Cleaning of the Code (Carbone & general)

- > JARVIS Photosynthesis
- Treatment of NO_BIO: Should we keep the Normalisation of Veget_max?
 Or can we have frac_no_bio as a "PFT"?
- ➤ DYNAMIC versus CONSTANT mortality ?
 Should we keep only one mortality (Trunk)
- ➤ FIRE_DISABLE (no fire) related to the "old fire module only": Suggestion: keep FIRE with DGVM only and no fire in "static" simulation?
- WATCHAOUT?
- > ????

Potential issue with Bare soil fraction!

- ➤ Bare soil in ORCHIDEE comes from :
 - >PFT 1 (max_veget_frac_1)
 - >PLUS other PFTs with : BS = Exp (- LAI / 2.)
- ➤ Formulation established for Radiative Transfert, with spherical random-position leaves and sun at the Zenith!
 - → Probably leads to too large BS fraction

$$LAI = 1 \rightarrow BS = 60\%$$

$$LAI = 2 \rightarrow BS = 37 \%$$

➤ We should probably change the "clumping" factor (2) by a smaller number ?

EXP (-LAI / 2)

EXP (-LAI / 1)

Tiling issues: What is sub-grid cell variability?

(Melton & Arora, 2014)

Posing the question...

Differences of 5% between grid averaged heat fluxes when mosaic approach and composite approach are compared (Li & Arora, 2012; Melton & Arora, 2014)

Differences of ~30-40% between grid averaged NPP LAI, Soil Carbon and vegetation biomass (Li & Arora, 2012; Melton & Arora, 2014)

For high within cell heterogeneity, differences are greater in both instances

Mosaic or composite - which is correct?

Not yet verified on a large regional or global scale

(Li & Arora, 2012)

Composite

Grid averaged Evergreen needleleaf trees C₃ grasses

Energy fluxes	M	Composite approach		
	Grid averaged	Evergreen needleleaf trees	C ₃ grasses	Grid-averaged
Net radiation (W m ⁻²)	51.0	64.2	37.8	53.1
Net radiation over growing season (W m ⁻²)	86.7	102.0	71.3	90.0
Latent heat flux (W m ⁻²)	21.2	24.7	17.7	23.3
Sensible heat flux (W m ⁻²)	28.5	37.9	19.0	28.4

Mosaic

Composite

Grid averaged
Evergreen needleleaf trees
C₃ grasses

Carbon quantities	Mosaic approach			Composite approach		
	Grid- averaged	Evergreen needleleaf trees	C ₃ grasses	Grid- averaged	Evergreen needleleaf trees	C ₃ grasses
NPP (g C m^{-2} yr ⁻¹)	234.1	355.0	113.3	316.8	292.5	341.1
Max. LAI $(m^2 m^{-2})$	1.8	2.8	0.9	2.3	2.4	2.2
Soil carbon mass (Kg C m ⁻²)	6.1	7.0	5.2	8.9	5.5	12.2
Vegetation biomass (Kg C m ⁻²)	2.5	4.9	0.2	2.1	3.7	0.6

Options for ORCHIDEE in the sub-grid

option 1 (current default)

- one global energy budget
- one snow budget
- three soil hydrology schemes

option 2 (maximum complexity)

- one global energy budget per PFT
- one snow budget per PFT
- one soil hydrology scheme per PFT

option 3 (intermediate complexity)

- one global energy budget per PFT grouping
- one snow budget per PFT grouping
- one soil hydrology scheme per PFT grouping

Potential questions?

- Should we have other intermediate cases?
- Do we want to separate Energy and Water "tiles"?
 (Several energy budget for 1 soil Water column? Or reverse?
- Should we have different "grouping" for different regions?
- How to implement the "grouping" in option 3?
 - one flag for the different options
 - how to define the grouping?
- Later: possibility to have several Atmospheric columns
- Should it be similar for the soil Carbon/Nitrogen?