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Introduction
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Anthropogenic emissions are 
partly taken up by natural carbon 
sinks : ocean and terrestrial 
biosphere.

Land sink is much more variable.

What does CO2 become 
once in the atmosphere ?



  

Introduction – A main tool : IPSL coupled model
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► Allows for the study of specific processes separately.

► Tool for future predictions.



  

Introduction – An international framework : C4MIP
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► International project (branch of CMIP) aiming to improve 
modelling and understanding of climate-carbon cycle 
interactions.

► Similar working frame and protocols to allow for 
comparison and statistical treatment.

► Reduce uncertainties on carbon-climate interactions and 
future carbon cycle projections.

► Last exercise : CMIP6 (2019-2020) gathering 86 models. 
11 models for C4MIP among which IPSL-CM6A-LR.



  

Introduction – Comparison to estimates
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► Net carbon flux (NBP) is consistent with data-driven estimates both 
for land and ocean.

► NBP increases : sinks carbon uptake increases.



  

Introduction – Comparison to estimates
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► Net carbon flux (NBP) is consistent with data-driven estimates both 
for land and ocean.

► NBP increases : sinks carbon uptake increases.

How will carbon sinks 

evolve in the future ?
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Climate-Carbon feedbacks – C4MIP simulations

Δ = actual - 1850

► Biogeochemical feedback (β, PgC.ppm-1) enhances terrestrial sink of carbon.

► Climate feedback (γ, PgC.K-1) weakens terrestrial sink of carbon.

9



  

Climate-Carbon feedbacks – C4MIP simulations
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► Biogeochemically-coupled 
(BGC) simulation to study the 
fertilization effect.

► Radiatively-coupled (RAD) 
simulation to study the climate 
effect. 

► 2 additional simulations on the top of the fully coupled (COU) simulation

BGC RAD



  

Climate-Carbon feedbacks – CMIP5
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► CMIP5 (2013) : high biogeochemical 
effect (βL) in IPSL model…

► At high CO2 concentrations, the 
limiting factor for vegetation growth 
is nutrients availability 
⇒ nutrients limitation effect.

Solution : explicitly introduce nutrients cycles into the model.

[Aroral et al. (2020)]
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CMIP5

...due to lack of nutrients representation ?
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► CMIP6 (2019) : explicit N cycle not ready in IPSL model
 ⇒ Vcmax parametrization [Sellers et al. (1996)] to mimic nutrient limitation 

and artificially decrease β at high CO2. 

► Vcmax is a key parameter for GPP/photosynthesis (Vcmax   GPP )➚ ⇒ ➚
 ⇒ Vcmax controls photosynthesis and land carbon capture. 

Vcmax=Vcmax25⋅[1−coef_down_reg⋅log(
CO2

380 ) ]

► Parametrization calibrated with FACE experiments [Norby et al. (2010)] 
⇒ until 600ppm CO2.

P1 : ⇒ too strong Vcmax 
decrease at high CO2 

Vcmax=Vcmax25⋅[1−coef_down_reg⋅(
CO2−380

CO2+coef_curve )]P2 :

Climate-Carbon feedbacks – CMIP6
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Vcmax=Vcmax 25⋅[ 1−coef_down_reg⋅(
CO2−380

CO2+coef_curve ) ]P2 :

Climate-Carbon feedbacks – Vcmax calibration

Old (P1)

Calibration of the parameters 
“coef_down_reg” & “coef_curve” 
to have :

► The same Vcmax as P1 over 
the historical period (280 and 380 
ppm)

► A smaller reduction of Vcmax 
with high CO2 concentration 
(above 800 ppm)

► Vcmax is PFT dependent



  

Idealized simulations – Comparison to C4MIP models

► Overall reduction of global β 
compared to CMIP5.

From here (CMIP5)…

… to there (CMIP6 with P1).

