where $\boldsymbol{\theta}$ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta)\frac{\partial \theta}{\partial z} + K(\theta)$$

The code is also apt to use reduced drainage:

$$Q_N = F.K(\theta_N)$$
 F in [0,1]

F is externalized by free_drain_coef (1,1,1)

With F=0, you get an impermeable bottom:

- like in the Choisnel scheme
- leading to build a water table

But you need to adapt the vertical discretization!

By default : $Q_N = K(\theta_N)$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- 1. Direct infiltration of P_0 to the top soil layer (1-mm deep)

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
 - l absorption
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- 1. Direct infiltration of Po to the top soil layer (1-mm deep)
- 2. If P_0 is sufficient, infiltration to the lowest layers

Reduction from K_{pot} to K_{eff} because subgrid variability

$$K_{eff}(2) = K_{pot}(2) [1 - exp(-P_0/K_{pot}(2))]$$
 $R_s(2) = P_0 - K_{eff}(2)$
 θ_2 increased up to θ_s
 $t_2 = h_2 (\theta_s - \theta_2) / K_{eff}(2)$

We consider an exponential distribution of K with a mean of K_{pot}

- K_{eff} is the mean of K values < P₀
- Runoff production where $P_0 > K$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- Direct infiltration of P₀ to the top soil layer (1-mm deep)
- 2. If P_0 is sufficient, infiltration to the lowest layers

propagation to layer 3

Reduction from K_{pot} to K_{eff} because subgrid variability

$$K_{eff}(3) = K_{pot}(3) [1 - exp(-P_0/K_{pot}(3))]$$
 $R_s(3) = P_0 - K_{eff}(3)$
 θ_3 updated up to θ_s
 $t_3 = h_3 (\theta_s - \theta_3) / K_{eff}(3)$

We consider an exponential distribution of K with a mean of K_{pot}

- K_{eff} is the mean of K values < P₀
- Runoff production where $P_0 > K$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- Direct infiltration of P₀ to the top soil layer (1-mm deep)
- 2. If P₀ is sufficient, infiltration to the lowest layers

propagation to layer i

$$K_{eff}(i) = K_{pot}(i) [1 - exp(-P_0/K_{pot}(i))]$$

$$R_s(i) = P_0 - K_{eff}(i)$$

 $\theta_{\rm 3}$ increased up to $\theta_{\rm s}$

$$t_3 = h_3 (\theta_s - \theta_3) / K_{eff}(3)$$

Loop on layers i until P_0 fully processed or $\Sigma t_i = dt$

$$R_s^{pot} = \sum R_s(i)$$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- 1. Direct infiltration of P_0 to the top soil layer (1-mm deep)
- 2. If P₀ is sufficient, infiltration to the lowest layers
- 3. Possible reinfiltration of surface runoff in flat areas (ponding)

$$R_{s}^{pot} = \sum R_{s}(i) = P_{0} - \sum I_{i}$$

$$\gamma_{p} R_{s}^{pot} \rightarrow P_{0}^{t+dt}$$

$$R_{s} = (1-\gamma_{p}) R_{s}^{pot}$$

In the code: $\gamma_p = reinf_slope$ $p_{max} = 0.5\%$ Po

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- **3.** This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out

$$E_g = \min(E_{\text{pot}}^*, Q_{\text{up}})$$

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out

$$E_g = \min(E_{\text{pot}}^*, Q_{\text{up}}^*)$$

$$E_{\text{pot}}^* = \frac{\rho}{r_a} \left(q_{\text{sat}}(T_w) - q_{\text{a}} \right) \leq E_{\text{pot}} = \frac{\rho}{r_a} \left(q_{\text{sat}}(T_s) - q_{\text{a}} \right)$$
$$\beta_q = E_q / E_{\text{pot}}$$

\mathbf{Q}_{up} is calculated by 1 or 2 dummy integrations of the water diffusion,

- (a) We apply E_{pot}^* as a boundary flux at the top, and test if θ_i remains above θ_r If it does, then $Q_{up} = E_{pot}^* = E_g$
- (b) Else, we force $\theta_1 = \theta_r$ and this drives an upward flux: the surface value Q_0 gives Q_{up}

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux $(Q_0 = I E_g)$ is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- 3. This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out
- 5. Since r3975, we can reduce the demand using a soil resistance (Sellers et al., 1992)

$$r_{\text{soil}} = \exp(8.206 - 4.255L/L_s)$$

L is the soil moisture in the 4 top layers Ls is the equivalent at saturation

$$E_g = \min\left(\frac{q_{sat}(T_w) - q_a}{r_a + r_{soil}}, Q_{up}\right)$$

The minimum is still found via 1 or 2 dummy integrations of the water diffusion

The transpiration sink

The dependance of transpiration on soil moisture is conveyed by u_s(i)

$$u_s(1)=0$$

 $u_s(i>1) = n_{root}(i) \cdot F_w(i)$
 $F_w(i) = max(0,min(1, (W_i-W_w)/(W_%-W_w)))$

n_{root}: mean root density in layer i

$$n_{root} = \int_{hi} R(z)dz / \int_{htot} R(z)dz$$

 $R(z) = exp(-c_j z)$
 c_j depends on the PFT

W_w = wilting point W_f = field capacity

$$AWC = W_f - W_w$$

W_%: moisture at which us becomes 1 (no stress)

$$W_{\%} = W_{w} + p_{\%} AWC$$

In contantes_mtc.f90: c_j = humcste In constantes_soil.f90: p_% = pcent = (/ 0.8, 0.8, 0.8 /)

