

Le modèle ORCHIDEE: récent & futur développements

Philippe Peylin pour le groupe projet ORCHIDEE

ORCHIDEE recent developments (for CMIP6)

Other Mature/Ongoing developments

C & N land interactions

ierre

Simon Laplace

ciences de

TRUNK = include CN coupling

- Inclusion of the features from OCN (Zaehle & Friend, 2010)
 - N cycle
 - C/N interactions
 - Allocation scheme with short- / long-term reserve pool
- Main description in Vuichard et al. (2019)

Photosynthesis scheme

- Based on Farquahr model
- Vc_{max} : photosynthetic capacity (µmol CO₂ m⁻² s⁻¹)
- Modiified based on the work of Kattge et al. (2009)

$$Vc_{max} = NUE \times N_L$$

with *NUE* the Nitrogen Use Efficiency (PFT-dependent) and N_L the leaf N content (gN m⁻²_[leaf])

Adding the Nitrogen cycle: impact on the C cycle !

- Using ORCHIDEE-CN version FluxNet sites
- 1% yr-1 CO2 increase experiment

950

of the fertilisation effect at all sites (half the effect)

Mean increase compared to preindustrial era

- ~ 25% without N inputs increase, with C/N interactions
- ~ 50% with N inputs, with C/N interactions
- \sim 50% with CN fixed to pre-industrial values (= no C/N interactions)

A subscription of the C/N interactions on GPP 4

CN fix - 1850 Clim + LUC + CO2

CN dyn Clim + LUC + CO2 + N input

CN dyn Clim + LUC + CO2

Adding the Phosphorus cycle

Institut Pierre

Simon Laplace

Sciences de

→ Work done with ORCHIDEE-CNP version : Goll et al. 2017

- Discretized soil carbon (11 layers) + new pools introduced (DOC)
- New decomposition scheme (priming): $\frac{\partial SOC}{\partial t} = I k_{SOC} \times SOC \times (1 e^{-c \times FOC}) \times \theta \times \tau$

ORCHIDEE-CAN

(known as ORCHIDEE-DOFOCO on svn)

ORCHIDEE-CN

N-version of ORCHIDEE updated with the trunk, June 2017

ORCHIDEE-CN-CAN

Simulating the canopy

Pipe model theory

- Recognize how stomata is hydrological connected to the roots and the need to invest carbon in building roots and stem
- Allometric relationships, leaf to sapwood area ratio, relationship between diameter and height

Water stress

Hydraulic architecture

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Simulating the canopy

Simulating the canopy

- Diameter classes and age classes are introduced Number of PFTs depend on number of age classes Each PFT has x numbers of diameter class
- Each diameter class has x number of trees depending on basal area - self-thinning rule

Ecosystem dynamics

Gross land use change

Institut Forest management and stand description Simon Laplace

Pierre

ciences de

Vertical multi-layers scheme..

• Free number of layers

Institut

ierre

Simon Laplace

ciences de

- E / W / C exchange at each level
- Turbulance mixing within air canopy
- Light penetration following Pgap model

Implementation constraints :

- Coupling with plant growth / harvesting module (variable plant height)
- Implicit coupling with Atmospheric model (30' step)
- Parametrisation of intra-canopy turbulence

Temperature profile at Tumbarumba site

Observations

Model

Accounting for management

Naudts et al., 2015, 2016 MacGraph et al, 2015

Cultivated ecosystems : major crops

Grassland: from intensive pasture to rangeland

Jinfeng Chang et al. **Atmosphere** $R_a CH_4$ AR GP HR Animal products AGB Vegetation Forage Manure & Loss Trampling Fertilizer Soil Litter Management module from PaSim ORCHIDEE (Graux et al., 2012; Vuichard et al., 2007)

Applications:

Institut

Pierre Simon Laplace

- Grassland management optimization/adaptation (simulating potential productivity)
- Reconstruction of historical management intensity
- Long-term carbon and GHG balance of grassland ecosystem and livestock farm.
- Milk production simulation and projection.

Permafrost : Modeling Yedoma organic carbon

Yedoma: organic-rich, ice-rich, thick deposits in permafrost region

Institut Pierre

Laplace

ciences de

Dan Zhu et al.

