ORCHIDEE Training course – January 2020

Soil hydrology

Agnès Ducharne

UMR METIS, UPMC agnes.ducharne@upmc.fr

Outline

1. Introduction

Scope of this specific training

2. The multi-layer « CWRR » scheme

- Processes (soil moisture diffusion, boundary fluxes)
- Parameters and options

3. Forcing conditions

Vegetation/LC, soil texture, slope

More details on the Wiki

http://forge.ipsl.jussieu.fr/orchidee/attachment/wiki/Documentation/eqs_hydrol.pdf

Reference papers: de Rosnay et al., 2000; de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013 ; Tafasca et al., 2019 ; Ducharne et al. in prep

PhD theses : de Rosnay, 1999; d'Orgeval, 2006; Campoy, 2013

Land surface hydrology

Soil hydrology and water budget

dS/dt = P - E - R

We will focus on soil water and the related water fluxes (soil hydrology) No interception, no snow, no soil water freezing today

Two versions of soil hydrology

Two-layer = Choisnel = ORC2

Ducoudré et al., 1993; Ducharne et al., 1998; de Rosnay et al. 1998

- Conceptual description of soil moisture storage
- 2-m soil and 2-layers
- Top layer can vanish
- Constant available water holding capacity (between FC and WP)
- Runoff when saturation
- No drainage from the soil
 We just diagnose a drainage as 95% of runoff for the routing scheme

Multi-layer = CWRR = ORC11

de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013

- Physically-based description of soil water fluxes using Richards equation
- 2-m soil and 11-layers
- Formulation of Fokker-Planck
- Hydraulic properties based on van Genuchten-Mualem formulation
- Related parameter based on texture
- Surface runoff = P Esol Infiltration
- Free drainage at the bottom

Two versions of soil hydrology

Two-layer = Choisnel = ORC2

Ducoudré et al., 1993; Ducharne et al., 1998; de Rosnay et al. 1998

- Constant available water holding capacity (between FC and WP)
- Runoff when saturation
- No drainage from the soil
 We just diagnose a drainage as 95% of runoff for the routing scheme

Multi-layer = CWRR = ORC11

de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013

- Physically-based description of soil water fluxes using Richards equation
- 2-m soil and 11-layers
- Formulation of Fokker-Planck
- Hydraulic properties based on van Genuchten-Mualem formulation
- Related parameter based on texture
- Surface runoff = P Esol Infiltration
- Free drainage at the bottom

What is modeled ?

What is modeled ?

1. We assume 1D vertical water flow below a flat surface

- $\boldsymbol{\theta}$: volumetric water content in m³.m-³
- q : flux density in m. s⁻¹
- h : hydraulic potential in m
- K : hydraulic conductivity in m.s⁻¹
- s : transpiration sink in m³.m⁻³.s⁻¹

2. Continuity :

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

- $\boldsymbol{\theta}$: volumetric water content in m³.m-³
- q : flux density in m. s⁻¹
- h : hydraulic potential in m
- K : hydraulic conductivity in m.s⁻¹
- s : transpiration sink in m³.m⁻³.s⁻¹

1. We assume 1D vertical water flow below a flat surface

2. Continuity :

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

- $\boldsymbol{\theta}$: volumetric water content in m³.m-³
- q : flux density in m. s⁻¹
- h : hydraulic potential in m
- K : hydraulic conductivity in m.s⁻¹
- s : transpiration sink in m³.m⁻³.s⁻¹

1. We assume 1D vertical water flow below a flat surface

- $\boldsymbol{\theta}$: volumetric water content in m³.m-³
- q : flux density in m. s⁻¹
- h : hydraulic potential in m
- K : hydraulic conductivity in m.s⁻¹
- s : transpiration sink in m³.m⁻³.s⁻¹

2. Continuity :

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

4. Hydraulic head h quantifies the gravity and pressure potentials

h= - z + ψ ψ is the matric potential (in m, <0)

1. We assume 1D vertical water flow below a flat surface

- $\boldsymbol{\theta}$: volumetric water content in m³.m-³
- q : flux density in m. s⁻¹
- h : hydraulic potential in m
- K : hydraulic conductivity in m.s⁻¹
- s : transpiration sink in m³.m⁻³.s⁻¹

