

Introduction to the multilayer soil diffusion scheme and the routing scheme in ORCHIDEE

Matthieu Guimberteau

CEA/LSCE matthieu.guimberteau@lsce.ipsl.fr

ORCHIDEE

The multilayer soil diffusion scheme

The multilayer soil diffusion scheme

Fundamental notions of soil water movement

The soil

- Porous medium. Matrix of individual solid granular particles (grains)
- Between each grains: interconnected pore (or void) spaces that contain varying fractions of water and air
- Water is attracted to soil particles
- Soil dries ⇒ water is held more tightly to grains ⇒ capillary water disappears ⇒ only a thin film of water held very tightly to grains (hygroscopic water)

The soil moisture content

- The volumetric soil water content (or soil moisture content) measures the volume occupied by water
- Vary in both time and space.

$$\theta = \frac{V_w}{V_s}$$

 V_w , volume of liquid water V_s , volume of soil

The porosity of the soil

- > It refers to the volume of soil voids that can be filled by water and/or air
 - constant over the time periods
 - decreases with depth (compaction)
 - varies depending on particle size and aggregation
 - > large number of small particles in a volume of soil ⇒ large number of soil pores ⇒
 high porosity
 - Fewer large particles can occupy the same volume of soil ⇒ fewer pores ⇒ less porosity
- Theorical range of θ: 0 < θ < φ. When the soil moisture content reaches the porosity ⇒ the soil is saturated</p>

$$\phi = \frac{(V_a) + (V_w)}{V_s}$$

V_a, volume of air V_w, volume of liquid water V_s, volume of soil

The texture of the soil

- Most soils have a mixture of grain sizes
- The particle size distribution is characterized by the soil texture: the relative contents of particles of clay (fine), silt (medium) and sand (coarse)

Granulometric composition visualized in texture triangle (here USDA triangle including 12 textures):

The soil moisture characteristics

Saturation, $\theta_s = \Phi$: all soil pores are filled with water (no air left in the soil)

- Field capacity, θ_{fc} : maximum amount of water that a soil can hold after gravitational drainage. The large soil pores are filled with both air and water while the smaller pores are still full of water.
- Wilting point, θ_{wp} : water content at which the roots can no longer extract water from the soil. Soil water stage where the plant dies.
- **Plant available water content,** θ_{a} : water available for plant use. $\theta_{a} = \theta_{fc} \theta_{wp}$
- **Residual,** θ_r : water content where no liquid flow occurs any more. Water moves only by vapor flow.
- These conditions are constant for a given soil but vary widely from one type of soil to another

Hydrological horizons and water movement

Describes the flow rate across a unit cross section of soil that includes pores spaces and soil particules (Darcy, 1856)

We focus on the vertical component of flow (z direction)

$$q_z = -K_h \cdot \left[1 + \frac{d(p/\gamma_w)}{dz} \right]^{-1} \quad \frac{Pressure head, \psi (in m)}{(\gamma_w is constant)}$$

In unsaturated flows, both ψ and K_h are functions of θ , so:

$$q_z = -K_h(\theta) \cdot \left[1 + \frac{d\psi(\theta)}{dz}\right]$$

In unsaturated soils, p < 0 and thus $\psi < 0$. In this case, ψ is also called tension head, matric potential or matric suction. It is the work required to remove water against surface tension and particle surface forces.

Relation between ψ , K_h and θ

Relation between ψ , θ and soil texture

- > For a given degree of saturation, ψ is much higher in fine-grained soils than in coarser-grained soils
- The value of tension for a given water content also depends on the history of wetting and drying

Relation between K_h , θ and soil texture

 For a given degree of saturation, K_h increases by several orders of magnitude from fine-grained soils to coarse-grained soils (water path is less sinuous <=> less resistance to flow)

Water transport in unsaturated soils

- The Richards equation (Richards, 1931) is widely used as a basis for numerical modeling soil water flow:
 - by dividing the soil profile into very thin layers
 - by specifying appropriate boundary conditions
 - by applying the equation to each layer sequentially over small increments of time

The Richards equation

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} K_h(\theta) + \frac{\partial}{\partial z} \left[K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta) \right]$$

The **time rate of change in volumetric soil moisture** for a given thin layer of soil depends on:

