
Hands on exercises with ORCHIDEE OFF-LINE

Revised for training session 2017-11-30 - 2017-12-01
Josefine Ghattas, IPSL

The goal of this exercise is to learn how to install, compile and launch a basic test case with
ORCHIDEE in off-line mode. Note that from a scientific point of view, these examples do not aim
to have the best parmeter set up. Exercise 3-4 are using libIGCM. All exercises can be done at
curie/TGCC, Ada/IDRIS or obelix/LSCE. All commands needed for the basic exercises are listed
in the text.

Today at Ada: use training account

You can change the keyboard language on the training computer by touching shift + alt at the
same time.

During the training session everybody works on temporary training accounts at IDRIS. These
acounts have specific priority in the queue to avoid to much waiting time. First connect to
ipcours then open a terminal and connect to ada via ssh:

ssh -Y ada337

Install the IPSL environnement, using the commands below, at your account during the first
connexion to ada and add export LL RES ID. The LL RES ID is a specific reservation with
computing resources available only during the training session. It can not be used later. Do
following using the LL RES ID as written on the whiteboard(can be known using llqres):

cd $HOME
cp ~rpsl035/.bash_login .
rm .bash_profile
vi .bash_login
=> add in the end of the file
export LL_RES_ID=ada336.X.r

source $HOME/.bash_login

1

Short guide to use vi

In these exercises when it says vi filename it means open the file with an editor of your choice.
You can use for example vi oremacs. vi is a text editor program which can be used in a terminal
window to open and edit ascii files. emacs is also an text editor which can be opened in a seperate
window. See here some very basic commands to use vi:

vi filename # open the file
/toto # search for toto in the file. Use n for next occurences.
i # open insert mode. You can now edit the file
escap # close insert mode
:w # save the file
:q # close the file
:q! # close the file without saving anything you did since last :w
:wq # save and close
:syntax off # to desactivate colors
XG # go to line X in the file

1 Install and compile

1.1 Install ORCHIDEE trunk for offline use

Download first modipsl and explore what is inside. modipsl contains some tools in the directory
util. In util, scripts are found for : extraction (model, mod.def), creation of makefiles (ins make,
AA make.gdef), creation of job (ins job) and some more. modipsl is also a empty file tree that
will receive the models and tools.

Start this exercise by extracting modipsl in a new directory :

cd $WORKDIR
mkdir TESTOFFLINE ; cd TESTOFFLINE
svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl
cd modipsl/util
ls

The script model is used to download a specific predefined configuration with the model sources
and tools needed. The script uses the file mod.def that contains specifications for each configura-
tion predefined. Use ./model -h to see all existing configurations and ./model -h config name
for information about a specific configuration. Same information can be found in the file mod.def.
Download a configuration using ./model config name.

For these exercises you will use the configuration ORCHIDEE trunk which is an offline set up
using the latest version of the trunk ORCHIDEE. Open mod.def and look at lines beging with
ORCHIDEE trunk and then extract as follow :

vi mod.def # Explore lines beginning with ORCHIDEE_trunk
./model ORCHIDEE_trunk

Now explore the directories in modipsl. You will find all source code for ORCHIDEE in directory
modipsl/modeles. You also find the directory IOIPSL and XIOS which are fortran and C libraries
linked to ORCHIDEE for input/output issues. In directory modipsl/config/ORCHIDEE OL you
find scripts to run ORCHIDEE using libIGCM. libIGCM is a tool developed at IPSL to run
coupled and off-line simulations. Specific training session about libIGCM are given by the Plat-
forme groupe at IPSL.
Go into each dircetory and check which versions have been extracted. You’re supposed to find
same information as you can see in mod.def. Use svn to know version and revision number.