The transpiration sink

The dependance of transpiration on soil moisture is conveyed by u_s(i)

$$T_r = \rho \left(1 - \frac{I}{I_{max}}\right) \frac{q_{sat}(T_s) - q_{air}}{r_a + r_c + r_{st}}$$

U_s = $\Sigma_i u_s$ is used to calculate the stomatal resistance r_{st} r_c also depends on light, CO₂,

LAI, air temperature and vpd, and nitrogen limitation in the new trunk (CN)

In the code: U_s = humrel

u_s is used to distribute Tr between the soil layers

 $T_r = \Sigma S_i$ $U_s = \Sigma u s_i$ $S_i = T_r u s_i / U_s$

New diagnostics

• TWBR = Total water budget residu (in kg/m²/s) to check water conservation

$$TWBR = dS/dt - (P - E - R)$$

S includes intercepted water and snow

Typical values are < 10⁻⁵ mm/d or less

• wtd = water table depth (m), defined in each soiltile as the depth of deepest saturated node overlaid by an unsaturated node.

Sought from the soil bottom: if a part of the soil is saturated but underlaid with unsaturated nodes, it is not considered as a water table.

If the bottom node is not saturated, the water table depth is set to undef.

Which maps are used for soil hydrology?

Interactions with the vegetation/LC

1. Horizontally, PFTs define soil tiles with independent water budget (below ground tiling)

Interactions with the vegetation/LC

2. Vertically, ORCHIDEE defines a root density profile

In each PFT j
$$R_j(z) = \exp(-c_j z)$$

In each soil layer i $n_{root}(i)$ is the mean root density with $\Sigma_i n_{root}(i) = 1$

It controls:

(1) the water stress on transpiration in each soil layer i

$$u_i = n_{\text{root}}(i) \max(0, \min(1, (W_i - W_w)/(W_\% - W_w)))$$

(2) the increase of Ks towards the surface

In the code, ci is called humcste and defined in constantes_mtc.f90

It can be « externalized », with default values depending on soil hydrology/depth

```
REAL(r_std), PARAMETER, DIMENSION(nvmc) :: humcste_cwrr = & & (/ 5.0, 0.8, 0.8, 1.0, 0.8, 0.8, 1.0, & & 1.0, 0.8, 4.0, 4.0, 4.0, /) !! Values for dpu_max = 2.0
```

- In hydrol, the main soil properties are: θ_s θ_r K_s^{ref} n α (= -1/ ψ_{ae}) θ_w θ_f
- clay_fraction is a parameter for stomate
- They are defined based on soil texture
 (in the real world, they can depend on other factors, as soil structure, OMC, etc.)
- Soil texture is defined by the % of sand, silt, clay particles in a soil sample (granulometric composition)
- Soil texture can be summarized by soil textural classes
- By default, ORCHIDEE reads texture from the 1°x1° map of Zobler (1986) with 3 USDA classes: Sandy Loam, Loam, Clay Loam
- Alternative soil map: 1/12° USDA map of Reynolds et al. (2000) with 12 USDA classes
- In each grid-cell, we use the dominant texture

Dominant texture in each ORCHIDEE grid-cell: defining the hydraulic properties

Sub-grid scale heterogenity:

3 soil columns based on PFTs with independent water budget

but same texture

1: Bare soil PFT

2: All Forest PFTs

3: All grassland and cropland PFTs

- In hydrol, the main soil properties are: θ_s θ_r K_s^{ref} m $\alpha=1/\psi_{ae}$ θ_w θ_f
- They are defined based on soil texture

- In hydrol, the main soil properties are: $\theta_s = \theta_r = K_s^{ref} = m = \alpha = 1/\psi_{ae} = \theta_w = \theta_f$
- They are defined based on soil texture

Three ways of defining soil texture in run.def

- 1. Default keywords: SOILTYPE_CLASSIF = zobler; SOILCLASS_FILE = soils_param.nc
- 2. For Reynolds : SOILTYPE_CLASSIF = usda ; SOILCLASS_FILE = soils_param_usda.nc
- 3. IMPVEG=y, IMPSOIL=y, SOIL FRACTION = (x,y,z, etc.)
- → x,y,z are areal fraction allocated to the soil textural classes defined by your selected map
- → x,y,z <u>are not</u> % sand, silt, clay defining your soil's texture, despite the fact that this option is primarily intended for OD simulations
- → to get the soil properties of one texture class, set SOIL_FRACTION = (1,0,0, ...0...), and use the externalization to redefine the 1st value of the vectors defining soil properties

Soil hydrology in a nutshell

During a time step, the soil hydrology scheme :

- Updates the soil moisture
- Calculates the related fluxes (infiltration, surface runoff, drainage)
- Calculates the water stresses for transpiration and soil evaporation of the next time step
- Calculates some soil moisture metrics for thermosoil and stomate

The equations can be complex, but the parametrization is intended to work without intervention

- Default input maps are defined in COMP/sechiba.card
- Defaults parameters are defined in PARAM/run.def and code
- Lot of debugging over the past years

You can adapt the behavior of the scheme:

- Easy: change externalised parameters in PARAM/run.def
- A bit less easy: use different input maps (you need to comply to the format)
- More difficult: change the code (welcome to orchidee-dev!)

Thank you for your attention Questions?