14

[Aroral et al. (2020)]

► Global β in the range if 
models with explicit N cycle.
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► GPP has been reduced in CMIP6 to 
get closer to data-driven estimates.
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Idealized simulations – Effect of parametrization on GPP

► CMIP5 : no parametrization 
 ⇒ highest GPP sensitivity to 

CO2 increase.

► CMIP6 : 

- before 600ppm : no difference

- after 600 ppm : influence of 
parametrization

- GPP sensitivity to CO2 
increase is higher for P2 than 
P1 (but lower than CMIP5). 

► Vcmax parametrization has a 
direct consequence on GPP, i.e. 
on land ability to take up carbon.

16



  

Idealized simulations – Effect of parametrization on β
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► Same shape for both parametrizations : maximum β around 500ppm.

► At low CO2 : same β for both parametrizations.
At high CO2 : β is higher for P2.

β =
ΔCL
ΔCO2

=
ΔCVeg
ΔCO2

+
ΔCSoil+Litter

ΔCO2

=Δτ VegΔCUE
ΔGPP
ΔCO2

+Δτ Soil+Litter

ΔRH
Δ LF

Δ LF
ΔCO2

►► Global fertilization effect          : 

- higher for P2 than P1.

- decreases with increasing CO2.

ΔGPP
ΔCO2

Impact of parametrization



  

Idealized simulations – Comparison to C4MIP models

► Models with explicit N cycle 
have lower β due to N limitation 
effect at high CO2 
concentrations.

► IPSL model is close to 
models with explicit N cycle :

 ⇒ the global biogeochemical 
response is consistent with 
more advanced models.

⇒ Vcmax parametrization is 
efficient to get a correct global β 
effect.

18

CMIP6



  

Idealized simulations – Comparison to C4MIP models

► Models with explicit N cycle 
have lower β at all latitudes.

► IPSL model is still in the 
range of models with explicit N 
cycle with a slight β 
overestimation at mid to high 
latitudes.

► Difference between P1 and 
P2 in equatorial and tropical 
regions…

19

CMIP6 at 4xCO2

…not consistent with N limitation.

► N limitation in mid-to-high latitudes
► But P limitation in tropical and 
equatorial regions.

[Ziehn et al. (2021)]



  

Idealized simulations – Regional differences

► ΔGPP>0 in almost all regions : 
fertilization effect.

► Highest GPP increase in 
tropical and equatorial regions.

► Higher GPP increase for P2 
than for P1 ⇒ higher fertilization 
effect for P2.

20

P1 (4xCO2)

► GPP difference P2-P1 is also 
higher in equatorial and tropical 
regions  ⇒ parametrization acts 
mainly through these regions.

Conclusion : the global land sensitivity to elevated CO2 
concentration comes from equatorial and tropical regions where 

ecosystems are more sensitive to the parametrization.
⇒ not consistent with other models having explicit N cycle.

P2 (4xCO2)
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Historical and scenarios simulations – Presentation

► Historical data combined to 
SSP-585 (high-emission) 
scenario.

► Atmospheric CO2 :
• 2050  ⇒ 2xCO2

    • 2100  ⇒ 4xCO2

► All forcings : CO2, other 
greenhouse gas, aerosols, land-
use change.

► 2 simulations : with or without 
land-use change.

22



  

Historical and scenarios simulations – Comparison to 
idealized simulations

► Smaller β for P1 than P2 in 
each simulation (other forcings 
do not change the order in SSP-
585).

► Higher β for idealized 
simulations (higher fertilization 
effect) than SSP-585 :

- influence of other GHG and 
aerosols (not spatially uniform).

- difference in “speed of 
increase” of CO2 concentration 
(kinetic effect). 

- land-use change (deforestation) 
decreases land carbon stocks.

23

► Land-use change causes the biggest β decrease (25% to 40% 
of its value) due to loss in terrestrial carbon stocks.

► Other GHG, aerosols and kinetic effect are responsible for a 
smaller β decrease than cannot be easily interpreted.

