Introduction to the current routing scheme and its ongoing evolutions in the land-surface model ORCHIDEE

Matthieu Guimberteau

CEA/LSCE matthieu.guimberteau@lsce.ipsl.fr

ORCHIDEE training course. Orsay, 11/25/2016.

Generalities

What is a flow routing?

- Connection
- "It is a computational procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time (<u>hydrographs</u>) at one or more points along a watercourse" (Fread, Handbook of hydrology, 1992)
- It simulates the transport of runoff through river networks across continents (<u>streamflow, river</u> <u>discharge</u>) into the oceans

Lateral waterflow components

Surface Flow from Runoff Hydrograph

Lateral waterflow components

- Overland flow (surface runoff): flow of water that does not infiltrate and travels relatively quickly towards the stream channel
- Interflow (subsurface runoff): portion of infiltrated throughfall that moves laterally through the upper soil layers until it reaches the stream channel
- Baseflow (groundwater runoff): portion of infiltrated throughfall that reaches water tables by deep drainage and then discharges into streams

©The COMET Program

Streamflow hydrographs [L T⁻¹]

Streamflow hydrographs [L T⁻¹]

- As flood wave travels downstream, it undergoes:
 - > outflow peak attenuation $(Q_2 < Q_1)$
 - > outflow timing delay $(T_2 > T_1)$

Streamflow hydrographs [L T⁻¹]

- As flood wave travels downstream, it undergoes:
 - > outflow peak attenuation $(Q_2 < Q_1)$
 - > outflow timing delay $(T_2 > T_1)$

Why do we need it in GCMs ?

Validation tool

- river discharge is an integrator of the land hydrology
- independent measure of the performance of the hydrological cycle of the GCM: simulated streamflow vs river gauge data (with very long-time series)
- if both streamflow and precipitation are given with reasonable accuracy => check of evaporation accuracy
- Crucial for the closure of the global water cycle (in full-coupled GCMs)
 - Fresh water input to the oceans (affects ocean salinity, sea surface temperature, thermohaline circulation...)
- It enables studies of climate change and human impacts (irrigation, dams, water diversion...) on water resources and the hydrology of the basins

Human activities on river discharge

Flow distortion caused by water engineering in three heavily-regulated rivers

Vorosmarty et al., 2004

- Overview - River network - Transfer between reservoirs

The routing scheme in ORCHIDEE

- Overview

2.1

River network
Transfer between reservoirs

Basic functioning

- Based on existing routing schemes:
 - Ledoux (Phd Thesis, 1980)
 - Miller et al. (J. Climate, 1994)
 - Hagemann and Dümenil (Clim. Dyn., 1998)
 - > Ducharne et al. (J. Hydrol., 2003)
- routing .f90 introduced by Jan Polcher (HDR, 2003) in SECHIBA

- "Cell-to-cell" or "cell-based" methodology
 - simulation of the transport of runoff generated within the modeling units (e.g. grid cells), through river networks across continents into the oceans
 - a watershed can be represented as a single grid cell, a cascade of n equal grid cells, or a network of n equal grid cells (based on Singh (Hydrologic systems, 1989))
 - division of a watershed into a set of interconnected grid cells
 - > each of the grid cell is approximated as a <u>cascade of n linear reservoirs</u>
- Computation of hydrographs at any grid cell and not only at the outlet

Call graph of routing_main

http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc_1240/d3/d1e/namespacerouting.html

Maps read by routing.f90

- Overview **- River network**

2.2

- Transfer between reservoirs

The river flow direction map

The river flow direction map

- For each grid cell, the map provides single flow direction among the 11 possibilities attributed by numbers in the code:
 - > 8 directions $(1 \rightarrow 8)$ towards another grid cell
 - > 3 other directions:

The basin map

- <u>Drainage basins are defined</u>: collections of grid cells topologically connected by flow lines representing river links and segments
- <u>Ordered river segment are defined</u>: individual set of contiguous, linked grid cells having identical order.
 The stream order is based on Strahler (1957, 1964)'s classification system:
 - > 1st order: channels that originate at a "source" (doesn't have tributaries)
 - when two streams of order n join, a stream of order n+1 is created
 - when two streams of different order join, the channel segment immediately downstream has the higher order of the two combining streams