2

cd ../modeles/ORCHIDEE
svn info
cd ../IOIPSL/src
svn info
cd ../../../libIGCM
svn info

The makefile was created automatically in the end of the script model, done by the script
ins make. ins make will detect at which machine you are working on and create adapted make-
files. By default ins make recognize the following machines : curie at TGCC, ada at IDRIS,
obelix at LSCE and ciclad and climserv at IPSL. ins make can also be re-launched manually. For
example this is needed if you move the modipsl directory or if you want to create makefiles for
another target machine. The main makefile is found in modipsl/config/ORCHIDEE OL directory.

Now compile the model :

cd ../config/ORCHIDEE_OL
gmake

When the compiling is finished you will find the executables orchidee ol and xios server.exe in
modipsl/bin.

1.2 Optional : Install a branch of ORCHIDEE

Do as follow if you will like to install a specific branch instead of the trunk of ORCHIDEE. Note
you can only do this for branches where you have read acces. Install first modipsl as before. Then
open the file mod.def and look for the section ORCHIDEE trunk. Change the line containing
ORCHIDEE/trunk into the name for the branch you will use.
For exemple, to extract ORCHIDEE-MICT, do the following :

cd $WORKDIR; mkdir TESTMICT ; cd TESTMICT
svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl
cd modipsl/util

In mod.def, change the line

#-C- ORCHIDEE_trunk trunk/ORCHIDEE HEAD 14 ORCHIDEE modeles

into

#-C- ORCHIDEE_trunk branches/ORCHIDEE-MICT/ORCHIDEE HEAD 14 ORCHIDEE modeles

Finaly extract as before:

./model ORCHIDEE_trunk

Note that branches/ORCHIDEE-MICT/ORCHIDEE can be changed to another path on the svn
repository, for example branches/ORCHIDEE-CN-CAN/ORCHIDEE or branches/ORCHIDEE-
SOM/ORCHIDEE. It can also be the path to a personal version.
You can also set a specific revision number by changing HEAD into a revision number.

3

2 Test simulations

We will now do some test simulations using the ORCHIDEE trunk offline installation. This will
be done interactively to easier understand what is happening. To run the model you need at least
the following files in the run directory :

• orchidee ol : ORCHIDEE executable

• run.def : parameter text file

• forcing file.nc : climate forcing variables (this file can have another name, in that case it
should be indicated in run.def file)

• PFTmap.nc : vegetation map

• soils param.nc : initialization of soil parameters

• iodef.xml, context orchidee.xml, field def orchidee.xml, file def orchidee.xml, file def input orchidee.xml
: parameters files for output settings using XIOS

• Optional : albedo bg.nc, woodharvest.nc, routing.nc, floodplains.nc, irrigation.nc, soils param usda.nc

2.1 First regional run

In this exercise you will set up a simple test case and run in sequential mode without using
libIGCM. Create now a new directory outside modipsl to run the model and copy or link the
ORCHIDEE executable :

cd TESTOFFLINE; mkdir RUN1; cd RUN1
ln -s ../modipsl/bin/orchidee_ol .

Create the parameter file by saving the following lines into a file named run.def :

TIME_LENGTH=31D
STOMATE_OK_STOMATE= y
NVM=15
PFT_TO_MTC=1,2,3,4,5,6,7,8,9,10,11,12,13,10,10
LIMIT_WEST = -10.
LIMIT_EAST = 30.
LIMIT_NORTH = 70.
LIMIT_SOUTH = 30.

Copy xml files from models/ORCHIDEE/src xml directory into the run directory.

cp ../modipsl/modeles/ORCHIDEE/src_xml/* .

file def orchidee.xml describes the output files, frequencies and variable content. Change all oc-
curences of AUTO according to the comments in the beginning of the file. Using libIGCM, these
variables marqued with AUTO are modified by the drivers. We suggest for these exercises to set
daily output frequency. You can activate all files. Read more about the xml files in the appendix.

