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Abstract We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically
active radiation (FAPAR) relative to eddy covariance fluxmeasurements for the optimization of parameters of the
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model
parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau
(deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements
of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products
derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour
l′Observation de la Terre)) andmedium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions.
We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate
the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a
degradation of themodel-data agreement with respect to NEE at the two sites. It is caused by the change in leaf
area required to fit themagnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however,
has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including
FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems,
which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads
to a model-data improvement across all variables similar to when each data stream is used independently,
corresponding, however, to different and likely improved parameter values.

1. Introduction

The terrestrial biosphere plays a key role in the control of the exchange of energy and matter (in particular
carbon and water) between the land surface and the atmosphere [Pielke et al., 1998]. The use of land surface
models (LSMs) that describe these main governing processes is of growing importance for improving our
understanding of the fate of the terrestrial ecosystems to environmental changes [Pitman, 2003; Sitch et al.,
2008]. LSMs rely on generic hypotheses and fixed parameterizations that were derived from a limited number
of observations, from the scale of individual plant organs to the scale of the plant community, and under
specific environmental conditions. Therefore, large uncertainties remain in their ability to reliably represent
the spatial and temporal variations of the ecosystem characteristics and the carbon cycle under current
or future climate conditions [Field et al., 1995; Friedlingstein et al., 2006; Wullschleger et al., 2014]. Data
assimilation techniques are increasingly used to reduce these uncertainties by improving themodel parameters
[Wang et al., 2001; Kaminski et al., 2013] while also highlighting possiblemodel deficiencies [Verbeeck et al., 2011;
Kuppel et al., 2012; Keenan et al., 2013].

In this context, in situ eddy covariance flux measurements have mainly been used to constrain the model
parameters controlling the processes of carbon and water exchange [Wang et al., 2001; Braswell et al.,
2005; Knorr and Kattge, 2005; Santaren et al., 2007; Moore et al., 2008; Williams et al., 2009; Groenendijk
et al., 2011; Kuppel et al., 2014]. Eddy flux data alone may not be sufficient to disentangle different concurrent
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 Challenges of multiple data stream assimilation  
à fluxes + satellite FAPAR 

are optimized (see Table 1: phenology parameters P3 minus LAIinit and LAIMAX). The assimilations are con-
ducted for Fontainebleau only as the evergreen site of Puechabon exhibits a too low seasonality.

Figure 4 illustrates how the normalization of FAPAR impacts the assimilation, compared to the previous
results with unnormalized (original) data. It shows the ratio of the RMSE between model and data after
and prior to the assimilation. Values less than (greater than) 1.0 show an improvement (degradation) in the
model with respect to the data. As expected, the improvement of the model-data agreement with respect
to original FAPAR is lower with the normalization, as the correction of the magnitude of the modeled
FAPAR is not sought. Nevertheless, the normalization still improves the modeled FAPAR (with the exception
of MERIS products), while it mostly reduces the degradation of the model-data fit for NEE. However, the
results still tend to indicate that it may not be possible to improve the modeled NEE as compared to the prior
simulations when assimilating FAPAR alone (either using original or normalized data). For LE data, the results
are more variable between the various FAPAR products as different errors may compensate each other (with
in situ FAPAR, the normalization improves the fit to LE, while it slightly degrades it for the satellite FAPAR).

3.3. Joint Assimilation of In Situ Flux Measurements and FAPAR Products

Figure 5 synthesizes the improvement/degradation in model-data fit (posterior to prior RMSE ratio) for
several observations (NEE, LE, and FAPAR) when considering successively the assimilation of in situ flux data
alone (scenario A1), FAPAR products alone (scenarios A3 and A4), or combining both flux and FAPAR data
(scenario A5). In order to make the best possible use of the FAPAR products, we have chosen to normalize
the time series for Fontainebleau (scenario A4, see section 4.2) and assimilate the original data for
Puechabon (scenario A3) given the small seasonal variations. Note that we also use the GPP as a diagnostic
(see section 2.1.1).