The basin map

- 6930 basins available at 0.5°x0.5° spatial resolution
 - <u>6152</u>: continental non-glacierized land area from STN-30p
 - * sizes ranges from ~ 390 km² to ~ 5.8.10⁶ km² (Amazon basin)
 - 778: continental glacierized land area (Greenland and the poles) from TRIP
- By default in the code, the 50 largest basins of the running area are selected in the code (num_largest parameter)
- Attribution of a unique ID by the map

The truncation procedure in routing.f90

- > The spatial resolution of the atmospheric grid cell is coarser (>0.5°) than that of the routing \rightarrow more than one basins can be included in the grid-cell
- <u>Truncation</u>: by default in the code, no more than 7 basins can be included in a grid cell (nbasmax parameter)

The basins (and grid cells) are now connected

The routing scheme in ORCHIDEE

Overview
River network
Transfer between reservoirs

2.3

General equation of mass conservation (continuity equation)

$$\frac{dV_i(t)}{dt} = Qin_i(t) - Qout_i(t)$$

- $V_i(t)$ [L³], volume of water stored in the reservoir i
- $Qin_{i} [L^{3}.T^{-1}]$, rate of inflow of the reservoir i
- $Qout_{i}$ [L³.T⁻¹], rate of outflow of the reservoir i

• Δt = 1 day, time step for the routing procedure in ORCHIDEE

General equation of mass conservation (continuity equation)

Equation of mass conservation applied for each reservoir of the grid cell:

$$\frac{dV_{stream}(t)}{dt} = \sum Qin_{Xstream}(t) - Qout_{stream}(t) \qquad \sum Qin_{Xstream} Stream reservoir \qquad Qout_{stream}(t)$$

$$\frac{dV_{fast}(t)}{dt} = Rs(t) - Qout_{fast}(t) \qquad \qquad R_{s} \qquad Fast reservoir \qquad Qout_{fast}$$

$$\frac{dV_{slow}(t)}{dt} = D(t) - Qout_{slow}(t) \qquad \qquad D \qquad Slow reservoir \qquad Qout_{slow}(t)$$

- Qin_{stream} [kg/day], sum of all inflow from the stream reservoirs of neighbor cells (Qin_{Xstream}) that flow into that cell direction
- V_i [kg], Qin_i [kg/day], Qout_i [kg/day]
- Rs [kg/day], surface runoff
- D [kg/day], drainage

Outflow-storage relation

$$Qout_i(t) = \frac{1}{T_i} V_i(t)$$

T_i[day], the time of a water waves to travel through a reach (also called "time constant", "residence time")

Outflow-storage relation

$$Qout_i(t) = \frac{1}{T_i} V_i(t)$$

T_i[day], the time of a water waves to travel through a reach (also called "time constant", "residence time")

with:
$$T_i = g_i \cdot k$$

The residence time in the reservoir i depends on 2 parameters:

- > g_i [10⁻³ day/km], the property of the reservoir i
- k [km], the water retention index of the corresponding grid cell

Outflow-storage relation: property of the reservoir (g)

- g is constant for all grid cells and is unique for each reservoir:
 - $rac{g_{stream}}{=}$ 0.24 10⁻³ day/km
 - $rac{g_{fast}}{fast} = 3.00 \ 10^{-3} \ days/km$
 - $rac{g_{slow}}{=}$ 25.0 10⁻³ days/km
- The values were obtained during a calibration of river discharge over the Senegal basin and then generalized to all the worldwide basins (Ngo-Duc et al., 2007)

Outflow-storage relation: the water retention index (k)

- k varies spatially and does not depend on the reservoir
- Its formulation is a simplification of Manning's formula (from Ducharne et al., J. Hydrol, 2003)

Outflow-storage relation: the water retention index (k)

- k varies spatially and does not depend on the reservoir
- Its formulation is a simplification of Manning's formula (from Ducharne et al., J. Hydrol, 2003) ۶

U [m/s], open-channel flow velocity

- tanß. water-surface slope

<u>Hydraulic radius</u>: measures the channel flow efficiency

- $R_h \equiv \frac{A}{P}$ A [m²], cross-sectional area of the flow P [m], length of the wetted portion of the flow boundary ("wetted perimeter")

The greater R_{h} , the greater the efficiency of the channel and the more volume it can carry. For channels of a given width (x), R_{h} is greater for the deeper channels (y is high).