- the vertical rate of change of the hydraulic conductivity
- > the vertical rate of change of the product of:
 - the hydraulic conductivity
 - the vertical rate of change of the pressure head

The Fokker-Planck equation

Fokker-Plank equation uses θ as a state variable, instead of Φ as in the Richards equation

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} K_h(\theta) + \frac{\partial}{\partial z} \left[K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta) \right]$$
The flow due to the pressure gradient can be expressed as the product of the hydraulic diffusivity and the water-content gradient
$$\Rightarrow \text{Hydraulic diffusivity (m^2/s):}$$

$$D_h(\theta) \cdot \frac{\partial \theta}{\partial z} = K_h(\theta) \cdot \frac{\partial}{\partial \theta} \psi(\theta)$$

$$D_h(\theta) \cdot \frac{\partial \theta}{\partial z} = K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta)$$

$$D_h(\theta) \cdot \frac{\partial \theta}{\partial z} = K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta)$$

Conductivity Diffusivity Water-content gradient

The multilayer soil diffusion scheme

Modeling in ORCHIDEE

Generalities

- Physically-based description of unsaturated soil water flow
- Relies on a 1D Fokker-Planck equation
- The lateral fluxes between adjacent grid-cells are neglected
- > We assume that all the variables are horizontally homogeneous
- By default in ORCHIDEE, the multilayer soil diffusion scheme is not activated (2-layer scheme activated by default).
 To activate it: NEWHYDROL = y in sechiba.card

hydrol.f90

A below ground tiling for soil water-vegetation interactions

Vertical discretization of the soil and integration

The soil column is discretized using 11 nodes (geometric increase of internode distance) over 2 meters. There are thin layers on the top soil where θ is likely to exhibit sharp vertical gradients.

The mass conservation equation is integrated between the nodes and over the time step dt (water budget of each layer i):

$$\frac{W_{i}(t+dt) - W_{i}(t)}{dt} = Q_{i-1}(t+dt) - Q_{i}(t+dt) - S_{i}$$

 Water fluxes Q_i at the interface between layers i are deduced from the Fokker-Planck equation (finite difference integration)

The evolution of θ_i is driven by:

- 1 Top and bottom boundary conditions
- 2 Soil properties
- 3 Transpiration sink

۶

 \succ

- > In the first layer (1mm) = direct infiltration (I_1)
- If P₀ > 1mm/dt => wetting front propagation with time splitting procedure
 P₁ = P₀ 1mm/dt

Exponential distribution of "potential" infiltration

Saturated layer i-1
$$\theta_{i-1} = \theta_s$$

Layer i $\theta_i < \theta_s$

$$i = I_i^{pot} \left[1 - \exp\left(\frac{-P_1}{I_i^{pot}}\right) \right]$$

with $I_i^{pot} = K_{i/i-1} = \frac{K_s(i-1) + K(\theta_i)}{2}$
Time required to saturate the layer i:
 $t_i = h_i \frac{(\theta_s - \theta_i)}{I_i} \longrightarrow \theta_i$ updated
 $if \sum (t_i < dt) \longrightarrow$ next layer i+1

Boundary conditions Reinfiltration and resulting runoff

- Rs may reinfiltrate if the slope of the land surface S < S_{max}
- Computation of a reinfiltrated fraction:

1

Soil properties Soil texture classes

In slowproc.f90:

- ▶ textfrac_table ⇒ correspondence between textural classes and their granulometric composition
- **soilclass** \Rightarrow areal fractions of each textural class in each grid-cell read from a soil texture map:
 - Zobler map (Zobler (1986), 1° resolution, 5 texture classes). By default in the model.
 The 5 soil textures are reduced to only 3 (called Coarse, Medium and Fine) in the code
 - USDA map (Reynolds et al. (2000), (1/12)° resolution, 12 texture classes)
- > njsc (kjpindex) ⇒ dominant textural class in each grid-cell. At the end, there is <u>only ONE soil</u> <u>texture class per grid-cell</u>.

