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Anthropogenic emissions are
What does CO, become partly taken up by natural carbon
once in the atmosphere ? sinks : ocean and terrestrial

biosphere.

L and sink is much more variable.
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Introduction — A main tool : IPSL coupled model
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» Allows for the study of specific processes separately.

» Tool for future predictions.



Introduction — An international framework : C*MIP

» International project (branch of CMIP) aiming to improve 4
modelling and understanding of climate-carbon cycle |
Interactions.

» Similar working frame and protocols to allow for
comparison and statistical treatment.

» Reduce uncertainties on carbon-climate interactions and
future carbon cycle projections.

» Last exercise : CMIP6 (2019-2020) gathering 86 models.
11 models for C*MIP among which IPSL-CM6A-LR.



Land net carbon flux (PgC/yr)

Introduction — Comparison to estimates
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» Net carbon flux (NBP) is consistent with data-driven estimates both

for land and ocean.

» NBP increases : sinks carbon uptake increases.






ll. Climate-carbon feedbacks



Climate-Carbon feedbacks — C*MIP simulations

4 )
» Biogeochemical feedback (3, PgC.ppm™) enhances terrestrial sink of carbon.

» Climate feedback (y, PgC.K1) weakens terrestrial sink of carbon.
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Climate-Carbon feedbacks — C*MIP simulations

» 2 additional simulations on the top of the fully coupled (COU) simulation

BGC RAD

Anthropogenic CO, — CO:Flux Anthropogenic CO; —  CO,Flux
emissions - - Radiative Flux emissions - Radiative Flux

(energy) l ) (energy)

Radiati orcing (o) Radiative Forcing (o)
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» Biogeochemically-coupled » Radiatively-coupled (RAD
gBG_.C) simulation to study the simulation to study the climate
ertilization effect. effect.
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Climate-Carbon feedbacks — CMIP5

» CMIP5 (2013) : high biogeochemical
effect (BL) in IPSL model...

—
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...due to lack of nutrients representation ?

» At high CO;concentrations, the
limiting factor for vegetation growth

IS nutrients availability
= nutrients limitation effect.

CMIP5 models at 4xCO,
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[Aroral et al. (2020)]

[ Solution : explicitly introduce nutrients cycles into the model. ] 11
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Climate-Carbon feedbacks — CMIP6

» CMIP6 (2019) : explicit N cycle not ready in IPSL model

— Vcmax parametrization [Sellers et al. (1996)] to mimic nutrient limitation
and artificially decrease 3 at high CO..

» VVcmax is a key parameter for GPP/photosynthesis (Vcmax » = GPP »)
— Vcmax controls photosynthesis and land carbon capture.

» Parametrization calibrated with FACE experiments [Norby et al. (2010)]
= until 600ppm CO..

. _ B Co, => too strong Vcmax
P1: [chax— Vemax?25-| 1—coef_down_reg log( 380 ) J decrease at high CO»
CO,— 380

1— coef_down_reg-

" | Vemax=Vcmax?25-
P2 [ CO,+coef_curve

|
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Climate-Carbon feedbacks — VVcmax calibration

Calibration of the parameters
“coef down_reg” & “coef curve”
to have :

» The same Vcmax as P1 over
the historical period (280 and 380

ppm)

» A smaller reduction of Vcmax
with high CO2 concentration
(above 800 ppm)

» VVcmax is PFT dependent
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Idealized simulations — Comparison to C*MIP models

» Overall reduction of global (3

compared to CMIPS5.

FrOm here (CM I P5) e Models with N cycle

. to there (CMIP6 with P1).
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» GPP has been reduced in CMIP6 to
get closer to data-driven estimates.
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l1l. Idealized simulations : feedbacks determination
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Idealized simulations — Effect of parametrization on GPP

» CMIP5 : no parametrization
= highest GPP sensitivity to

COs Increase. 225 -

» CMIPG6 :

- before 600ppm : no difference

P(PgC.yr=1)

1pctCO2-bgc

250 A

200 A

175 4

— cmipb pl
—— cmip6 p2
— cmip5

- after 600 ppm : influence of

parametrization 125 -
- GPP sensitivity to CO, 100 -

Increase is higher for P2 than
P1 (but lower than CMIP5).

» \/cmax parametrization has a
direct consequence on GPP, i.e.
on land ability to take up carbon.

400

600 800 1000
Atmospheric CO; (ppm)
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Idealized simulations — Effect of parametrization on 3
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» Same shape for both parametrizations : maximum (3 around 500ppm.

» Atlow CO; : same 3 for both parametrizations.
At high CO; : B is higher for P2. 17



Idealized simulations — Comparison to C*MIP models

» Models with explicit N cycle
have lower 3 due to N limitation
effect at high CO;
concentrations.