The joint assimilation of NEE and LE in situ flux measurements and FAPAR products (scenario A5) seen in
Figure 5 reconciles the two sources of information and the model, thus dealing with the inconsistencies
described above when only one data stream is assimilated. The optimized simulations improve the fit to both
the flux and FAPAR data compared to the a priori model simulation at both sites. It results in a similar model-
data agreement as that obtained when each data stream is assimilated independently. The assimilation of
both data streams together prevents the degradation seen for the variable not included in the individual data
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Figure 5. Ratio between the posterior and prior RMSE of fit, between the model simulations and different observed variables, considering assimilations performed
with (first column) only flux data (scenario A1), (left bars in the second to fourth columns) FAPAR data only (normalized data for Fontainebleau scenario A4-P4,
original data for Puechabon scenario A3-P3) and (right bars in the second to fourth columns) the combination of the two data streams (scenario A5).
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are optimized (see Table 1: phenology parameters P3 minus LAIinit and LAIMAX). The assimilations are con-
ducted for Fontainebleau only as the evergreen site of Puechabon exhibits a too low seasonality.

Figure 4 illustrates how the normalization of FAPAR impacts the assimilation, compared to the previous
results with unnormalized (original) data. It shows the ratio of the RMSE between model and data after
and prior to the assimilation. Values less than (greater than) 1.0 show an improvement (degradation) in the
model with respect to the data. As expected, the improvement of the model-data agreement with respect
to original FAPAR is lower with the normalization, as the correction of the magnitude of the modeled
FAPAR is not sought. Nevertheless, the normalization still improves the modeled FAPAR (with the exception
of MERIS products), while it mostly reduces the degradation of the model-data fit for NEE. However, the
results still tend to indicate that it may not be possible to improve the modeled NEE as compared to the prior
simulations when assimilating FAPAR alone (either using original or normalized data). For LE data, the results
are more variable between the various FAPAR products as different errors may compensate each other (with
in situ FAPAR, the normalization improves the fit to LE, while it slightly degrades it for the satellite FAPAR).

3.3. Joint Assimilation of In Situ Flux Measurements and FAPAR Products

Figure 5 synthesizes the improvement/degradation in model-data fit (posterior to prior RMSE ratio) for
several observations (NEE, LE, and FAPAR) when considering successively the assimilation of in situ flux data
alone (scenario A1), FAPAR products alone (scenarios A3 and A4), or combining both flux and FAPAR data
(scenario A5). In order to make the best possible use of the FAPAR products, we have chosen to normalize
the time series for Fontainebleau (scenario A4, see section 4.2) and assimilate the original data for
Puechabon (scenario A3) given the small seasonal variations. Note that we also use the GPP as a diagnostic
(see section 2.1.1).

The joint assimilation of NEE and LE in situ flux measurements and FAPAR products (scenario A5) seen in
Figure 5 reconciles the two sources of information and the model, thus dealing with the inconsistencies
described above when only one data stream is assimilated. The optimized simulations improve the fit to both
the flux and FAPAR data compared to the a priori model simulation at both sites. It results in a similar model-
data agreement as that obtained when each data stream is assimilated independently. The assimilation of
both data streams together prevents the degradation seen for the variable not included in the individual data
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Figure 5. Ratio between the posterior and prior RMSE of fit, between the model simulations and different observed variables, considering assimilations performed
with (first column) only flux data (scenario A1), (left bars in the second to fourth columns) FAPAR data only (normalized data for Fontainebleau scenario A4-P4,
original data for Puechabon scenario A3-P3) and (right bars in the second to fourth columns) the combination of the two data streams (scenario A5).
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are optimized (see Table 1: phenology parameters P3 minus LAIinit and LAIMAX). The assimilations are con-
ducted for Fontainebleau only as the evergreen site of Puechabon exhibits a too low seasonality.

Figure 4 illustrates how the normalization of FAPAR impacts the assimilation, compared to the previous
results with unnormalized (original) data. It shows the ratio of the RMSE between model and data after
and prior to the assimilation. Values less than (greater than) 1.0 show an improvement (degradation) in the
model with respect to the data. As expected, the improvement of the model-data agreement with respect
to original FAPAR is lower with the normalization, as the correction of the magnitude of the modeled
FAPAR is not sought. Nevertheless, the normalization still improves the modeled FAPAR (with the exception
of MERIS products), while it mostly reduces the degradation of the model-data fit for NEE. However, the
results still tend to indicate that it may not be possible to improve the modeled NEE as compared to the prior
simulations when assimilating FAPAR alone (either using original or normalized data). For LE data, the results
are more variable between the various FAPAR products as different errors may compensate each other (with
in situ FAPAR, the normalization improves the fit to LE, while it slightly degrades it for the satellite FAPAR).