Soil properties The hydrodynamic parameters

- In ORCHIDEE, the hydraulic parameters required for the diffusion equation are given by the Mualem (1976) - Van Genuchten (1980) model.
- > K_h and D_h depend on saturated properties (measured on saturated soils) and on θ :

$$\psi(\theta) = -\frac{1}{\alpha} \left[\left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right)^{-\frac{1}{m}} - 1 \right]^{\frac{1}{n}}$$

2

$$K_{h}(\theta) = K_{s} \sqrt{\left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)} \left[1 - \left(1 - \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{\frac{1}{m}}\right)^{m} \right]^{2}$$

$$D_{h}(\theta) = \frac{(1-m)K_{h}(\theta)}{\alpha m} \frac{1}{\theta - \theta_{r}} \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{-\frac{1}{m}} \left(\left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{-\frac{1}{m}} - 1\right)^{-m}$$

- > α : Van Genuchten parameter (m⁻¹), related to the inverse of the air entry suction
- m and n: Van Genuchten parameters related to pore-size distribution m=1-1/n according to the Mualem model

Soil properties The hydrodynamic parameters

Values of the parameters given by Carsel and Parrish (1988):

	For "	in ORCH	IDEE	For "Zobler case" in ORCHIDEE						
	$\frac{K_s}{mm \cdot j^{-1}}$	n	$\stackrel{lpha}{m^{-1}}$	$theta_r \\ m^3 . m^{-3}$	$theta_s$ $m^3.m^{-3}$	$\frac{K_s}{mm \cdot j^{-1}}$	n	$\stackrel{lpha}{m^{-1}}$	$theta_r \\ m^3 . m^{-3}$	$theta_s$ $m^3.m^{-3}$
Sand	7128.0	2.68	14.5	0.045	0.43					
Loamy Sand	3501.6	2.28	12.4	0.057	0.41	I				
Sandy Loam	1060.8	1.89	7.5	0.065	0.41	1060.8	1.89	7.5	0.065	0.41
Silt Loam	108.0	1.41	2.0	0.067	0.45	Ī				
Silt	60.0	1.37	1.6	0.034	0.46					
Medium Loam	249.6	1.56	3.6	0.078	0.43	249.6	1.56	3.6	0.078	0.43
Sandy Clay Loam	314.4	1.48	5.9	0.100	0.39					
Silty Clay Loam	16.8	1.23	1.0	0.089	0.43					
Clay Loam	62.4	1.31	1.9	0.095	0.41	62.4	1.31	1.9	0.095	0.41
Sandy Clay	28.8	1.23	2.7	0.100	0.38					
Silty Clay	4.8	1.09	0.5	0.070	0.36					
Clay	48.0	1.09	0.8	0.068	0.38					

> In ORCHIDEE, K_s is modified with depth (and thus α and m):

2

- K_s decreases exponentially with depth below the top 30cm (increasing soil compaction)
- K_s increases towards the surface (root channel macropores enhance downward movement of water)

- Coupling between the soil water distribution and the rooting demand at a given soil depth
- In each soil layer i, the water stress function us, acts on the transpiration

$$\frac{W_i(t+dt) - W_i(t)}{dt} = Q_{i-1}(t+dt) - Q_i(t+dt) - S_i$$

with: $S_i = \frac{uS_i}{U_s}T_r = \frac{uS_i}{\sum uS_i}T_r$

3

Transpiration sink

Water stress

$$us_{i} = 1$$

$$us_{i} = moderwilt(i) \cdot n_{root}(i) \cdot \min\left(\sqrt{\frac{W_{i}}{(z_{i} - z_{i-1}) \cdot \theta_{d}}}, 1\right)$$

$$n_{root} = \frac{\int\limits_{h_i} R_v(z) dz}{\int\limits_{h_{tot}} R_v(z) dz}$$

moderwilt=1 if $\theta_i > \theta_{wp}$ else 0

 $\boldsymbol{\theta}_{d} = 0.5 \Phi$

Critical water content from which water extraction by the roots decreases with the water content of the soil layer θ_d is called "pcent_fao" or "pcent_usda" in the code (defined in constantes_soil_var.f90)

In constantes_soil_var.f90	$\boldsymbol{\theta}_{wp}$	θ_{fc}			
Name	mcw_usda or mcw_fao	mcf_usda or mcf_fao			
Default values	0.10 m ³ /m ³ for all the textures	0.32 m ³ /m ³ for all the textures			