2. Continuity :

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

4. Hydraulic head h quantifies the gravity and pressure potentials

h= - z + ψ ψ is the matric potential (in m, <0)

5. K and ψ depend on θ (unsaturated soils)

$$q(z) = -K(\theta) \left[\frac{\partial \psi}{\partial z} - 1 \right]$$
$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

 $D(\theta) = K(\theta) \frac{\partial \psi}{\partial \theta}$

D is the diffusivity (in m².s⁻¹)

Finite difference integration

• The differential equations of continuity and motion are solved using finite differences :

$$\underbrace{\frac{W_{i}(t+dt) - W_{i}(t)}{dt}}_{Q_{i-1}(t+dt) - Q_{i}(t+dt) - S_{i}}$$

$$\frac{Q_i}{A} = -\frac{D(\theta_{i-1}) + D(\theta_i)}{2} \left(\frac{\theta_i - \theta_{i-1}}{\Delta Z_i} \right) + \frac{K(\theta_{i-1}) + K(\theta_i)}{2}$$

• The soil column is discretized using N **nodes**, where we calculate
$$\theta$$

- Each node is contained in one layer, with a total water content Wi
- The fluxes **Qi** are calculated at the **interface** between two layers

Wi is obtained by vertical integration of $\theta(z)$ in layer i, assuming a linear variation of $\theta(z)$ between 2 nodes

$$W_{i} = \left[\Delta Z_{i} \left(3 \theta_{i} + \theta_{i-1} \right) + \Delta Z_{i+1} \left(3 \theta_{i} + \theta_{i+1} \right) \right] / 8$$
$$W_{1} = \left[\Delta Z_{2} \left(3 \theta_{1} + \theta_{2} \right) \right] / 8$$
$$W_{N} = \left[\Delta Z_{N} \left(3 \theta_{N} + \theta_{N-1} \right) \right] / 8$$

tridiagonal matrix

Si = transpiration

A: grid-cell area

sink

Vertical discretization

- The vertical discretization must permit an accurate calculation of θi and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together !

Vertical discretization

- The vertical discretization must permit an accurate calculation of θi and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together !
- Alternative discretizations can be defined by externalized parameters

DEPTH_MAX_H	2.0 or 4.0 depending on hydrol_cwrr	m	Maximum depth of soil moisture	Maximum depth of soil for soil moisture (CWRR).		
DEPTH_MAX_T	10.0	m	Maximum depth of the soil thermodynamics	Maximum depth of soil for temperature.		
DEPTH_TOPTHICK	9.77517107e-04	m	Thickness of upper most Layer	Thickness of top hydrology layer for soil moisture (CWRR).		
DEPTH_CSTTHICK	DEPTH_MAX_H	m	Depth at which constant layer thickness start	Depth at which constant layer thickness start (smaller than zmaxh/2)		
DEPTH_GEOM	DEPTH_MAX_H	m	Depth at which we resume geometrical increases for temperature	Depth at which the thickness increases again for temperature.		

The hydrodynamic parameters

- K and D depend on saturated properties (measured on saturated soils) and on θ
- Their dependance on θ is very non linear
- In ORCHIDEE, this is decribed by the so-called Van Genuchten-Mualem relationships:

To sum up water diffusion

- The soil is assumed to be unsaturated
- The prognostic variables are θi (at the nodes)
- They are updated simultaneously (by solving a tridiagonal matrix)
- Their evolution is driven by
 - the soil properties K(z) and D(z)
 - the vertical discretization (soil depth and node position Zi)
 - four boundary fluxes

To sum up water diffusion

- The soil is assumed to be unsaturated
- The prognostic variables are θi (at the nodes)
- They are updated simultaneously (by solving a tridiagonal matrix)
- Their evolution is driven by
 - the soil properties K(z) and D(z)
- the vertical discretization (soil depth and node position Zi)
- four boundary fluxes **2**
 - transpiration sink s_i
 - top and bottom boundary conditions:
 - $\mathbf{Q}_0 = \mathbf{I} \mathbf{E}_g$ and $\mathbf{Q}_N = \mathbf{D}$

