Photosynthesis and phenology developments

- → Estimating the spatial and temporal variability of photosynthesis parameters: Implementation of the **photosynthesis coordination theory**
- → Representing an explicit phenology for evergreen coniferous: Implementation of a **new phenology module that represent needle budburst and senescence**

The coordination of leaf photosynthesis

- → The two main photosynthesis parameters in ORCHIDEE:
 - The maximal rate of CO2 assimilation limited by CO₂: Vcmax
 - The maximal rate of CO2 assimilation limited by light : **Jmax**
- → Vcmax and Jmax vary spatially and temporally
- →Vcmax and Jmax are strongly correlated
- →But Vcmax and Jmax are constant for each PFT in ORCHIDEE

The coordination of leaf photosynthesis

$$W_{\rm c} = \frac{C V_{\rm c \, max}}{C + K_{\rm c} \left(1 + O/K_{\rm o}\right)_{,}}$$

$$W_{j} = \frac{J}{\left(4 + 8\Gamma^{*}/C\right)},$$

$$J = \frac{4 \cdot \alpha \cdot PPFD}{\left(1 + \left(4 \cdot \alpha \cdot PPFD\right)^{2} / \left(J_{\text{max}}^{r} \cdot \Phi_{J_{\text{max}}}\right)^{2}\right)^{1/2}}$$

$$J_{\mathrm{max}}^{\mathrm{r}}\!=\!J_{\mathrm{fac}}^{\mathrm{atc}}\!\cdot\!V_{\mathrm{C}_{\mathrm{max}}}^{\mathrm{r}}$$

- →Initially Implemented in ORCHIDEE TRUNK v.1.9.6
- →Vcmax and Jmax estimated from light, humidity, temperature and CO₂

Results Comparison with trait observations

Interpolation from global observations

Trait simulated with the coordination (2000-2010)

Results Comparison with GPP observations

20

0

latitude (°N)

40

60

80

-20

-40

0.0

-60

e. FLUXNET observations f. Jung et al. 2011

REF = ORCHIDEE TRUNK
COR= coordination

Average 2000-2010

	Global GPP
REF	145 PgC y ⁻¹
COR	165 PgC y ⁻¹
Literature	120 -170 PgC y ⁻¹

Estimation of leaf CN variability

- →Now implemented in ORCHIDEE-CNP
- →Used to estimate leaf CN target

$$V_{\mathrm{C}_{\mathrm{max}}}^{\mathrm{r}} = k_3^{\mathrm{ac}} \cdot N_{\mathrm{pa}}$$

→Current work: Test the coordination hypothesis on FACE sites at eCO₂

Representing an explicit phenology for coniferous

- No explicit representation of needle budburst nor senescence for evergreen species
- Overestimation of the growing season length (~335gC m⁻² y⁻¹; Richardson et al., 2012)
- Impact on needle age, photosynthesis efficiency, LAI, needle turnover, litter, etc....

Needle budburst

- 9 different budburst models fitted against observations from the French longterm monitoring network RENECOFOR (ONF)
- 6 dominant species
- The 9 models were implemented in ORCHIDEE trunk v.1.9.6
- 3 classes of model: GDD (spring forcing), NCD-GDD (chilling-forcing) and photoperiod (day length)

Needle Senescence

- Empirical logistic model derived from needle survivorship curves
- Model function of the needle lifespan
- In ORCHIDEE, continuous senescence all over the year

$$S(t) = \frac{1}{1 + exp(4\mu \cdot (\lambda - t) + 2)}$$

$$log(\mu) = 1.5094 - 1.3834 \times log(age_{crit}); R^2 = 0.92$$

$$\lambda = 0.6291 + 0.4294 \times age_{crit}; R^2 = 0.94$$

Modification of ORCHIDEE

Budburst:

All needle cohorts are represented

The new biomass is allocated to the new cohort only

At the end of the year cohort n=cohort n+1, etc....

Modification of Vcmax efficiency: Vcmax is optimal after 3 month and start to decline after 1y even for species with a needle lifespan of 10 years (Spruce)

Calibrated for all species, groups of species and each species separately

<u>Senescence</u>:

Continuous

Applied to each cohort

Calibrated for all species pooled together

Better representation of LAI dynamics

Better representation of LAI dynamics

Results

- 1) No real differences between the 3 types of model
- 2) Better representation of LAI dynamics
- 3) Better representation of litterfall (from -57 to +17 % in average)
- 4) Increase of GPP by 15% due to the faster renewal of needles compared to the standard version (higher Vcmax for young needles)