3

Transpiration sink

Root density profile

For each PFT v, a root density profile:

Depth of

Z

The multilayer soil diffusion scheme

References
Where you can find informations

about the multilayer soil diffusion scheme of ORCHIDEE

- Campoy, A. Influence de l'hydrologie souterraine sur la modélisation du climat à l'échelle régionale et globale, Université
 Pierre et Marie Curie, Paris VI, 2013
- Campoy, A.; Ducharne, A.; Cheruy, F.; Hourdin, F.; Polcher, J. & Dupont, J. Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model, J. Geophys. Res.-Atmos., 2013, 118, 10,725-10,739
- d'Orgeval, T. Impact du changement climatique sur le cycle de l'eau en Afrique de l'Ouest: modélisation et incertitudes, Université Paris VI, 2006
- d'Orgeval, T.; Polcher, J. & de Rosnay, P. Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sc., 2008, 12, 1387-1401
- de Rosnay, P. Représentation de l'interaction sol-végétation-atmosphère dans le modèle de circulation générale du Laboratoire de Météorologie Dynamique thesis, Pierre et Marie Curie, Paris VI, 1999
- de Rosnay, P.; Bruen, M. & Polcher, J. Sensitivity of surface fluxes to the number of layers in the soil model used in GCMs, Geophys. Res. Lett., 2000, 27, 3329-3332
- de Rosnay, P.; Polcher, J.; Bruen, M. & Laval, K. Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes, J. Geophys. Res.-Atmos., 2002, 107, 4118
- Ducharne, Technical note on hydrol.f90 (in progess),
 http://forge.ipsl.jussieu.fr/orchidee/raw-attachment/wiki/Documentation/eqs_hydrol.pdf, 2014
- Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J.; Peng, S.; De Weirdt, M. & Verbeeck, H. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, Geosci. Model Dev., 2014, 7, 1115-1136

Publications relating to

the multilayer soil diffusion scheme of ORCHIDEE

- Carsel, R. and Parrish, R. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24(5):755– 769.
- Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3):513–522.
- Reynolds, C., Jackson, T., and Rawls, W. (2000). Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour. Res., 36:3653–3662.
- Van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5):892–898.
- Zobler, L. (1986). A world soil file for global climate modeling. National Aeronautics and Space Administration, Technical Memorandum 87802.

The routing scheme

The routing scheme

Generalities

What is a flow routing?

- "It is a computational procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time (<u>hydrographs</u>) at one or more points along a watercourse" (Fread, Handbook of hydrology, 1992)
- It simulates the transport of runoff through river networks across continents (<u>streamflow, river</u> <u>discharge</u>) into the oceans

Why do we need it in GCMs ?

- Crucial for hydrological cycle closure (when coupled to the ocean model)
- It provides freshwater to the ocean (affects ocean salinity and thermohaline circulation)
- It gives independent measure of the performance of the hydrological cycle of the GCM: comparison of simulated streamflow with river gauge data
 - if both streamflow and precipitation given with reasonable accuracy => check of evaporation accuracy
- It enables studies of climate change impacts on water resources and the hydrology of the basins

 \triangleright

Human activities on river discharge

Flow distortion caused by water engineering in three heavily-regulated rivers

Vorosmarty et al., 2004

Lateral waterflow components

Surface Flow from Runoff Hydrograph

Lateral waterflow components

- Overland flow (surface runoff): flow of water that does not infiltrate and travels relatively quickly towards the stream channel
- Interflow (subsurface runoff): portion of infiltrated throughfall that moves laterally through the upper soil layers until it reaches the stream channel
- Baseflow (groundwater runoff): portion of infiltrated throughfall that reaches water tables by deep drainage and then discharges into streams

©The COMET Program

Hydrographs

- > As flood wave travels downstream, it undergoes:
 - > outflow peak attenuation $(Q_2 < Q_1)$
 - > outflow timing delay $(T_2 > T_1)$

The routing scheme

Modeling in ORCHIDEE

The routing scheme

Modeling in ORCHIDEE: overview

Basic functioning

- Based on existing routing schemes:
 - Ledoux (Phd Thesis, 1980)
 - Miller et al. (J. Climate, 1994)
 - Hagemann and Dümenil (Clim. Dyn., 1998)
 - > Ducharne et al. (J. Hydrol., 2003)
- routing.f90 introduced by Jan Polcher (HDR, 2003) in SECHIBA