The new model can reproduce vertical profiles of Yedoma organic carbon

Representing wild large herbivores

Large herbivores today

Large herbivores during late-Pleistocene

Bones preserved in yedoma deposits (Zimov et al., 2012)

Herbivore biomass in the Arctic during 40~15 kyr BP: ~9000 kg/km²

➔ comparable to today's African savannah

"keystone herbivore" hypothesis

(Owen-Smith, 1987; Zimov et al., 1995)

A taste of atmospheric chemistry in ORCHIDEE: Importance

of the terrestrial biosphere for

surface-atmosphere chemical interactions.

Juliette Lathière and coworkers.

juliette.lathiere@lsce.ipsl.fr - CNRS Researcher LSCE

Chemistry-vegetation retroactions

Vegetation

Wetlands

i 86/ils - Cultures

Interactions between the terrestrial biosphere and the atmospheric chemical composition - Coupling INCA and ORCHIDEE

- Deposition calculated based on ORCHIDEE information
 - Biogenic fluxes provided by ORCHIDEE and no more prescribed
 - Adapting the chemical scheme

Biogenic fluxes of reactive compounds

3.

Information related to vegetation: types, distribution, fraction, and then stomatal resistance, etc.

1.

2. COUPLING ORCHIDEE AND INCA

Atmospheric chemical composition: O3 and then NOx, aerosols, etc.

+ FIRES, AEROSOLS

+ ESM consistency

• Emissions of biogenic compounds : VOCs, NOx

Impact of pollution on vegetation

29

Landscape heterogeneity & organisation

Reality

ciences de

Satellite product ≈10 m

Soil properties - topography

Forest cover \rightarrow more cloud

Ex: Landes forest - France (Teuling et al. 2017)

Data assimilation with ORCHIDEE

Philippe Peylin, Cédric Bacour, Natasha MacBean, Vladislav Bastrikov, Nina Raoult, Catherine Ottle, Pascal Maugis, Fabienne Maignan and the ORCHIDEE project team

Seitered Pierre Reducing uncertainties with model – data integration

Available C-related data streams

^{Institut} ^{Simon} ^{Institut} ^{Institut} Stepwise approach: Multiple constraint on C fluxes

Optimization of the C-cycle parameters..

- Cost function: $J(x) = \frac{1}{2} \left[(y M(x))^t R^{-1} (y M(x)) + (x x_b)^t P_b^{-1} (x x_b) \right]$
- Iterative minimization using either:
 - Variational approach (with Tangent Linear model for DJ/dx)
 - Monte Carlo approach (Genetic Algorithm)

Step1: satellite-derived "vegetation greenness" index constrains seasonal leaf dynamics

15 random grid points per PFT

N. MacBean et al. (2015)

^{Institut} Step2: Net CO₂ fluxes constrains flux seasonal cycle

75 fluxnet data (NEE, LE) \approx 20 parameters per PFT

NEE mean seasonal cycle: PFT average

- ➔ Improvement of amplitude and phase
- ➔ Highlight model deficiencies

Kuppel et al. (2012)

^{Institut} Streep 3: Atmospheric CO₂ constrains trend in the net C sink

Optimization at 77 sites

\succ Fit to long-term [CO₂] trend & improve seasonal amplitude with

- reduced total soil carbon content
- changed soil respiration parameters

$3 \ \mbox{COMPETING PROCESSES}$ in the leaves

Institut

Pierre

Simon Laplace

ciences de

SOLAR INDUCE FLUORESCENCE CORRELATE WITH GPP

→ Work leaded at LSCE by Fabienne M.

(Cedric, Natasha, Phililppe P,..)

➔ Growing number of measurements (In situ and satellite)

Evaluation of model simulations

 <u>https://orchidas.lsce.ipsl.fr/mapper/maps.php</u> (evaluation of standard model simulations)

 <u>http://eraclim.globalcarbonatlas.org/rc/</u> woodpecker/

(comparison of simulation with different forcing; User/Passwd: eraclim / eraclim2017

Net CO₂ flux – Meteorological forcings

GPP flux (Photosynthesis) – Northern lands

Meteorological forcings

GPP flux – Northern lands

Meteorological forcings + Model version + Land-use

GPP flux – Tropical lands

Meteorological forcings + Model version + Land-use