 4xCO2 



  

Historical and scenarios simulations – What’s next ?

► Design of new simulations to 
disentangle contributions to β :

- CO2 forcing alone with 
future scenario concentrations.
- Land-use change forcing 
alone.
- Other GHG+aerosols 
forcing alone.

► Better understanding and 
quantification of different forcings 
contributions for future land 
carbon uptake.

► Identification of main causes to 
β decrease will allow taking 
relevant decisions
⇒ societal and political impact. 

24
► Importance of parametrization only for high-emission scenarios.  



  

Historical and scenarios simulations – Compatible emissions

► At 2xCO2 :

- CO2 concentration is lower 
than 600ppm : no significant 
difference between P1 and P2.

- ~30% of CO2 emissions are 
captured by carbon sinks.

- surprisingly γ>0.

► At 4xCO2 :

- land sink remained stable 
for P2

- land becomes a carbon 
source for P1 : negative climate 
contribution dominates the 
fertilization effect.

- ~15% to 20% of CO2 
emissions are taken up by 
carbon sinks. 25

SSP-585
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Conclusion – Limits of Vcmax parametrization

► GPP evolution for models with N 
cycle is very different  ⇒ other 
processes than nutrients limitation 
govern land response to CO2 
increase and are not represented 
by a simple parametrization :

- Heterotrophic respiration, water 
cycle (soil moisture), carbon 
allocation...are affected by N cycle.

- Wrong regional representation : 
miss spatial distribution of N 
(agricultural areas...).

- Only partial response of C cycle 
to climate change : increase in N 
mineralization (boosting vegetation 
productivity) not represented.

27
⇒ Importance of integrating nutrients cycles to the IPSL model.



  

Conclusion – Is IPSL model with downregulation efficient to 
simulate N limitation ?

► YES if we aim to represent :

- the global β effect and thus the global biogeochemical feedback.

- historical evolution of global GPP and NBP.

► NO if we aim to represent :

- the regional β effect and local biogeochemical feedbacks (P1 is even 
better than P2 in this case).

- processes involving carbon-nitrogen interactions.

28



  

Conclusion – Limits of model validation

► Data-driven estimates of 
GPP used for validation.

► GPP is similar for P1 and P2 
(“low” CO2 values) and 
consistent with observations.

► Limits :

- high uncertainty on 
measurements (~25% on each 
side).

- too low CO2 values to 
separate P1 from P2.

- different climate in the 
model and the observations.

29

⇒ Important ways of improvement : reduce observation uncertainties 
and better constrain models.

~400 ppm



  

Conclusion

► However, the main lines of future climate and carbon cycle 
evolutions are known and models uncertainties should not be used to 
delay political action. 

►Regardless the precision of Earth System Models, reducing 
anthropogenic carbon emissions is crucial and must be a priority.

30

Thank you for your attention !



  

Backup slides



  

Model – Carbon pools and fluxes
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► Carbon pools : where carbon is stored.
Carbon fluxes : transfer between pools.

► Land carbon capture : GPP
 Land carbon release : RH, RA, fires, anthropogenic disturbance…

Net carbon flux : NBP = GPP – RH – RA - disturbances

Common variables 
among C4MIP models



  

Climate-Carbon feedbacks – Framework
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dCO2 , Atm

dt
+
dCL
dt

+
dCO
dt

=E

∫
dCL '

dt
=γ LΔT '+β LΔCO2 , Atm

'

∫
dCL

+

dt
=γ LΔT

+

∫
dCL

*

dt
=γ LΔT

*
+β LΔCO2 , Atm

'

► Carbon source/sinks balance :

Sinks Source

► Coupled carbon cycle – climate feedback parameters :

RAD

COU

BGC

γ L=
ΔC L

'
−ΔCL

*

ΔT '
<0

β L=
ΔCL

*

ΔCO2 , Atm
'

>0

BGC-COU 
approach

ΔT *
≈0

C-Climate Biogeochemical
(often)

Linearity assumption



  

Climate-Carbon feedbacks – Carbon land capture
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► Idealized 1%CO2/yr increase simulations in COU, BGC and RAD modes.
⇒ Framework to calculate β and γ.