- "Cell-to-cell" or "cell-based" methodology
 - simulation of the transport of runoff generated within the modeling units (e.g. grid cells), through river networks across continents into the oceans
 - a watershed can be represented as a single grid cell, a cascade of n equal grid cells, or a network of n equal grid cells (based on Singh (Hydrologic systems, 1989))
 - > division of a watershed into a set of interconnected grid cells
 - each of the grid cell is approximated as a <u>cascade of n linear reservoirs</u>
- Computation of hydrographs at any grid cell and not only at the outlet

From precipitation to river discharge in ORCHIDEE

From precipitation to river discharge in ORCHIDEE

From precipitation to river discharge in ORCHIDEE

routing.f90

Maps read by routing.f90

The routing scheme

Modeling in ORCHIDEE: river network

Basin map

- Basin map: 6930 basins available at 0.5°x0.5° spatial resolution
 - 6152: continental non-glacierized land area (Vörösmarty et al., 2000) available at 0.5°x0.5° spatial resolution
 - > sizes ranges from ~ 390 km² to ~ 5.8.10⁶ km² (Amazon basin)
 - > 778: continental glacierized land area (Greenland and the poles) from TRIP (Total Runoff Integrating Pathways) (Oki et al., 1999; Oki and Sud, 1998) available at 1.0°x1.0° spatial resolution
- By default in the code, the 50 largest 350 basins of the running area are selected in the code (num_largest parameter)
- Attribution of a unique ID by the map

Basin map

- > The spatial resolution of the atmospheric grid cell is coarser (>0.5°) than that of the routing \rightarrow more than one basins can be included in the grid-cell
- Truncation: by default in the code, no more than 7 basins can be included in a grid cell (nbasmax parameter)

Trip map

- Map at 0.5°x0.5° spatial resolution from the data of Vörösmarty et al. (2000) and Oki ۶ et al. (1999)
- For each grid cell, the map provides single flow direction among the 11 possibilities ۶ attributed by numbers in the code:
 - 8 directions $(1 \rightarrow 8)$ towards another grid cell
 - 3 other directions: ۶
 - $97 \rightarrow$ lake inflow
 - $98 \rightarrow coastalflow$ ≻ (diffusive into the oceans)
 - \rightarrow 99 → riverflow (river discharge into the oceans)

The basins (and grid cells) are now connected

The routing scheme

Modeling in ORCHIDEE: transfer between reservoirs

General equation of mass conservation (continuity equation)

$$\frac{dV_i(t)}{dt} = Qin_i(t) - Qout_i(t)$$

- V_i(t) [L³], volume of water stored in the reservoir i
 Qin_i [L³.T⁻¹], rate of inflow of the reservoir i
- > Qout, [L³.T⁻¹], rate of outflow of the reservoir i

Δt = 1 day, time step for the routing procedure in ORCHIDEE

General equation of mass conservation (continuity equation)

Equation of mass conservation applied for each reservoir of the grid cell:

$$\frac{dV_{stream}(t)}{dt} = \sum Qin_{xstream}(t) - Qout_{stream}(t) \qquad \sum Qin_{xstream} Stream reservoir \qquad Qout_{stream}(t)$$

$$\frac{dV_{fast}(t)}{dt} = Rs(t) - Qout_{fast}(t) \qquad \qquad R_{s} \qquad Fast reservoir \qquad Qout_{fast}(t)$$

$$\frac{dV_{slow}(t)}{dt} = D(t) - Qout_{slow}(t) \qquad \qquad D \qquad Slow reservoir \qquad Qout_{slow}(t)$$

- Qin_{stream} [kg/day], sum of all inflow from the stream reservoirs of neighbor cells (Qin_{Xstream}) that flow into that cell direction
- V_i [kg], Qin_i [kg/day], Qout_i [kg/day]
- Rs [kg/day], surface runoff
- D [kg/day], drainage

