Implicit coupling between the atmospheric boudary layer and the continental surface for solving the surface temperature

F Cheruy , F. Wang , J.L Dufresne , J. Polcher , A. Ducharne

ORCHIDEE Formation, 7 Novembre 2014

- \succ Introduction
- \succ Surface energy budget equation
- \succ Turbulent fluxes
- \succ Radiation
- \succ Solving for the Surface temperature
- \succ Routines used

$SW_net + LW_net + H + L.E + G = 0$

Grassland in Switzerland

Tropical Rain Forest

Diurnal variations of weekly mean of surface energy budget terms (44N, 116E, Steppe, China)

Surface energy budget

$$C_s \frac{\partial}{\partial t} T_s = SW_{net} + LW_{net} + F_{H,s}^t + L.E + G \tag{1}$$

$$LW_{net} = LW_{down} - \varepsilon \sigma T_s^{4} - (1 - \varepsilon) LW_{down} \qquad (2)$$

$$F_{H,s}^{t} = \rho \left| \overrightarrow{v} \right| C_d (H_1^t - H_s^t)$$
(3)

$$L.E_s^t = L\rho \left| \overrightarrow{v} \right| C_d \beta (q_1^t - q_{sat}(T_s^t))$$
(4)

Implicit coupling: The atmospheric temperature, humidity and surface conditions are estimated synchroneously (at the same time step)

$$C_{s}\frac{(T_{s}^{t} - T_{s}^{t-\delta t})}{\delta t} = SW_{net}^{t} + LW_{net}^{t} + H^{t} + L.E^{t} + G^{t}$$
(5)

$$C_s \frac{(T_s^t - T_s^{t-\delta t})}{\delta t} = SW_{net} + LW_{down} + G^t - \varepsilon \sigma * T_s^{t4} + H^t + L.E^t$$
(6)

 G^t , computed by thermosoil

 C_s is the apparent surface heat capacity and is computed by thermosoil

Turbulent fluxes and their dependence on the surface temperature

The diffusion equation of the potential enthalpie or the specific humidity (X) in the boundary layer $F^X = -\rho k \frac{\partial}{\partial z} X$ and $\frac{\partial}{\partial t} X = -\frac{1}{\rho} \frac{\partial}{\partial z} F^X$ and the continuity equation are discretized in space and time.

$$\frac{X_l^t - X_l^{t-\delta t}}{\delta t} = \frac{-g}{\delta P_l} (F_{l+1/2}^X - F_{l-1/2}^X)$$
(7)

$$F_{l-1/2} = -\rho_{l-1/2}k_{l-1/2}\frac{(X_l^t - X_{l-1}^t)}{z_l - z_{l-1}}$$
(8)

$$F_{X,s}^t = \rho \left| \overrightarrow{v} \right| C_d (X_1^t - X_s^t)$$

(9)

For the interface variable this can be re-written as

$$X_{1}^{t} = A_{X}^{1} + B_{X}^{1} \cdot F_{s,X}^{t} \delta t$$
(10)

$$X_2^t = C_2^X + D_2^X H_1^t \tag{11}$$

$$F_{X,s}^t = \rho \left| \overrightarrow{v} \right| C_d (X_1^t - X_s^t)$$
(12)

$$A_X^1 = \frac{X_1^{t-\delta t} \delta P_1 + S_2^X C_2^X}{\delta P_1 + S_2^X (1 - D_2^X)}$$
(13)

$$B_X^1 = \frac{-g}{\delta P_1 + S_2^X (1 - D_2^X)} \tag{14}$$

with $S_2 = \frac{g^2 \rho_{3/2}^2 k_{3/2} \delta t}{P_1 - P_2}$ and A_X^1 and B_X^1 do not contain any information on the surface contition at the time t and can be computed from the PBL prior to the land surface processes.

Sensible heat flux

$$H_1^t = A_H^1 + B_H^1 \cdot F_{s,H}^t \delta t$$
 (15)

$$F_{s,H}^{t} = \frac{1}{zikt} (H_{1}^{t} - H_{s}^{t})$$
(16)

with $H = C_p T(\frac{P_r}{P})^{\kappa}$, $H_s = C_p T_s$ and $\frac{1}{zikt} = \rho |\overrightarrow{v}| C_d$

$$F_{s,H}^{t} = \frac{1}{zikt} (A_{H}^{1} + B_{H}^{1} \cdot F_{s,H}^{t} \delta t - H_{s}^{t})$$
(17)

$$F_{s,H}^{t} = \frac{1}{zikt} \left[\frac{(A_{H}^{1} - H_{s}^{t-\delta t})}{1 - \frac{1}{zikt} B_{H}^{1} \delta t} - \frac{(H_{s}^{t} - H_{s}^{t-\delta t})}{1 - \frac{1}{zikt} B_{H}^{1} \delta t} \right]$$
(18)

$$F_{s,H}^{t} = sensfl_{old} - sensfl_{sns}(T_{s}^{t} - T_{s}^{t-\delta t})$$
⁽¹⁹⁾