» IPSL model is close to
models with explicit N cycle :

— the global biogeochemical
response is consistent with
more advanced models.

= Vcmax parametrization is
efficient to get a correct global (3
effect.
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Idealized simulations — Comparison to C*MIP models

» Models with explicit N cycle
have lower [3 at all latitudes.

» IPSL model is still in the
range of models with explicit N
cycle with a slight _
overestimation at mid to high
latitudes.

» Difference between P1 and
P2 in equatorial and tropical
regions...
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[Ziehn et al. (2021)]
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...not consistent with N limitation.
» N limitation in mid-to-high latitudes

» But P limitation in tropical and
equatorial regions. 19



Idealized simulations — Regional differences

P1 (4xCO2)

0.06
l 0.05
T 0.04

» AGPP>0 in almost all regions :
fertilization effect. 60°N | ?
30°N X -0.03
. . . - 0.02
» Highest GPP increase in o -
tropical and equatorial regions. s [
60°S : - —0.01
. . 180°W 120°W  60°W 0° 60°E 120°E 180°E I
» Higher GPP increase for P2
than for P1 = higher fertilization P2 (4xCO2) .
effect for P2. | S 005
60°N - 0.04
» GPP difference P2-P1 is also ke =
higher in equatorial and tropical 0" [ 0.02
regions = parametrization acts 30°s o
mainly through these regions. 60° . - 0.00
180°W 120°W  60°W 0° 60°E  120°E  180°E [t —0.01

Conclusion : the global land sensitivity to elevated CO, A
concentration comes from equatorial and tropical regions where
ecosystems are more sensitive to the parametrization.

\:> not consistent with other models having explicit N cycle.) -0

A GPP (PgC.yr 1)

A GPP (PgC.yr1)



V. Historical and future scenarios simulations
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Historical and scenarios simulations — Presentation

» Historical data combined to
SSP-585 (high-emission)
scenario.

» Atmospheric CO; :
« 2050 = 2xC0O2
¢ 2100 = 4xC0O2

» All forcings : CO., other
greenhouse gas, aerosols, land-
use change.

» 2 simulations : with or without
land-use change.

Atmospheric CO; concentration (ppm)

2250 A

2000 A

1750 ~

1500 ~

1250 A

1000 -

750 ~

500 -

250 A

CO2 atmospheric concentration

— historical+ssp585
—— 1pctCO2

2xC02 4xC02

14xC02

1900 2000 2100 2200 2300
Time (yr)
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Historical and scenarios simulations — Comparison to

Idealized simulations

» Smaller (3 for P1 than P2 in
each simulation (other forcings
ggSr;ot change the order in SSP-

» Higher 3 for idealized
simulations (higher fertilization
effect) than SSP-585 .

- influence of other GHG and
aerosols (not spatially uniform).

- difference in “speed of
iIncrease” of CO, concentration
(kinetic effect).

- land-use change (deforestation)
decreases land carbon stocks.

» Land-use change causes the biggest [3

Land use change contribution

]

0.9

& *—S@ © e
3
@® 1pcCo2pl Other GHG + aerosols
+ kinetic contributions
® 1pcCO2p2
@ hist+ssp585 pl
@ hist+ssp585 p2
O hist+ssp585 noLu pl
O hist+ssp585 nolLu p2
0.3 0.4 0.5 0.6 0.7 0.8
B (PgC.ppm™1)

of its value) due to loss in terrestrial carbon stocks.

» Other GHG, aerosols and kinetic effect are responsible for a

smaller 3 decrease than cannot be easily interpreted.

decrease (25% to 40%
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Historical and scenarios simulations — What's next ?

» Design of new simulations to
disentangle contributions to 3 :

- CO, forcing alone with
future scenario concentrations.
- Land-use change forcing
alone.

- Other GHG+aerosols

forcing alone.

» Better understanding and
guantification of different forcings
contributions for future land
carbon uptake.

» |dentification of main causes to
3 decrease will allow taking
relevant decisions

= societal and political impact.

» Importance of parametrization only for high-emission scenarios.

Land use change contribution

i -

® *—c# o—e
>
@® 1pcCO2pl Other GHG + aerosols
+ kinetic contributions
@® 1pcCO2 p2
@ hist+ssp585 pl
@ hist+ssp585 p2
O hist+ssp585 noLu pl
O hist+ssp585 nolLu p2
0.3 0.4 0.5 0.6 0.7 0.8
B (PgC.ppm~1)
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Historical and scenarios simulations — Compatible emissions

» At 2xCO2 :

- CO; concentration is lower
than 600ppm : no significant
difference between P1 and P2.

- ~30% of CO;, emissions are
captured by carbon sinks.

- surprisingly y>0.