Outflow-storage relation

$$Qout_i(t) = \frac{1}{T_i} V_i(t)$$

T_i[day], the time of a water waves to travel through a reach (also called "time constant", "residence time")

with:
$$T_i = g_i \cdot k$$

The residence time in the reservoir i depends on 2 parameters:

- > g_i [10⁻³ day/km], the property of the reservoir i
- k [km], the topographic index of the corresponding grid cell

Outflow-storage relation Property of the reservoir (g_i)

- > g, is constant for all grid cells and is unique for each reservoir:
 - > $g_{stream} = 0.24 \ 10^{-3} \ day/km$
 - > $g_{fast} = 3.00 \ 10^{-3} \ days/km$
 - $\Rightarrow g_{slow} = 25.0 \ 10^{-3} \ days/km$
- The values were obtained during a calibration of river discharge over the Senegal basin and then generalized to all the worldwide basins (Ngo-Duc et al., 2007)

Outflow-storage relation Topographic index (k)

- k varies spatially and does not depend on the reservoir ۶
- Its formulation is a simplification of Manning's formula (from Ducharne et al., ۶ J. Hydrol, 2003)

Manning equation: computes the velocity of open-channel flows

А

- U [m/s], open-channel flow velocity

u_m [m^{1/3}/s], unit-conversion factor
 n, Manning coefficient which characterizes channel resistance
 R_h[m], hydraulic radius

water-surface slope ≻ tanβ,

Hydraulic radius: measures the channel flow efficiency

$$R_h \equiv \frac{A}{P}$$

cross-sectional area of the flow length of the wetted portion of the flow boundary ("wetted perimeter")

The greater R_{h} , the greater the efficiency of the channel and the more volume it can carry. For channels of a given width (x), R_{h} is greater for the deeper channels (y is high).

A [m²], P [m],

Outflow-storage relation

Topographic index (k)

Outflow-storage relation Topographic index (k)

$$T_i = g_i \cdot k$$

12.5 days < T_{slow} < 250 days Groundwater residence time estimated in the literature: 10-300 days
See my training The routing scheme

2.2.4

Modeling in ORCHIDEE: inland and man-made wetlands (irrigation, floodplains, swamps, ponds and endorheic lakes)

Parameters used in routing.f90

Name	Value	Unit	Description
General			
diagunit	87	unitless	Diagnostic file unit
dt_routing	one_day	S	Routing time step
nbasmax	7	unitless	Maximum number of basins per grid cell
nbvmax	440	unitless	
num_largest	50	unitless	Number of largest basins
fast_tcst	3	day/m	Fast reservoir property
slow_tcst	25	day/m	Slow reservoir property
stream_tcst	0.24	day/m	Stream reservoir property
Swamp subroutine			
swamp_cst	0.2		Swamp constant
Floodplain subroutine			
beta	2	unitless	Fix the shape of the floodplain
floodcri	2000	mm	Potential height for which all the basin is flooded
flood_tcst	4	day/m	Flood reservoir property
Pond subroutine			
betap	0.5	unitless (0-1)	Ratio of the basin surface intercepted by ponds and the maximum surface of ponds
pondcri	2000	mm	Potential height for which all the basin is a pond
Endoheric lake subroutine			
maxevap_lake 23/10/2015	7.5/86400	mm/s	Maximum evaporation rate from lakes ORCHIDEE training course 74