I: infiltration

- $\mathbf{E}_{\mathbf{g}}$: soil evaporation
- D: drainage

Which all depend on soil moisture

By default : $Q_N = K(\theta_N)$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = - D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

By default : $Q_N = K(\theta_N)$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = - D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

The code is also apt to use reduced drainage : $Q_N = F.K(\theta_N) \quad {\rm F \ in \ [0,1]}$

F is externalized by **free_drain_coef (1,1,1)**

By default : $Q_N = K(\theta_N)$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = - D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

The code is also apt to use reduced drainage :

 $Q_N = F.K(\theta_N) \quad \text{F in [0,1]}$

F is externalized by **free_drain_coef (1,1,1)**

With F=1, you get an impermeable bottom:

- like in the Choisnel scheme
- leading to build a water table

But you need to adapt the vertical discretization!

By default : $Q_N = K(\theta_N)$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = - D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption • With wetting front propagation based on time calitting procedure is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability

Po

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption • With wetting front propagation based on time calitting procedure is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability

1. Direct infiltration of P_0 to the top soil layer (1-mm deep)

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption • With wetting front propagation based on time calitting procedure is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability

1. Direct infiltration of P_0 to the top soil layer (1-mm deep)

2. If **P**₀ is sufficient, infiltration to the lowest layers

propagation to layer 2 Ψ_0 $\Theta_1 = \Theta_s$; immediate saturation (t₁=0) $\Theta_2 < \Theta_s$; $K_{pot}(2) = [K_s(2) + K(\Theta_2)]/2$

Reduction from $K_{\rm pot}$ to $K_{\rm eff}$ because subgrid variability

 $K_{eff}(2) = K_{pot}(2) [1 - exp(-P_0/K_{pot}(2))]$ $R_s(2) = P_0 - K_{eff}(2)$ $\theta_2 \text{ increased up to } \theta_s$ $t_2 = h_2 (\theta_s - \theta_2) / K_{eff}(2)$ We consider an exponential distribution of K with a mean of K_{pot} - K_{eff} is the mean of K values < P_0 - Runoff production where $P_0 > K$

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption • With wetting front propagation based on time calitting procedure is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- 1. Direct infiltration of P_0 to the top soil layer (1-mm deep)
- 2. If P₀ is sufficient, infiltration to the lowest layers

propagation to layer 3

Reduction from $\mathrm{K}_{\mathrm{pot}}$ to $\mathrm{K}_{\mathrm{eff}}$ because subgrid variability

 $K_{eff}(3) = K_{pot}(3) [1 - exp(-P_0/K_{pot}(3))]$ $R_s(3) = P_0 - K_{eff}(3)$ $\theta_3 \text{ updated up to } \theta_s$ $t_3 = h_3 (\theta_s - \theta_3) / K_{eff}(3)$ We consider an exponential distribution of K with a mean of K_{pot} - K_{eff} is the mean of K values < P_0 - Runoff production where $P_0 > K$

P

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption • With wetting front propagation based on time calitting procedure is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability
- 1. Direct infiltration of P_0 to the top soil layer (1-mm deep)
- 2. If **P**₀ is sufficient, infiltration to the lowest layers

propagation to layer i

$$\begin{split} & \longleftarrow \theta_{i-1} = \theta_s \\ & \longleftarrow \theta_i < \theta_s; K_{pot}(i) = [K_s(i) + K(\theta_i)]/2 \\ & K_{eff}(i) = K_{pot}(i) [1 - exp(-P_0/K_{pot}(i))] \\ & R_s(i) = P_0 - K_{eff}(i) \\ & \theta_3 \text{ increased up to } \theta_s \\ & t_3 = h_3 (\theta_s - \theta_3) / K_{eff}(3) \\ & \text{Loop on layers i until P}_1 \text{ fully processed or } \Sigma t_i = dt \\ & R_s^{pot} = \Sigma R_s(i) \end{split}$$

Input flux

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ is neglected

With wetting front propagation based on time splitting procedure and sub-grid-variability

- Direct infiltration of P_0 to the top soil layer (1-mm deep) 1.
- If **P**₀ is sufficient, infiltration to the lowest layers 2.
- 3. Possible reinfiltration of surface runoff in flat areas (ponding)