> $sensfl_{old}$ is based on the surface condition at the previous time step $(t - \delta t)$ and the atmospheric condition at the time step t

 $> sensfl_{sns}$ is a sensivity term to the variation of surface temperature. > In the ORCHIDEE code, A_H^1 is called petBcoef, $B_H^1 \delta t$ is called petAcoef

Latent heat flux (evaporation)

$$F_{s,q}^{t} = L\rho \left| \overrightarrow{v} \right| C_{d}\beta(q_{1}^{t} - q_{sat}(T_{s}^{t}))$$

$$\tag{20}$$

$$q_{sat}(T_s^t) = q_{sat}(T_s^{t-\delta t}) + \frac{\partial q_{sat}}{\partial t}\Big|_{(T=T_s^{t-\delta t})}(T_s^t - T_s^{t-\delta t})$$
(21)

$$q_1^t = A_q^1 + B_q^1 \cdot F_{s,q}^t \delta t$$
 (22)

$$F_{s,q}^{t} = \frac{1}{zikt}\beta(A_{q}^{1} + B_{q}^{1}.F_{s,q}^{t}\delta t - q_{sat}(T_{s}^{t-\delta t}) + \frac{\partial q_{sat}}{\partial t}\Big|_{(T=T_{s}^{t-\delta t})}(T_{s}^{t} - T_{s}^{t-\delta t})) \quad (23)$$

$$F_{s,q}^{t} = \frac{\frac{1}{zikt}\beta(A_{q}^{1} - q_{sat}(T_{s}^{t-\delta t}))}{(1 - \frac{1}{zikt}\beta B_{q}^{1}\delta t)} - \frac{\frac{1}{zikt}\beta\frac{\partial q_{sat}}{\partial t}|_{(T=T_{s}^{t-\delta t})}}{(1 - \frac{1}{zikt}\beta B_{q}^{1}\delta t)}(T_{s}^{t} - T_{s}^{t-\delta t})$$
(24)

In the ORCHIDEE code, A_q^1 is called peqBcoef, $B_q^1 \delta t$ is called peqAcoef

$$L.F_{s,q}^{t} = L.lareva_{old} - \frac{L}{C_{p}} lareva_{sns}(H_{s}^{t} - H_{s}^{t-\delta t})$$
⁽²⁵⁾

Radiation

$$netrad = SW_{net} + LW_{down} - \varepsilon\sigma * T_s^{t^4} - (1 - \varepsilon)LW_{down}$$
(26)

In the present version the LW emissivity is set one

$$netrad = SW_{net} + LW_{down} - (1 - \varepsilon)LW_{down} - \varepsilon\sigma * T_s^{t - \delta t^4} - 4\varepsilon\sigma T_s^{t - \delta t^3} (T_s^t - T_s^{t - \delta t})$$
(27)

$$netrad = netrad_{old} + netrad_{sns}(T_s^t - T_s^{t-\delta t})$$
(28)

surface temperature at the new time step

$$sum_{old} = netrad_{old} + sensfl_{old} + lareva_{old}$$
⁽²⁹⁾

$$sum_{sns} = netrad_{sns} + sensfl_{sns} + lareva_{sns} \tag{30}$$

$$C_s \frac{(T_s^t - T_s^{t-\delta t})}{\delta t} = sum_{old} + G + sum_{sns}(T_s^t - T_s^{t-\delta t})$$
(31)

$$(T_s^t - T_s^{t-\delta t}) = \frac{\delta t(sum_{old} + G)}{C_s - sum_{sns}\delta t}$$
(32)

About the radiation the time step of the radiation is usually longer than the one of ABL and LSM

> Favoring the energy conservation: Between two calls of the radiation code, the change of T_s is supposed not impact $LW_{net} \ LW_{net}$ is computed by the radiation code in LMDZ, the radiation in energiand in LMDZ is consistent and the radiation is computed in LMDZ.

 $> LW_{up}$ is updated as T_s is updated. The radiation used by enerbil and by LMDZ are not consistent

 $\succ LW_{up}$ can be averaged over the time-steps between two calls of the radiation (account for the variation of T_s induced by varying surface conditions) (not yet implemented).

Atmosphere/surface coupling in LMDZOR

LMDZ (phylmd)

More information on

http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/CouplingLMDZ