► BGC shows the fertilization 
effect by increasing CO2 
concentration : βL>0.

► RAD shows the influence of 
climate change on land carbon 
capture : γL<0.

► COU shows the combination 
of fertilization and climate 
change effects. 

COU differs from the sum of BGC and RAD : linear combination 
is a debatable assumption.



  

Results – Compatible emissions (CE)

► Compatible emissions = change in C pools : 
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∫1850

t
E dt=ΔCO2+ΔCL+ΔCO

► 2xCO2 :

- only difference is 
internal model variability.

- half of the emissions 
are captured by carbon 
sinks.

► Prescribed atmospheric CO2 concentrations  same for P1 and P2.⇒
► Oceanic sink almost independent from Vcmax parametrization.

► Land sink split into β and γ contributions.



  

Results – Compatible emissions (CE)

► Compatible emissions = change in C pools : 
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∫1850

t
E dt=ΔCO2+ΔCL+ΔCO

► Prescribed atmospheric CO2 concentrations  same for P1 and P2.⇒

► 4xCO2 :

- CE higher than at 2xCO2

- Partition has changed : 70% 
of emissions remain in the 
atmosphere. Sinks efficiency .⬂

- For P1, land is not a sink 
anymore. For P2, the sink has 
decreased compared to 2xCO2.

- Change in C uptake 
dominated by β contribution.

- Higher CE for P2 come from 
higher land sink (or higher β 
contribution). 

► Oceanic sink almost independent from Vcmax parametrization.

► Land sink split into β and γ contributions.



  

Results – Regional GPP differences
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► GPP difference per unit surface 
= change in GPP efficiency 
between P2 and P1.

► Higher for equatorial and 
tropical regions.

► GPP difference = change in 
GPP efficiency + size of the region 
(absolute change in GPP higher in 
large regions).

► Higher for equatorial and 
tropical regions, but less obvious 
than per unit surface.



  

Results – Vegetation in ORCHIDEE : PFTs

► Vegetation described by 15 Plant Functional Types (PFTs) representing 
various ecosystems. 

► GPP parametrization differs for each PFT  ⇒ global GPP is a sum of all 
ecosystems GPP. 
► PFT2 (Tropical Broadleaf Evergeen trees) dominates in equatorial and 
tropical regions.

38

Dominant PFT at each grid cell



  

Results – Vcmax evolution

► Vcmax is consistently higher 
for P2 than P1. The biggest 
difference occurs in the 
equatorial and tropical areas.

39

► Difference in Vcmax between 
P2 and P1 is the highest for 
PFT2

 ⇒ high parametrization effect 
on GPP in the equatorial and 
tropical regions is due to PFT2 
being both dominant and more 
sensitive to changes in 
parametrization.

P1     --- P2

► Conclusion : the global 
lower land uptake for P1 (lower 
compatible emissions) mainly 

results from a response of 
equatorial and tropical areas, 

dominated by PFT2 which is the 
most sensitive to Vcmax 

parametrization.



  

Idealized simulations – Comparison to C4MIP models

► Models with explicit N cycle have lower β due to N limitation effect at 
high CO2 concentrations.

► IPSL model is close to models with explicit N cycle :

 ⇒ the global biogeochemical response is consistent with more 
advanced models.

⇒ Vcmax parametrization is efficient to get a correct global β effect.

40

CMIP6

Models with an 
explicit N cycle 
representation

Models without an 
explicit N cycle 
representation



  

Results – TCRE
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SSP-585
1pctCO2
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Change in land carbon stock – ACCESS with N and P cycles

[Ziehn et al. (2021)]
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