3.3. Joint Assimilation of In Situ Flux Measurements and FAPAR Products

Figure 5 synthesizes the improvement/degradation in model-data fit (posterior to prior RMSE ratio) for
several observations (NEE, LE, and FAPAR) when considering successively the assimilation of in situ flux data
alone (scenario A1), FAPAR products alone (scenarios A3 and A4), or combining both flux and FAPAR data
(scenario A5). In order to make the best possible use of the FAPAR products, we have chosen to normalize
the time series for Fontainebleau (scenario A4, see section 4.2) and assimilate the original data for
Puechabon (scenario A3) given the small seasonal variations. Note that we also use the GPP as a diagnostic
(see section 2.1.1).

The joint assimilation of NEE and LE in situ flux measurements and FAPAR products (scenario A5) seen in
Figure 5 reconciles the two sources of information and the model, thus dealing with the inconsistencies
described above when only one data stream is assimilated. The optimized simulations improve the fit to both
the flux and FAPAR data compared to the a priori model simulation at both sites. It results in a similar model-
data agreement as that obtained when each data stream is assimilated independently. The assimilation of
both data streams together prevents the degradation seen for the variable not included in the individual data
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Figure 5. Ratio between the posterior and prior RMSE of fit, between the model simulations and different observed variables, considering assimilations performed
with (first column) only flux data (scenario A1), (left bars in the second to fourth columns) FAPAR data only (normalized data for Fontainebleau scenario A4-P4,
original data for Puechabon scenario A3-P3) and (right bars in the second to fourth columns) the combination of the two data streams (scenario A5).
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are optimized (see Table 1: phenology parameters P3 minus LAIinit and LAIMAX). The assimilations are con-
ducted for Fontainebleau only as the evergreen site of Puechabon exhibits a too low seasonality.

Figure 4 illustrates how the normalization of FAPAR impacts the assimilation, compared to the previous
results with unnormalized (original) data. It shows the ratio of the RMSE between model and data after
and prior to the assimilation. Values less than (greater than) 1.0 show an improvement (degradation) in the
model with respect to the data. As expected, the improvement of the model-data agreement with respect
to original FAPAR is lower with the normalization, as the correction of the magnitude of the modeled
FAPAR is not sought. Nevertheless, the normalization still improves the modeled FAPAR (with the exception
of MERIS products), while it mostly reduces the degradation of the model-data fit for NEE. However, the
results still tend to indicate that it may not be possible to improve the modeled NEE as compared to the prior
simulations when assimilating FAPAR alone (either using original or normalized data). For LE data, the results
are more variable between the various FAPAR products as different errors may compensate each other (with
in situ FAPAR, the normalization improves the fit to LE, while it slightly degrades it for the satellite FAPAR).

3.3. Joint Assimilation of In Situ Flux Measurements and FAPAR Products

Figure 5 synthesizes the improvement/degradation in model-data fit (posterior to prior RMSE ratio) for
several observations (NEE, LE, and FAPAR) when considering successively the assimilation of in situ flux data
alone (scenario A1), FAPAR products alone (scenarios A3 and A4), or combining both flux and FAPAR data
(scenario A5). In order to make the best possible use of the FAPAR products, we have chosen to normalize
the time series for Fontainebleau (scenario A4, see section 4.2) and assimilate the original data for
Puechabon (scenario A3) given the small seasonal variations. Note that we also use the GPP as a diagnostic
(see section 2.1.1).

The joint assimilation of NEE and LE in situ flux measurements and FAPAR products (scenario A5) seen in
Figure 5 reconciles the two sources of information and the model, thus dealing with the inconsistencies
described above when only one data stream is assimilated. The optimized simulations improve the fit to both
the flux and FAPAR data compared to the a priori model simulation at both sites. It results in a similar model-
data agreement as that obtained when each data stream is assimilated independently. The assimilation of
both data streams together prevents the degradation seen for the variable not included in the individual data
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Abstract We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically
active radiation (FAPAR) relative to eddy covariance fluxmeasurements for the optimization of parameters of the
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model
parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau
(deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements
of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products
derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour
l′Observation de la Terre)) andmedium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions.
We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate
the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a
degradation of themodel-data agreement with respect to NEE at the two sites. It is caused by the change in leaf
area required to fit themagnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however,
has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including
FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems,
which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads
to a model-data improvement across all variables similar to when each data stream is used independently,
corresponding, however, to different and likely improved parameter values.

