# Recent efforts for better representing bare soil evaporation (BSE) in ORCHIDEE

A. Ducharne, A. Tootchi, N. Vuichard











#### Context

 Shifting from the 2-layer hydrological scheme to the 11-layer one increases latent heat flux for some

PFT's

That is due to the evaporative component

 It acts at winter time for deciduous trees when no canopy coverage



US-Bar - Temperate deciduous forest Servettaz, 2014 (L3 report)









## 2-layer: BSE depends on soil resistance

r<sub>sol</sub> is the main control of water stress onto bare soil evaporation

$$E_{sol} = \rho U_s \frac{q_{sat}(T_s) - q_{air}}{r_a + r_{sol}}$$

r<sub>sol</sub> depends on the dry soil height of PFT 1

$$r_{\text{soil}} = r_{\text{soil}}^{\text{m}} \left( h_{\text{dry}} + \frac{1}{100(h_{\text{tot}} - h_{\text{dry}})^2} \right)$$

1 cm of dry soil exerts  $r_{soil} = 330 \text{ s/m}$ 









# 11-layer: BSE controlled by demand/supply

 The principle is that soil evaporation follows a supply/ demand approach

$$E_{soil} = \min(E^*_{pot}, Q_{up})$$

 In practice, this relies on dummy integrations of the water diffusion scheme





#### Work on soil resistance

- Work performed by A. Tootchi (Master 2)
- Testing 2 formulas for E<sub>soil</sub> with a soil resistance

| Туре                         | Reference                               | Formulation                                                                                                                        |  |
|------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Standard ORCHIDEE (11 layer) | Several references of the ORCHIDEE team | $E_{soil} = \rho_a \; \frac{1}{r_a} [q_s(T_w) - q_a]$                                                                              |  |
| Resistance terms             | Best et al, 2011                        | $E_{soil} = \rho_a \frac{1}{r_a + r_s} [q_s(T_s) - q_a]$ $r_s = 100 \left(\frac{\theta_c}{\theta_1}\right)^2$                      |  |
|                              | Sellers et al, 1992                     | $E_{soil} = \rho_a \frac{1}{r_a + r_s} [q_s(T_s) - q_a]$ $r_s = e^{8.206 - 4.255 \frac{\theta_1 - \theta_r}{\theta_s - \theta_r}}$ |  |









#### Tests at Fluxnet sites

#### Over a deciduous forest









#### Bias on Latent heat at winter time

| PFT                                  | Station | Winter LE Fluxnet observation (W/m <sup>2</sup> .s) | LE winter bias (W/m <sup>2</sup> .s) |                  |                     |
|--------------------------------------|---------|-----------------------------------------------------|--------------------------------------|------------------|---------------------|
|                                      |         |                                                     | ORCHIDEE                             | Best et al, 2011 | Sellers et al, 1992 |
| Temperate deciduous broadleaf forest | DK-Sor  | 2.3                                                 | 36.6                                 | 8.8              | -1.0                |
|                                      | FR-Hes  | 1.8                                                 | 52.9                                 | 17.1             | 2.4                 |
|                                      | IT-Col  | 2.8                                                 | 2.5                                  | -1.3             | -4.7                |
|                                      | US-WCr  | 1.8                                                 | 25.0                                 | 16.4             | 9.6                 |
|                                      | US-Ha1  | 7.4                                                 | 4.6                                  | -3.4             | -11.9               |
| Cropland C4                          | US-Ne1  | 10.2                                                | 2.4                                  | 1.8              | 0.3                 |
|                                      | US-Bo1  | 16.0                                                | 38.7                                 | 33.1             | 21.2                |
| Grassland C3                         | HU-Bug  | 6.2                                                 | -4.0                                 | -4.5             | -7.4                |
|                                      | US-Fpe  | 3.6                                                 | 3.4                                  | -1.6             | -10.0               |
|                                      | US-Var  | 21.2                                                | 19.7                                 | 17.3             | 13.5                |

| Improved     |  |
|--------------|--|
| Deteriorated |  |









# Work on E<sub>pot</sub> via the aerodynamic resistance

$$E_{pot} = \rho \frac{q_{sat}(T_s) - q_{air}}{r_a}$$

$$r_a = \frac{1}{\kappa^2 u_a} \left[ \ln \left( \frac{z - d_0}{z_{0m}} \right) \ln \left( \frac{z - d_0}{z_{0v}} \right) \right]$$

#### where

- z is measurement height (m)
- u<sub>a</sub> is wind speed (ms<sup>-1</sup>)
- k von Karman's constant
- d<sub>0</sub> is displacement height

 z<sub>0m</sub> and z<sub>0v</sub> the roughness heights for momentum and water vapor transfer

- ⇒One assumes that the trunk and the branches impact as a full canopy coverage on z<sub>0</sub>
- Search for literature supporting that z<sub>0</sub> varies with LAI
  - LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT Ershadi et al. (2015) uses the formulation of Su et al. (2015) November 19<sup>th</sup>





# Evaluation at site level (1)











# Evaluation at site level (2)











# Evaluation at site level (2)









### Conclusion & Perspectives

- Complementary works performed for reducing bare soil evaporation
  - Soil resistance
  - Aerodynamic resistance via a dynamic roughness height
- Accounting for a roughness height varying with the canopy coverage
  - can correct alone for the bias on evaporation
  - a soil resistance can be added but it is not needed
- Studies in arid regions could be envisaged or under dried conditions