 $R_s^{pot} = \Sigma R_s(i) = P_0 - \Sigma I_i$ $\gamma_p \mathbf{R}_s^{pot} \rightarrow \mathbf{P}_0^{t+dt}$ $R_s = (1-\gamma_p) R_s^{pot}$ γ_p Reinfiltration fraction 0 P_{max} Pente (%)

In the code : $\gamma_p = reinf_slope$ $p_{max} = 0.5\%$

Soil absorption

Po

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- **3.** This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out

$$E_g = \min(E_{\rm pot}^*, Q_{\rm up})$$

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- 3. This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out

$$E_g = \min(E_{\rm pot}^*, Q_{\rm up})$$

$$\begin{split} E_{\rm pot}^{*} &= \frac{\rho}{r_a} \left(q_{\rm sat}(T_w) - q_{\rm a} \right) \,\,{\color{red}{<}}\,\, E_{\rm pot} = \frac{\rho}{r_a} \left(q_{\rm sat}(T_s) - q_{\rm a} \right) \\ \beta_g &= E_g / E_{\rm pot} \end{split}$$

 Q_{up} is calculated by 1 or 2 dummy integrations of the water diffusion,

(a) We apply E_{pot}^* as a boundary flux at the top, and test if θ_i remains above θ_r If it does, then $Q_{up} = E_{pot}^* = E_g$

(b) Else, we force $\theta_1 = \theta_r$ and this drives an upward flux: the surface value Q_0 gives Q_{up}

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. The issue in hydrol is to calculate the stress function β_g to calculate soil evaporation at the next time step
- **3.** This is done by a supply/demand approach based on the soil moisture at the end of the time step
- 4. Supply/demand: E_g can proceed at potential rate unless this dries the soil out
- 5. Since r3975, we can reduce the demand using a soil resistance (Sellers et al., 1992)

In run.def : DO_ROIL = y (default = n)

$$r_{\rm soil} = \exp(8.206 - 4.255L/L_s)$$

L is the soil moisture in the 4 top layers Ls is the equivalent at saturation

$$E_g = \min\left(\frac{q_{sat}(T_w) - q_a}{r_a + \boldsymbol{r_{soil}}}, Q_{up}\right)$$

The minimum is still found via 1 or 2 dummy integrations of the water diffusion

The transpiration sink

The dependance of transpiration on soil moisture is conveyed by u_s(i)

$$\begin{split} &u_{s}(1){=}0\\ &u_{s}(i{>}1)=n_{root}(i) \ . \ F_{w}(i)\\ &F_{w}(i)=max(0,min(1,\ (W_{i}{-}W_{w})/(W_{\%}{-}W_{w})\)) \end{split}$$

- n_{root} : mean root density in layer i $n_{root} = \int_{hi} R(z)dz / \int_{htot} R(z)dz$ $R(z) = exp(-c_j z)$ c_j depends on the PFT
- W_w = wilting point

W_f = field capacity

AWC = $W_{f}-W_{w}$

 $W_{\%}$: moisture at which us becomes 1 (no stress)

$$W_{\%} = W_w + p_{\%} AWC$$

In contantes_mtc.f90: c_i = humcste In constantes soil.f90: p_% = pcent = (/ 0.8, 0.8, 0.8 /)

N

The transpiration sink

The dependance of transpiration on soil moisture is conveyed by u_s(i)

$$T_r = \rho \left(1 - \frac{I}{I_{max}}\right) \frac{q_{sat}(T_s) - q_{air}}{r_a + r_c + r_{st}}$$

$U_s = \Sigma_i u_s$ is used to calculate the stomatal resistance r_{st}

 r_c also depends on light, CO₂, LAI, air temperature and vpd, and nitrogen limitation in the new trunk (CN)

2

u_s is used to distribute Tr between the soil layers

$$T_r = \Sigma S_i$$
$$U_s = \Sigma u s_i$$
$$S_i = T_r u s_i / U_s$$

New diagnostics

• **TWBR = Total water budget residu** (in kg/m²/s) to check water conservation

TWBR = dS/dt - (P - E - R)S includes intercepted water and snow

Typical values are < 10⁻⁵ mm/d or less

• wtd = water table depth (m), defined in each soiltile as the depth of deepest saturated node overlaid by an unsaturated node.