Copy or link the netcdf files from the shared repository IGCM into your run directory. The
location of the shared repository IGCM depends on the machine but the content is synchronized
between the different repositories. You can use export if your shell is bash (for tcsh shell: replace
export by set):

4

At obelix:
export R_IN=/home/orchideeshare/igcmg/IGCM/
At Ada:
export R_IN=/workgpfs/rech/psl/rpsl035/IGCM
At curie:
export R_IN=/ccc/work/cont003/igcmg/igcmg/IGCM

ln -s $R_IN/SRF/METEO/CRU-NCEP/v5.3.2/twodeg/cruncep_twodeg_1901.nc forcing_file.nc
ln -s $R_IN/SRF/PFTMAPS/CMIP6/ESA-LUH2v2/historical/15PFT/PFTmap_1901.nc PFTmap.nc
ln -s $R_IN/SRF/soils_param.nc .

You can use ncdump to see what is in the netcdf files. For example :

ncdump -h forcing_file.nc

Now launch the model :

./orchidee_ol # or ./orchidee_ol > out_exec

When the model finished correctly, following log message is found in the output text file out orchidee 0000:

END of dim2_driver

2.2 Relaunch in the same directory

If you want to relaunch the model in the same directory, then you need to delete restart and
output files previously created by the model. Do this now and re-run the model :

rm driver_rest_out.nc sechiba_rest_out.nc stomate_rest_out.nc
rm sechiba_history.nc sechiba_out_2.nc
rm stomate_history.nc stomate_ipcc_history.nc
rm out_*
./orchidee_ol

2.3 Continue a simulation using restart files

The model writes restart files in the end of each execution period, after a the time set by
TIME LENGTH. These files contain all state variables needed to continue a simulation with-
out loosing information. To continue the simulation you need to rename the restart files produced
in previous run and activate reading of these files in run.def with parameters SECHIBA restart in,
STOMATE RESTART FILEIN and RESTART FILEIN. Save the output files sechiba history.nc
and stomate history.nc for later analyses.

Add in run.def :

SECHIBA_restart_in=sechiba_rest_in.nc
STOMATE_RESTART_FILEIN=stomate_rest_in.nc
RESTART_FILEIN=driver_rest_in.nc

Rename restart files :

mv driver_rest_out.nc driver_rest_in.nc
mv sechiba_rest_out.nc sechiba_rest_in.nc
mv stomate_rest_out.nc stomate_rest_in.nc

Save output :

mv sechiba_history.nc sechiba_history_month01.nc
mv stomate_history.nc stomate_history_month01.nc

5

Relaunch the model :

./orchidee_ol > out_exec

Note that for longer simulations libIGCM is used to chain the executions without manually copy
or move of files. libIGCM is a powerful tool but it is important to know how the model works.

2.4 Visualization with ferret

Here is a small example to visualize sechiba history.nc using ferret.

> ferret
use sechiba_history.nc # read file
sh d # list content in file
shade CONTFRAC # 2D plot of a variable
go land # add contour of continents
shade TEMP_SOL[l=1] # 2D plot of TEMP_SOL for first time step
shade TEMP_SOL[l=@ave] # 2D plot of TEMP_SOL average over all time steps
shade SWDOWN[i=@ave] # zonal plot
plot SWDOWN[i=@ave,j=@ave] # plot mean value over time
quit

2.5 Change output levels

Do different small runs where you change output frequency, number of variables in the files,
activate or deactivate files, change name of the variables in in the output file, etc. Do these kind
of changes in file def orchidee.xml. Read more about xml files in the appendix.

2.6 Add a new output variable in ORCHIDEE

Create a diagnostic output variable for the variable resp hetero litter calculated in stomate litter.f90
using XIOS. To do this, add in src stomate/stomate litter.f90:

! Load XIOS in the beginning of the module
use xios_orchidee
...
! Add send to XIOS in the end of the subroutine littercalc
CALL xios_orchidee_send_field("resp_hetero_litter",resp_hetero_litter)

Compile in modipsl/config/ORCHIDEE OL:

cd config/ORCHIDEE_OL
gmake

Create a new run directory as before. The variable has dimension DIMENSION(npts,nvm) in
the subroutine. The corresponding axis for nvm has id=nvm. Add in field def orchidee.xml the
definition of the new variable:

<field id="resp_hetero_litter" name="RESP_H_LITT" long_name="..." unit="?" grid_ref="grid_nvm"/>

Add in file def orchidee.xml in the section for the file where you want to add the variable:

<field field_ref="resp_hetero_litter" level="1"/>

Use svn diff in modeles/ORCHIDEE to see your modifications in the code. Launch as before.
Verify that the variable is in the output file.
It is recommanded to modify the field def orchidee.xml in the model directory ORCHIDEE/src xml
as well as the file used in the run directory.