The routing scheme

References

Where you can find informations about the routing module of ORCHIDEE

- Culson, N. Impact de l'irrigation sur le cycle de l'eau, Master Thesis, Université Pierre et Marie Curie, Paris VI, 2004
- D'Orgeval, T.; Polcher, J. & de Rosnay, P. Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, *Hydrol. Earth Syst. Sc.*, 2008, 12, 1387-1401
- De Rosnay, P.; Polcher, J.; Laval, K. & Sabre, M. Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula, Geophys. Res. Lett., 2003, 30, 1986
- Guimberteau, M. Analyse et modifications proposées de la modélisation de l'irrigation dans un modèle de surface, Master Thesis, Université Pierre et Marie Curie Paris VI-Laboratoire de Meteorologie Dynamique, Paris Jussieu, 2006
- > Guimberteau, M. Modélisation de l'hydrologie continentale et influences de l'irrigation sur le cycle de l'eau, Phd thesis, Université Paris VI, 2010
- Guimberteau, M.; Laval, K.; Perrier, A. & Polcher, J. Global effect of irrigation and its impact on the onset of the Indian summer monsoon, *Clim. Dynam.*, 2012, 39, 1329-1348
- Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.; Prigent, C.; Guyot, J.; Cochonneau, G.; Espinoza, J.; Filizola, N.; Fraizy, P.; Lavado, W.; De Oliveira, E.; Pombosa, R.and Noriega, L. & Vauchel, P. Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets, *Hydrol. Earth Syst. Sc.*, 2012, 16, 911-935
- Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J.; Peng, S.; De Weirdt, M. & Verbeeck, H. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, *Geosci. Model Dev.*, 2014, 7, 1115-1136
- Ngo-Duc, T.; Polcher, J. & Laval, K. A 53-year forcing data set for land surface models, J. Geophys. Res.-Atmos., 2005, 110, D06116
- Ngo-Duc, T. Modélisation des bilans hydrologiques continentaux: variabilité interannuelle et tendances. Comparaison aux observations., Phd Thesis, Université Paris VI, 2006
- Ngo-Duc, T.; Laval, K.; Polcher, J. & Cazenave, A. Contribution of continental water to sea level variations during the 1997--1998 El Niño--Southern Oscillation event: Comparison between Atmospheric Model Intercomparison Project simulations and TOPEX/Poseidon satellite data *J. Geophys. Res.-Atmos.*, 2005, 110
- Ngo-Duc, T.; Laval, K.; Ramillien, G.; Polcher, J. & Cazenave, A. Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data, *Water Resour. Res.*, 2007, 43, W04427
- Polcher, J. Les processus de surface à l'échelle globale et leurs interactions avec l'atmosphère, Habilitation à diriger des recherches, Université Paris VI, 2003
- Xuan-Tien, N.-V. Analyse de l'impact de l'irrigation en Amérique du Nord plaine du Mississippi sur la climatologie régionale, Master Thesis, Ecole polytechnique et Université de Paris VI, 2005

Publications relating to the routing module of ORCHIDEE

- Döll, P. & Siebert, S. A digital global map of irrigated areas, Kassel World Water Series 1, Center for Environmental Systems Research, Univ of Kassel, Germany, 1999, 23pp. plus appendix
- Döll, P. & Siebert, S. A digital global map of irrigated areas, ICID J., 2000, 49, 55-66
- > Döll, P. & Siebert, S. Global modeling of irrigation water requirements, Water Resour. Res., 2002, 38, 8-8
- Ducharne, A.; Golaz, C.; Leblois, E.; Laval, K.; Polcher, J.; Ledoux, E. & de Marsily, G. Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM, *J. Hydrol.*, 2003, 280, 207-228
- Fekete, B.; Vörösmarty, C. & Grabs, W. Global Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, WMO-Global Runoff Data Center Report 22.WMO GRDC, Global Runoff Data Centre, Koblenz, Germany, 1999
- > Hagemann, S. & Dumenil, L. A parameterization of the lateral waterflow for the global scale, Clim. Dynam., 1998, 14, 17-31
- Ledoux, E. Modélisation intégrée des écoulements de surface et des écoulements souterrains sur un bassin hydrologique, *Phd thesis*, 1980
- Miller, J.; Russell, G. & Caliri, G. Continental-scale river flow in climate models, J. Climate, 1994, 7, 914-928
- Siebert, S. & Döll, P. A digital global map of irrigated areas An update for Latin America and Europe, Kassel World Water Series 4, Center for Environmental Systems Research, Univ. of Kassel, Germany, 2001, 14pp. + appendix
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.; Frenken, K. & Feick, S. Development and validation of the global map of irrigation areas, *Hydrol. Earth Syst. Sc.*, 2005, 9, 535-547
- Vörösmarty, C.; Fekete, B.; Meybeck, M. & Lammers, R. Geomorphometric attributes of the global system of rivers at 30minute spatial resolution, *J. Hydrol.*, 2000, 237, 17-39
- Vörösmarty, C.; Fekete, B.; Meybeck, M. & Lammers, R. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages, *Global Biogeochem. Cy.*, 2000, 14, 599-621

Thank you