Sought from the soil bottom: if a part of the soil is saturated but underlaid with unsaturated nodes, it is not considered as a water table.

If the bottom node is not saturated, the water table depth is set to undef.

Which maps are used for soil hydrology?

Google Agenda - février 20	× i i GroupActivities/Trai	ning - X 🔅 Documentation/Ar	ncillary - X UMR Sisyphe	: Agnès Ducharn 🗙	🕐 HESSD - Weak	sensitivity \circ X	+	- 0		
	D 🔒 https://forge.ipsl.jussi	eu.fr/orchidee/wiki/Documentat	tion/Ancillar) 🔳 🚺	10% ··· 🛛 ร	😭 🔍 pierer v	veill cat \rightarrow	⊻ ∥	N 🗉 🔮		
🌣 Les plus visités 🛛 🌣 Les plus visité	és 11 Google Agenda 🛛 M Gr	nail 😸 Agnès Ducharne 🗎 BIBL	IO 🗎 UPMC 🗎 PERSO	CNRS ORCH	IDEE etc. 🛭 🕼 My C	CoRe 💠 Dropbox	🌲 Livelink Lo	og-in		
ORCHIDEE LAND SUBJACE FOOL				logged in a	is aducharne Lo	gout Help/Guide	e About Trac	Search Preferences		
		Wiki	Timeline Ro	admap Browse	e Source Vi	iew Tickets	New Ticket	Search		
wiki: Documentation / Ancillary						Up	Start Page I	ndex History		
	Development Activities	Documentation	Source Code	Refe Simula	erence ations	Grou Activitie	as dr			
Ancillary Data										
This page describes the Ancillary data needed to describe the continental surfaces in ORCHIDEE. All the files are expected to be in a CF-compliant NetCDF format and some guidelines for producing these files are given at the end. The most common forcing files are stored in the shared accounts in IGCM/SRF directory. The shared accounts are found: • At TGCC: /ccc/work/cont003/dsm/p86ipsl/IGCM • At IDRIS: • On the ada machine: /workgpfs/rech/psl/rpsl035/IGCM • on the ergon machine: /w/rech/psl/rpsl035/IGCM						Ancillary Data 1. Vegetation information 1.1 Olson map 1.2 PFT maps 2. Soil texture and color data 3. Irrigation and Floodplains 4. Slope 5. For routing 6. For river discharge comparison with GRDC dataset CF-conformant files				
LSCE, obelix : /hc IPSL Ciclad : /pro At the web by DC	ome/orchideeshare/igcm digfs/ipslfs/igcmg/IGCM IDS : ⇔http://dods.ipsl	jussieu.fr/igcmg/IGCM								
1. Vegetation information	on									
ORCHIDEE model can re .def file should be set to	ad vegetation map base TRUE, else to FALSE.	d on Olson categories or o	n PFT categories. Wh	en a PFT map is u	ised as an inpu	it, the paramet	ter land_us	e in the		
A map at 5km resolution map is available on the of categories. The convers category 79 (warm C4 w leaved raingreen (40%)	n on a Goode homolosir common repository of O ion from Olson to PFT c voody savanna). It was and C4 grass (40%). T	e projection with the domin RCHIDEE forcing files on C ategories is done within the distributed into tropical bro his bug has been fixed in th	nant Olson class has b CRT, IDRIS and other code of ORCHIDEE. I ad-leaved raingreen (ne version 1.9.6.	peen generated by platforms. It is al Up to the version 40%) and C3 gra	y Nicolas Viovy Iso available ⇒ 1.9.5.2, there ss (40%) while	based on a 1k here. This map was a bug wh e it should have	(m IGBP ma) contains 9 len convertin e been tropi	p. The 4 land ng Olson ical broad-		

Interactions with the vegetation/LC

1. Horizontally, PFTs define soil tiles with independent water budget (below ground tiling)

Interactions with the vegetation/LC

2. Vertically, ORCHIDEE defines a root density profile

In each PFT j $R_j(z) = \exp(-c_j z)$ In each soil layer i $n_{root}(i)$ is the mean root density with $\Sigma_i n_{root}(i) = 1$