Outflow-storage relation:

the water retention index (k)

The water retention index map

 $12.5 days < T_{slow} < 250 days$

Groundwater residence time estimated in the literature: 10-300 days

Inland and man-made wetlands

Irrigated lands
Floodplains
Swamps
Ponds

Inland and man-made wetlands in ORCHIDEE

11/25/2016

Applications

River discharge (Q)

Simulated river discharge can be compared with data from gaging stations

Mean seasonal discharges (m³/s) over the sub-basins of the Amazon basin (white: ORCHIDEE simulations; black: observations from the ORE-HYBAM database) *Guimberteau et al. (HESS, 2012)*

(a) GRACE

TWS (in mm) for the time period FMA minus ASO 2003 *Ngo-Duc et al. (2007, WRR)*

11/25/2016

Contribution of continental water to sea level variations: comparison with TOPEX/POSEIDON

Ngo-Duc et al. (2005, JGR)

Contribution of continental water to sea level variations: comparison with TOPEX/POSEIDON

Ngo-Duc et al. (2005, JGR)

Floodplain water height

Interannual variation of monthly water height index (m) simulated with ORCHIDEE on the Rio Negro. Comparison with Topex/Poseidon observations. *Guimberteau et al. (HESS, 2012)*

Ongoing developments: the high resolution routing Scheme (developed by Trung Nguyen Quang (LMD), Phd student of Jan Polcher)

A new river flow direction maps

- SRTM: Shuttle Radar Topography Mission
- > HydroSHEDS: Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales

A new river flow direction maps

Courtesy of Trung Nguyen Quang and Jan Polcher

High resolution routing scheme

- New river flow direction map + new basin map (using the <u>Pfafstetter coding system</u> for watershed identification) + re-computation of the water retention index map + re-calibration of the truncation parameter and the time constants of the reservoirs in routing.f90.
- Allow us to define more sub-basins per grid cell
- Provide a more precise description of river network within the sub-grid basins and more details about the river structures
- The detailed water retention index allows the water flow movement be closer to the reality
- Short residence time in small grid cell allows routing in a short span (up to 1h), and benefits to evaluate the model at a daily scale
- Modest improvement compared with the former scheme over large basins
- Now, we can consider adduction infrastructures (reservoirs, man-made channels): in development (Jan Polcher and his Phd student Xudong Zhou (LMD), Patrice Dumas (CIRED))

References

Where you can find informations about the routing module of ORCHIDEE

- > ORCHIDEE documentation, ORCHIDEE wiki
- Culson, N. Impact de l'irrigation sur le cycle de l'eau, Master Thesis, Université Pierre et Marie Curie, Paris VI, 2004
- D'Orgeval, T.; Polcher, J. & de Rosnay, P. Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sc., 2008, 12, 1387-1401
- De Rosnay, P.; Polcher, J.; Laval, K. & Sabre, M. Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula, Geophys. Res. Lett., 2003, 30, 1986
- Guimberteau, M. Analyse et modifications proposées de la modélisation de l'irrigation dans un modèle de surface, Master Thesis, Université Pierre et Marie Curie Paris VI-Laboratoire de Meteorologie Dynamique, Paris Jussieu, 2006
- Guimberteau, M. Modélisation de l'hydrologie continentale et influences de l'irrigation sur le cycle de l'eau, Phd thesis, Université Paris VI, 2010
- Guimberteau, M.; Laval, K.; Perrier, A. & Polcher, J. Global effect of irrigation and its impact on the onset of the Indian summer monsoon, Clim. Dynam., 2012, 39, 1329-1348
- Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.; Prigent, C.; Guyot, J.; Cochonneau, G.; Espinoza, J.; Filizola, N.; Fraizy, P.; Lavado, W.; De Oliveira, E.; Pombosa, R.and Noriega, L. & Vauchel, P. Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets, *Hydrol. Earth Syst. Sc.*, 2012, 16, 911-935
- Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J.; Peng, S.; De Weirdt, M. & Verbeeck, H. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, *Geosci. Model Dev.*, 2014, 7, 1115-1136
- Ngo-Duc, T.; Polcher, J. & Laval, K. A 53-year forcing data set for land surface models, J. Geophys. Res.-Atmos., 2005, 110, D06116
- Ngo-Duc, T. Modélisation des bilans hydrologiques continentaux: variabilité interannuelle et tendances. Comparaison aux observations., Phd Thesis, Université Paris VI, 2006
- Ngo-Duc, T.; Laval, K.; Polcher, J. & Cazenave, A. Contribution of continental water to sea level variations during the 1997--1998 El Niño--Southern Oscillation event: Comparison between Atmospheric Model Intercomparison Project simulations and TOPEX/Poseidon satellite data J. Geophys. Res.-Atmos., 2005, 110
- Ngo-Duc, T.; Laval, K.; Ramillien, G.; Polcher, J. & Cazenave, A. Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data, *Water Resour. Res.*, 2007, 43, W04427
- Polcher, J. Les processus de surface à l'échelle globale et leurs interactions avec l'atmosphère, Habilitation à diriger des recherches, Université Paris VI, 2003
- Xuan-Tien, N.-V. Analyse de l'impact de l'irrigation en Amérique du Nord plaine du Mississippi sur la climatologie régionale, Master Thesis, Ecole polytechnique et Université de Paris VI, 2005