6

3 Test in parallel run mode

The default parallelization mode for ORCHIDEE offline configuration is MPI. The model can then
be run on 1 or several cores MPI. Coupled to LMDZ, the defaut parallelization mode is hybrid
mode with mixt MPI and OpenMP.

For writing ouput files, since 1 year, the default is using XIOS. This makes it possible to run
either in attached mode or in server mode. When running in attached mode, only the executable
orchidee ol is used. XIOS is used as an library in the model. When running in server mode, the
executable xios server.exe is launched together with the executable orchidee ol. This is a more
complex way to launch the model but it is more efficient when simulating on a big region or with
high resolution.

3.1 Running ORCHIDEE with XIOS in attached mode

You will now launch a global test run on 32 MPI processes (only use 8 at obelix) in attached mode.
When running in attached mode it is possible to set XIOS to write one global output file(mode
one file) or to write partial output files, one per local MPI domain(mode multiple file). When
running in multiple mode, the output files need to be post-processed to contain the full domain.
This is done using the tool rebuild. We will here use the one file mode.

Prepare a new run directory as in the first exercise but do not put any regional limits in run.def
(remove the LIMIT parameters). Open the xml files and see that attached mode is activated in
iodef.xml(using server=false) and that one file mode is activated in file def orchidee.xml.

in iodef.xml
<variable id="using_server" type="boolean">false</variable>

in file_def_orchidee.xml
<file_definition type="one_file" par_access="collective" enabled=".TRUE." min_digits="4">

Write a file Job orchidee as in the appendix to launch the model in the batch system instead
of interactivly. The job file will be different for different machines, choose the job for ada as in
the appendix.

3.2 Check reproductibility of results

When running on 1 or several processes, the results should be the same. Create a new directory
and make the same test but on half of the processes. Check that restart files and output files are
the same. You can use cdo to check that netcdf files are identical.

> cdo -diffv file1.nc file2.nc

Check also the difference in time due to the change of number of processors. In the ideal case, if
ORCHIDEE would be perfectly scalable the job should run 4 times faster on 4 processes than on
1. This is not the case but at least you should notice a significant gain in time while increasing
the number of processes.

7

3.3 Optional : Running ORCHIDEE with XIOS in server mode

A more efficient way to run ORCHIDEE with XIOS is to activate server mode. The ORCHIDEE
executable and the XIOS server executable are launched in MPMD mode (Multiple Program Mul-
tiple Data). In the exercise before in attached mode, ORCHIDEE was launched in SPMD mode
(Single Program Multiple Data).

Prepare a new run directory as the exercise before with XIOS. Add this time also the xios server
executable. Change to true in iodef.xml to run in server mode:

ln -s ../modipsl/bin/xios_server.exe .
vi iodef.xml
Change to : <variable id="using_server" type="boolean">true</variable>

Create a new job to launch orchidee ol executable on 31 MPI processes and xios server.exe exe-
cutable on 1 MPI process. Note that when using 2 servers(by launching xios server.exe on 2 MPI)
and option multiple file, then each server will write a partial domaine and reconstruction is needed
after the run (by using rebuild, see further below). When having 1 server it does not matter if the
option one file or multiple file is used. The server will write to the full domaine. See job example
in the appendix. Create the Job orchidee file and the run file. Launch the job as before using
llsubmit/ccc msub/qsub depending on the machine.