It controls:

(1) the water stress on transpiration in each soil layer i

 $u_i = n_{\text{root}}(i) \max(0, \min(1, (W_i - W_w)/(W_{\%} - W_w)))$

(2) the increase of Ks towards the surface

Interactions with the vegetation/LC

2. Vertically, ORCHIDEE defines a root density profile

In each PFT j $R_j(z) = \exp(-c_j z)$ In each soil layer i $n_{root}(i)$ is the mean root density with $\Sigma_i n_{root}(i) = 1$

It controls:

(1) the water stress on transpiration in each soil layer i

 $u_i = n_{\text{root}}(i) \max(0, \min(1, (W_i - W_w)/(W_{\%} - W_w)))$

(2) the increase of Ks towards the surface

In the code, c_j is called humcste and defined in constantes_mtc.f90 It can be « externalized », with default values depending on soil hydrology/depth REAL(r_std), PARAMETER, DIMENSION(nvmc) :: humcste_cwrr = &

& (/ 5.0, **0.8, 0.8**, 1.0, 0.8, 0.8, 1.0, & & 1.0, 0.8, 4.0, **4.0**, 4.0, **4.0**/) !! Values for dpu_max = 2.0

- In hydrol, the main soil properties are: $\theta_s = \theta_r K_s^{ref} n \alpha (= -1/\psi_{ae}) = \theta_w \theta_f$
- clay_fraction is a parameter for stomate
- They are defined based on soil texture (in the real world, they can depend on other factors, as soil structure, OMC, etc.)
- Soil texture is defined by the % of sand, silt, clay particles in a soil sample (granulometric composition)
- Soil texture can be summarized by soil textural classes
- By default, ORCHIDEE reads texture from the 1°x1° map of Zobler (1986) with 3 USDA classes: Sandy Loam , Loam , Clay Loam
- Alternative soil map: 1/12° USDA map of Reynolds et al. (2000) with 12 USDA classes
- In each grid-cell, we use the dominant texture

- In hydrol, the main soil properties are: $\theta_s = \theta_r = K_s^{ref} = m \alpha = 1/\psi_{ae} = \theta_w = \theta_f$
- They are defined based on soil texture

The role of soil texture

- In hydrol, the main soil properties are: $\theta_s = \theta_r K_s^{ref} m \alpha = 1/\psi_{ae} \theta_w \theta_f$
- They are defined based on soil texture

Three ways of defining soil texture in run.def

- 1. Default keywords: SOILTYPE_CLASSIF = zobler; SOILCLASS_FILE = soils_param.nc
- 2. For Reynolds : SOILTYPE_CLASSIF = usda ; SOILCLASS_FILE = soils_param_usda.nc
- 3. IMPVEG=y, IMPSOIL=y, SOIL_FRACTION = (x,y,z, etc.)
- → x,y,z are areal fraction allocated to the soil textural classes defined by your selected map
- → x,y,z <u>are not</u> % sand, silt, clay defining your soil's texture, despite the fact that this option is primarily intended for 0D simulations
- → to get the soil properties of one texture class, set SOIL_FRACTION = (1,0,0, ...0...), and use the externalization to redefine the 1st value of the vectors defining soil properties

4. Conclusions

Soil hydrology in a nutshell

- During a time step, the soil hydrology scheme :
 - Updates the soil moisture
 - Calculates the related fluxes (infiltration, surface runoff, drainage)
 - Calculates the water stresses for transpiration and soil evaporation of the next time step
 - Calculates some soil moisture metrics for thermosoil and stomate
- The equations can be complex, but the parametrization is intended to work without intervention
 - Default input maps are defined in COMP/sechiba.card
 - Defaults parameters are defined in PARAM/run.def and code
 - Lot of debugging over the past years
- You can adapt the behavior of the scheme:
 - Easy : change externalised parameters in PARAM/run.def
 - A bit less easy: use different input maps (you need to comply to the format)
 - More difficult: change the code (welcome to orchidee-dev!)

Thank you for your attention Questions ?