Publications relating to the routing module of ORCHIDEE

- Döll, P. & Siebert, S. A digital global map of irrigated areas, Kassel World Water Series 1, Center for Environmental Systems Research, Univ of Kassel, Germany, 1999, 23pp. plus appendix
- Döll, P. & Siebert, S. A digital global map of irrigated areas, ICID J., 2000, 49, 55-66
- > Döll, P. & Siebert, S. Global modeling of irrigation water requirements, Water Resour. Res., 2002, 38, 8-8
- Ducharne, A.; Golaz, C.; Leblois, E.; Laval, K.; Polcher, J.; Ledoux, E. & de Marsily, G. Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM, *J. Hydrol.*, 2003, 280, 207-228
- Fekete, B.; Vörösmarty, C. & Grabs, W. Global Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, WMO-Global Runoff Data Center Report 22.WMO GRDC, Global Runoff Data Centre, Koblenz, Germany, 1999
- Hagemann, S. & Dumenil, L. A parameterization of the lateral waterflow for the global scale, *Clim. Dynam.*, 1998, 14, 17-31
- Ledoux, E. Modélisation intégrée des écoulements de surface et des écoulements souterrains sur un bassin hydrologique, Phd thesis, 1980
- Miller, J.; Russell, G. & Caliri, G. Continental-scale river flow in climate models, J. Climate, 1994, 7, 914-928
- Siebert, S. & Döll, P. A digital global map of irrigated areas An update for Latin America and Europe, Kassel World Water Series 4, Center for Environmental Systems Research, Univ. of Kassel, Germany, 2001, 14pp. + appendix
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.; Frenken, K. & Feick, S. Development and validation of the global map of irrigation areas, *Hydrol. Earth Syst. Sc.*, 2005, 9, 535-547
- Vörösmarty, C.; Fekete, B.; Meybeck, M. & Lammers, R. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution, J. Hydrol., 2000, 237, 17-39
- Vörösmarty, C.; Fekete, B.; Meybeck, M. & Lammers, R. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages, *Global Biogeochem. Cy.*, 2000, 14, 599-621

Parameters used in routing.f90

Name	Value	Unit	Description
General			
diagunit	87	unitless	Diagnostic file unit
dt_routing	one_day	S	Routing time step
nbasmax	5	unitless	Maximum number of basins per grid cell
nbvmax	440	unitless	
num_largest	50	unitless	Number of largest basins
fast_tcst	3.0	10 ⁻³ day/km	Fast reservoir property
slow_tcst	25.0	10 ⁻³ day/km	Slow reservoir property
stream_tcst	0.24	10 ⁻³ day/km	Stream reservoir property
Swamp subroutine			
swamp_cst	0.2	unitless	Swamp constant
Floodplain subroutine			
beta	2.0	unitless	Fix the shape of the floodplain
floodcri	2000	mm	Potential height for which all the basin is flooded
flood_tcst	4.0	10 ⁻³ day/km	Flood reservoir property
Pond subroutine			
betap	0.5	unitless (0-1)	Ratio of the basin surface intercepted by ponds and the maximum surface of ponds
pondcri	2000	mm	Potential height for which all the basin is a pond
Endoheric lake subroutine			
maxevap_lake	7.5/86400	mm/s	Maximum evaporation rate from lakes

Thank you