3.4 Optional : How to rebuild output if running multiple file mode

Parallel jobs will write to several text files, on per process, out orchidee 0000, out orchidee 0001...
and the output netcdf files will be written in local domain sechiba history 000.nc, sechiba history 0001.nc
etc. A reconstruction of the output netcdf files to the total domain is necessary. This is done with
the rebuild tool developped at IPSL as an extension of IOIPSL.

rebuild is installed at the different machines here:

at obelix:
/home/users/igcmg/rebuild/bin/
at curie:
/ccc/cont003/home/dsm/p86ipsl/rebuild/src_X64_CURIE/modipsl_v2_2_2_netcdf4.2/bin
at Ada:
/linkhome/rech/psl/rpsl035/bin

If you’ve installed the IPSL environnment (.bash login at ada) you already have rebuild in your
path. Try using it which rebuild.
Do the rebuild as follow :

rebuild -o sechiba_history.nc sechiba_history_00*

8

4 Simulations using libIGCM

The following exercises will now use the ORCHIDEE trunk configuration with libIGCM.

There are some differences between ORCHIDEE trunk configuration and the coupled config-
urations such as LMDZOR v6. In the configuration ORCHIDEE trunk it is not needed to
create the submit directory. Instead different predefined experiment directories already exist.
They can be copied and used directly. These directories are OOL SEC STO, OOL SEC and
SPINUP ANALYTIC. They follow the standard rules described in the training and documenta-
tion for libIGCM. The DRIVER directory do not exist but the “comp.driver” files are found in
the COMP directory. The directory FORCESOIL and TESTSTOMATE also follow the same
structure but these experiments are not maintained any more as the corresponding propgrams are
not maintained in the source code of ORCHIDEE trunk. SPINUP and ENSEMBLE directories
contain experiences that are more complicated and are not taught in the course.

We will here work with the OOL SEC STO and SPINUP ANALYTIC experiments.

Specific system option during the training course

To help the post-treatment job to start running easier, you can set the time limit in the beginning
of the job to a lower value for short exercises like we do here. Change in libIGCM/AA create ts
in the section ada to have :

#-Q- ada # @ wall_clock_limit = 1:00:00

If the create ts.job alredy exists, then remove it. It will be recreated when you run ins job.

4.1 Some parameters are changed by the comp.driver

According to the choices made in config.card and the comp.cards(orchidee ol.card, sechiba.card,
stomate.card), some parameters will be changed in the run.def or in the file def orchidee.xml. The
modifications are done by the comp.driver (orchidee ol.driver, sechiba.driver, stomate.driver). The
parameters who might be modified are always marked equal to AUTO or AUTOBLOCKER

• AUTO : These parameters can be changed using options in comp.card or config.card. You can
also change them directly in the PARAM/run.def or modeles/ORCHIDEE/src xml/file def orchidee.xml,
for this case the drivers will not change them again.

• AUTOBLOCKER : The job will stop if you modify these parameters. They are set by the
comp.driver mainly using the information from config.card.

For example, in PARAM/run.def:

STOMATE_RESTART_FILEIN = _AUTOBLOCKER_
XIOS_ORCHIDEE_OK = _AUTO_

Exercise

Go into OOL SEC STO experiment directory, open PARAM/run.def and search for variables
marked AUTO and AUTOBLOCKER. Try to find out which are the variables and using which
options can they be changed from the config.card or comp.card.

9

4.2 SPINUP ANALYTIC experiment

You’ll now set up a spinup simulation using libIGCM. Start by coping the SPINUP ANALYTIC
directory:

cd modipsl/config/ORCHIDEE_OL
cp -r SPINUP_ANALYTIC MyTestSpinup
cd MyTestSpinup

Look into the config.card. The variables CyclicBegin and CyclicEnd describe the years to loop
over. Setting these 2 variables in config.card makes the variable CyclicYear available. CyclicYear
is used in the orchidee ol.card to copy the forcing file. For this exercise loop over years 1901-1910.
Check CyclicBegin and CyclicEnd and modify if necessary. Limit the region to a grid-cell. Set in
run.def:

LIMIT_WEST = -60.
LIMIT_EAST = -58.
LIMIT_NORTH = -8.
LIMIT_SOUTH = -10.

