The soil carbon in ORCHIDEE

GUENET Bertrand

THE GLOBAL C CYCLE AND ITS SOIL COMPONENT

- The C cycle: a complex cycle composed of different pools.
- These pools interact via different fluxes.

SOILS: MAJOR ACTORS OF THE C CYCLE

SOILS AND GLOBAL CHANGES

SOILS AND GLOBAL CHANGES

Laboratoire des sciences du climat & de l'environnement

- Split between stomate_litter.f90 and stomate_soilcarbon.f90
 Run at ½ hourly time-step whereas stomate runs at daily time-step.
- Moisture and temperature function calculated in stomate litter.f90

$$\tau = Q_{10}^{(T-Topt)/10}$$

$\theta = Max(0.25, Min(1, M))$ $M = -1.1 * SM^2 + 2.4 * SM - 0.29$

- Input from plants
 through *bm_to_litter* and *turnover*
- Split between above and below ground
- Split into two pools:
 metabolic/structural
- depending on lignin and
- N content of the litter.

 Inputs from litter decomposition in soilcarbon input Distributed into the active and slow pools control by the lignin content.

HOW GOOD ARE EARTH SYSTEM MODELS TO REPRESENT SOIL C STOCK

HOW GOOD ARE EARTH SYSTEM MODELS TO REPRESENT SOIL C STOCK

SEVERAL IMPORTANT MECHANISMS ARE STILL MISSING

Laboratoire des sciences du climat & de l'environnement

SEVERAL IMPORTANT MECHANISMS ARE STILL MISSING

Physics

http://www.abdn.ac.uk

ORCHIDEE—training 24 Nov. 2016

- Soils are not homogenous
- Composed by aggregates of SOM
- Organisation of aggregates leads to a pore network.

Gases diffusitivity (O_2 , CO_2 , CH_4 , N_2O , ...)

Water availability

Laboratoire des sciences du climat & de l'environnement

WATER AVAILABILITY

ORCHIDEE—training 24 Nov. 2016

$\frac{\partial SOC}{\partial t} = I - k \times SOC \times \theta \times \tau$

 θ is a rate modifier (0< θ <1)

Falloon et al., 2011

WATER AVAILABILITY

SEVERAL IMPORTANT MECHANISMS ARE STILL MISSING

Thevenot et al., 2010

• SOM is a continuous spectrum of quality of organic matter.

- Enzymatic reactions drive by temperature.
- Discretized by non-measurable pools
- Same temperature effect for all the pools

TEMPERATURE EFFECT

$\frac{\partial SOC}{\partial t} = I - k \times SOC \times \theta \times \tau \quad \tau \text{ is a rate modifier } (0 < \tau < 1)$

- Several ways to represent *t*
- ESM generally used Arrhenius equation:

$$\tau = A \times e^{-Ea/_{RT}}$$

• or Van't Hoff laws

$$\tau = Q_{10}^{(T-Topt)/10}$$

TEMPERATURE EFFECT

SEVERAL IMPORTANT MECHANISMS ARE STILL MISSING

Biology

• CO₂ emissions are due to biological activity.

 Soil biology almost not represented in ESMs.

http://cropandsoil.oregonstate.edu

Effect of ecosystem engineers (Earthworms, ants, ...)

Effect of microbial activity

MICROBIAL ACTIVITY

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT ORCHIDEE—training 24 Nov. 2016

CCC CONS UNERGENERATE OF VERSALES

MICROBIAL ACTIVITY

• Microbial biomass, community structure and functioning is sensitive to climate change, land use change, etc.

Laplace

MEAN RESIDENCE TIME

Based on 14C data, ESM MRT are overestimated by ~40%

Table 1. Global soil carbon stocks and carbon uptake for CMIP5 models that experienced a quadrupling of atmospheric CO₂ from a preindustrial value of 285 ppm over a period of 140 years.

	Initial SOC (Pg C)	% change in SOC	% change in SOC after ¹⁴ C con- straint	¹⁴ C- imposed sink reduction (%)	^τ slow (year)*	^τ passive (year)	ŕŗ	r _s	¹⁴ C-imposed correction factors [†]			
ESM									$\tau_{\rm slow}$	⁷ passive	r _f	r _s
CESM1	571	6.3	5.1	19	56 ±	1310 ±	0.06 ±	0.33 ±	_	3.7 ±	-	0.34 ±
(BGC)					16	241	0.05	0.05		1.5		0.75
GFDL-	1344	26	3.3	87	231 ±	-	0.17 ±	-	16 ±	-	0.06 ±	
ESM2M					196		0.07		18		0.14	-
HadGE	1028	63	33	46	208 ±	-	0.12 ±		17 ±	-	0.07 ±	
M2-ES					84		0.07	-	12		0.32	-
IPSL-					210 +	1101 +	0.06 +	0.20 +		14 +		0.07 +
CM5A-	1340	27	25	5.9	210 -	247	0.00 ±	0.29 ±	-	14 -	-	0.07 ±
LR					82	34/	0.03	0.07		8.3		0.14
MRI-	1403	36	22	40	347 ±	1065 ±	0.17 ±	0.10 ±	-	13 ±	0.46 ±	0.34 ±
ESM1 [‡]					117	257	0.09	0.06		7.2	0.79	0.74
Mean [§]	1137 ±	32 ±	18 ±	40 ±	212 ±	1185 ±	0.12 ±	0.24 ±	16.5 ±	10.2 ±		
	312	18	12	27	104	123	0.06	0.12	0.5	4.6	-	-

* τ_{slow} , τ_{passive} denote the turnover time, and r_{f} , r_{s} denote the transfer coefficient from the fast to the slow pool and from the slow to the passive pool, respectively. Reported values were estimated as an area-weighted mean and standard deviation of all model grid cells. The mean and standard deviation of the ¹⁴C-imposed correction factors were derived from using the ¹⁴C observations at each site in a single optimization and then averaging these scalar adjustments across the set of 157 optimizations. The ¹⁴C-constrained sink reduction and correction factor for MRI were based on an inverse analysis that changed the pool size of both slow and passive pools. The reported percentage change in SOC and sink reduction were derived from transient simulations starting at steady state with the reduced complexity model. See methods in the supporting materials. SThe multimodel mean and standard deviation were estimated using the mean value from each of the five ESMs.

ONGOING DEVELLOPEMENT

- Representation of the soil C profile
- Lateral outputs of C (DOC, Erosion)
- Better parameterization of Q10
- Representation of Priming effect.

$$\frac{\partial SOC}{\partial t} = I - k_{SOC} \times SOC \times (1 - e^{-c \times FOC}) \times \theta \times \tau$$

ONGOING DEVELLOPEMENT

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

THANK YOU FOR YOUR ATTENTION!