1. Introduction

The terrestrial biosphere plays a key role in the control of the exchange of energy and matter (in particular
carbon and water) between the land surface and the atmosphere [Pielke et al., 1998]. The use of land surface
models (LSMs) that describe these main governing processes is of growing importance for improving our
understanding of the fate of the terrestrial ecosystems to environmental changes [Pitman, 2003; Sitch et al.,
2008]. LSMs rely on generic hypotheses and fixed parameterizations that were derived from a limited number
of observations, from the scale of individual plant organs to the scale of the plant community, and under
specific environmental conditions. Therefore, large uncertainties remain in their ability to reliably represent
the spatial and temporal variations of the ecosystem characteristics and the carbon cycle under current
or future climate conditions [Field et al., 1995; Friedlingstein et al., 2006; Wullschleger et al., 2014]. Data
assimilation techniques are increasingly used to reduce these uncertainties by improving themodel parameters
[Wang et al., 2001; Kaminski et al., 2013] while also highlighting possiblemodel deficiencies [Verbeeck et al., 2011;
Kuppel et al., 2012; Keenan et al., 2013].

In this context, in situ eddy covariance flux measurements have mainly been used to constrain the model
parameters controlling the processes of carbon and water exchange [Wang et al., 2001; Braswell et al.,
2005; Knorr and Kattge, 2005; Santaren et al., 2007; Moore et al., 2008; Williams et al., 2009; Groenendijk
et al., 2011; Kuppel et al., 2014]. Eddy flux data alone may not be sufficient to disentangle different concurrent
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Challenges of multiple data stream assimilation 
à Toy model examples 

MacBean,	N.,	P.	Peylin,	F.	Chevallier,	M.	Scholze	and	G.	Schürmann	(2016),	Consistent	assimilation	of	multiple	data	streams	in	a	carbon	
cycle	data	assimilation	system,	Geosci.	Model	Dev.,	9,	3569-3588.		

Two toy models: 

1)  Simple C cycle model (2 pools) 

s1	

s2	

F(t)	

k1s1	
k2s2s	

Ø  Synthetic DA experiment with 
“pseudo” observations 
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Challenges of multiple data stream assimilation 
à bias in obs not accounted for in error covariance matrix 

MacBean,	N.,	P.	Peylin,	F.	Chevallier,	M.	Scholze	and	G.	Schürmann	(2016),	Consistent	assimilation	
of	multiple	data	streams	in	a	carbon	cycle	data	assimilation	system,	Geosci.	Model	Dev.,	9,	
3569-3588.		

Simple C cycle (2 pools) à bias in s2 variable 
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Challenges of multiple data stream assimilation 
à inversions assumptions (e.g. linear vs non linear models) 

Ø  You will get similar issues if you do not use adhere to the 
assumptions of the inversion algorithm… 

à e.g. if your inversion algorithm is meant for linear models 
(which many of the computationally efficient ones are) then you 
may get incorrect optimized parameters that ***look*** like 
they are well constrained from the uncertainty reduction. 

Ø  Read more here: J MacBean,	N.,	P.	Peylin,	F.	Chevallier,	M.	Scholze	and	G.	Schürmann	
(2016),	Consistent	assimilation	of	multiple	data	streams	in	a	carbon	
cycle	data	assimilation	system,	Geosci.	Model	Dev.,	9,	3569-3588.		
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Parameter sensitivity study 

Ø  Motivation: Need to figure out 
parameters to which variables (e.g. 
NEE, soilC) are most sensitive: 

 i) to know which parameters to 
 optimize (reduce computational 
 load) for which variables 

 ii) to know relationships between 
 parameters and generally how 
 model is working 

 

Ø  Propose: global scale SA (or at least 
many grid points over many different 
PFTs/biomes) – e.g. Morris method 

Ø  Will get help from Indiana University 
software engineers as part of the 
Research Technologies “Deep 
Learning” division (who have a lot of 
expertise in this type of algorithm 
and in optimizing “big” codes). 

Ø  Scripts will be available for future SA 
studies 

Ø  Would like collaborators from the 
ORCHIDEE Project Group (and 
associated postdocs/PhD students 
etc) to help with: 

 - Define which parameters to 
 include and their bounds (max, 
 min value and PDF if appropriate 
 à this is a crucial part of the study 
 (and hopefully useful for the group 
 as a whole) 

 - Design of study 

 - How to analyze the results of the 
 SA… 
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Challenges of multiple data stream assimilation 
à Toy model examples 

MacBean,	N.,	P.	Peylin,	F.	Chevallier,	M.	Scholze	and	G.	Schürmann	(2016),	Consistent	assimilation	of	multiple	data	streams	in	a	carbon	
cycle	data	assimilation	system,	Geosci.	Model	Dev.,	9,	3569-3588.		

Two toy models: 

Simple C cycle model (2 pools) 

s1	

s2	

F(t)	

k1s1	
k2s2
s	