Set up the simulation to run over 4 forcing periodes (40 years in total). In config.card, set
DateEnd=1940-12-31. Set SpaceName=TEST to deactivate pack post treatement if running at
curie/ada. Set TimeSeriesFrequency=20Y and SeasonalFrequency=NONE.
It is important to adjust the numer of cores used (number of MPI and OMP) to the domain which
is used. Here we run on 1 grid-cell and therefor set 1 MPI on the line for the executable to run
in sequential mode. You also need to deactivate XIOS server by removing the lines for IOS in
ListOfComponents and Executable. Increase PeriodNb before launching the job.

• Why should you deactivate XIOS in server mode in this example?

• How do you calculate PeriodNb?

• Which forcing file is used and where is it stored? Where is the share repository IGCM?

• Where is the output stored? How can you change the place for the ARCHIVE directory?
Note that this is recommended only at obelix.

• In orchidee ol.card you can use the variable year or CyclicYear. Which are the differences?

• The variable SPINUP PERIOD is calculated by the stomate.driver and set in run.def. Where
can you see the run.def file that was used during simulation? What is the SPINUP PERIOD?

When the time-series have been done, you can have a look at the evolution of the carbon pools.
Go to the output directory

cd .../IGCM_OUT/..../JobName/SBG/Analyse/TS_YE
ferret
use JobName_19010101_19401231_1Y_CARBON_ACTIVE.nc
use JobName_19010101_19401231_1Y_CARBON_SLOW.nc
use JobName_19010101_19401231_1Y_CARBON_PASSIVE.nc

set v ul; plot CARBON_ACTIVE[k=@ave,i=@ave,j=@ave,d=1]
set v ur; plot CARBON_SLOW[k=@ave,i=@ave,j=@ave,d=2]
set v ll; plot CARBON_PASSIVE[k=@ave,i=@ave,j=@ave,d=3]

10

4.3 OOL SEC STO experiment

Set up an experiment with sechiba and stomate using the experiment directory OOL SEC STO.

• Set up the simulation by period of 1 month for a total simulation lenght of 3 months.

• Activate the option for floodplains in run.def. Look in the file orchidee.default in the source
directory to have the exact name for the parameter activating this option.

• Add the input file floodplains.nc. This file is only needed for the first period. The information
will be stored in the restart file. Search in the shared repository IGCM (directory R IN) to
find the input file.

• Output the variable floodplains in 2 files by frequence 1 month and 1 day.

Prepare the rest of the job as usual. Launch the test and analyse the results.

11

5 Appendix

5.1 Description of some parameters in run.def

The file run.def contains parameters to run the model. A line beginning with a # is a comment.
Default values will be used for all parameters not set in run.def. You can find the list of all
parameters and their default values in modipsl/modeles/ORCHIDEE/orchidee.default .

• TIME LENGTH gives the simulation lenght for each execution. In this test case TIME LENGTH
is 31 days. It is possible to run one year by putting TIME LENGTH=1Y. It is not possi-
ble to run less than one day. In global or regionl simulations, we do not advice to run more
than 1 year per execution but for site simulations it is recommanded to run the full forcing
file length in one execution.

• LIMIT EAST, LIMIT WEST, LIMIT NORTH and LIMIT SOUTH are borders(in
degrees) for the horizontal domain to be modelize. The default values correspond to the
domain of the forcing file. The difference between EAST-WEST and NORTH-SOUTH must
be at least one degree. The model will stop if the domain does not cover any land points
with error message :

FATAL ERROR FROM ROUTINE dim2_driver
--> number of land points error.
--> is zero !
--> stop driver

Note that the current version of ORCHIDEE have problems to detect these kind of errors
when running in parallel mode.

• STOMATE OK STOMATE parameter activates coupling to the stomate in ORCHIDEE.

5.2 Description of xml files

The xml files are used to configure the output files when using XIOS(default mode). The xml
files are stored in ORCHIDEE/src xml directory. When running the model using libIGCM, the
file def orchidee.xml is changed where it says AUTO . The following 4 files are needed for OR-
CHIDEE:

• iodef.xml : this file is the first file read by XIOS. The variable using server specifies if the
executable xios server.exe should be launched at the same time as orchidee ol.

<variable id="using_server" type="bool">false</variable>
or
<variable id="using_server" type="bool">true</variable>

• context orchidee.def : containing axis and grid information

• field def orchidee.xml : contains one line per output variable sent from the model. This file
is only changed if new output are added in the model. A variable is output from the model
with a call to subroutine xios orchidee send field.

• file def orchidee.xml : contains specifications about the output files and contents. This is
the file to be changed for all modifications in the output settings. This file is modified
by orchidee ol.driver when running with libIGCM. It is only modified where the keyword
AUTO is set. You can change the AUTO as you wish and make other changes according

to your needs, they will never be overwritten. When running without libIGCM you must
change all AUTO .

12

5.3 Example of a parallel job files

5.3.1 Job using XIOS in attached mode at ada

This is a job file example for running orchidee with XIOS in attached mode at ada. Create
Job orchidee with following lines :

#!/bin/ksh
@ job_name = test
@ job_type = parallel
@ output = Script_Output
@ error = Script_Output
@ total_tasks = 32
@ wall_clock_limit = 1:00:00
@ queue
/usr/bin/time poe ./orchidee_ol

Submit the job to the queue with the command llsubmit. Check its running status with the llq
or qq. Do following:

> llsubmit Job_orchidee # submit the job
> llq -u login # check the job’s running status

5.3.2 Job using XIOS in attached mode at obelix

This is a job file example for running orchidee with XIOS in attached mode at obelix. Create
Job orchidee with following lines :

#PBS -N test
#PBS -m a
#PBS -j oe
#PBS -o Script_Output
#PBS -S /bin/ksh
#PBS -l nodes=2:ppn=4
cd $PBS_O_WORKDIR
time mpirun ./orchidee_ol

Submit the job to the queue with the command qsub. Check with the qstat and use the command
qcat to see the progress of the job. Do following

> qsub Job_orchidee # submit the job
> qstat -u login # check the job’s running status
> qcat job_id |more # check the progress of the job. job_id is given by qstat

13

5.3.3 Job using XIOS in attached mode at curie

This is a job file example for running orchidee with XIOS in attached mode at curie. Create
Job orchidee with following lines :

#!/bin/ksh
#MSUB -r test # name of the job
#MSUB -o Script_Output # name of output file for standard messages
#MSUB -e Script_Output # name of output file for error messages
#MSUB -eo
#MSUB -n 32 # Request numbre of cores
#MSUB -T 1800 # Time limit in seconds
#MSUB -Q test # Queue test, priority acces
#MSUB -q standard
#MSUB -A genXXX # Set your project id
BATCH_NUM_PROC_TOT=$BRIDGE_MSUB_NPROC
set +x
cd ${BRIDGE_MSUB_PWD}
/usr/bin/time ccc_mprun -n 32 ./orchidee_ol

Submit the job to the queue with the command ccc msub. Check with the ccc mstat. Do following

> ccc_msub Job_orchidee # submit the job
> ccc_mstat -u login # check the job’s running status

5.3.4 Job using XIOS in server mode at ada

Create Job orchidee server with following lines(the headings are the same as before) :

#!/bin/ksh
@ job_name = test
@ job_type = parallel
@ output = Script_Output
@ error = Script_Output
@ total_tasks = 32
@ wall_clock_limit = 1:00:00
@ class = cours
@ queue
/usr/bin/time poe -pgmmodel mpmd -cmdfile ./run_file

Create also the run file with the following lines (31 lines with orchidee ol):

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

14

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./orchidee_ol

./xios_server.exe

Now launch the job:

llsubmit Job_orchidee

15