» At 4xCO2 :

- land sink remained stable
for P2

- land becomes a carbon
source for P1 : negative climate
contribution dominates the
fertilization effect.

- ~15% to 20% of CO,
emissions are taken up by
carbon sinks.

Compatible emissions (PgC. yr1)

30 4

25 4

20

15 A

10 A

SSP-585

7 EEE Land sink

Atmospheric CO2
Bl Oceanic sink

B contribution
Bl y contnbution

£
B0 gt
5.0 5.0

Pl 2xCc02 P2 Pl 4xCco2 P2
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V. Conclusion
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Conclusion — Limits of Vcmax parametrization

» GPP evolution for models with N

cycle is very different = other sty

processes than nutrients limitation |
govern land response to CO; Phamology (' chppools
Increase and are not represented

by a Slmple parametrlzathn Growth and turnover

of plant compartments
Autotrophic

- Heterotrophic respiration, water Eatpkaiicn
cycle (soil moisture), carbon b oo
allocation...are affected by N cycle.
- Wrong regional representation : ——

miss spatial distribution of N respiration e
(agricultural areas...).

Mineral soil Mineral soil N & P

= Only partlal response Of C CyC|e N,P pools turnover and loss
to climate change : increase in N s -~
mineralization (boosting vegetation | NP pools R s ot

productivity) not represented.

Surface and
soil moisture

and temperature

profiles

[=> Importance of integrating nutrients cycles to the IPSL model. J
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Conclusion — Is IPSL model with downregulation efficient to

simulate N limitation ?

» YES if we aim to represent :
- the global 3 effect and thus the global biogeochemical feedback.

- historical evolution of global GPP and NBP.

» NO if we aim to represent :

- the regional 3 effect and local biogeochemical feedbacks (P1 is even
better than P2 in this case).

- processes involving carbon-nitrogen interactions.
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Conclusion — Limits of model validation

» Data-driven estimates of

GPP used for validation. ———
4 — IPSL 22 i

» GPP is similar for P1 and P2 [|™°7 § jungetal
(“low” CO, values) and
consistent with observations. <1401
» Limits : i [ 1301

- high uncertainty on e LN

~ 0 a A
mdea)surements (~25% on each & A
side). 110 1
\ <

- too low CO, values to 100 -

separate P1 from P2. L
90 A ptiadt? o §

- dlﬁerent C“ma‘te in the 19I85 19I90 19%35 20I00 20'05 20I1{}

model and the observations. Time (yr)
~400 ppm

= Important ways of improvement : reduce observation uncertainties
and better constrain models.
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Conclusion

» However, the main lines of future climate and carbon cycle

evolutions are known and models uncertainties should not be used to
delay political action.

» Regardless the precision of Earth System Models, reducing
anthropogenic carbon emissions is crucial and must be a priority.

Thank you for your attention !
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Model — Carbon pools and fluxes

» Carbon pools : where carbon is stored. Common variables
Carbon fluxes : transfer between pools. among C*MIP models

» Land carbon capture : GPP
Land carbon release : RH, RA, fires, anthropogenic disturbance...

Net carbon flux : NBP = GPP — RH — RA - disturbances

Atmosphere
fProduct Ez‘:]ﬂat(r:noog fFire fAnth
Decomp Elux gpp ral Nat Disturb rh

fHarvestTo
Product

fDeforest
ToProduct

fLitterSoill

cProduct

cLand 32



Climate-Carbon feedbacks — Framework

» Carbon source/sinks balance :

dCO2 A dC dC
e
 dt Ydt dt/, !
Sinks Source

» Coupled carbon cycle — climate feedback parameters :

Linearity assumption

C ' A \\
\yLAT +/3’LACO

Y
C-Climate Blogeochemlcal

2 Atm/

BGC-COU
approach

y—>

AT ~0

dC, . .
‘ =y, AT +ﬁLACOz,Atm
J

Y=

pL=

\_

/ AC,—AC, \
<0

AT'

3k

AC,

(often)

>()

ACO; s /
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Climate-Carbon feedbacks — Carbon land capture

» Idealized 1%CO./yr increase simulations in COU, BGC and RAD modes.
= Framework to calculate 3 and y.

» BGC shows the fertilization
effect by mcreasmg CO; 500 1
concentration : 3,>0.

» RAD shows the influence of
climate change on land carbon
capture : y.<0.

» COU shows the combination o
of fertilization and climate
change effects. o

A

400 -

200 -

AC;(PgC)

100 4

300 -

—200 -

— COu

400

600 800 1000 1200
Atmospheric CO; (ppm)

COU differs from the sum of BGC and RAD : linear combination

IS a debatable assumption.
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Results — Compatible emissions (CE)

Edt=ACO,+AC,+AC,
» Prescribed atmospheric CO2 concentrations = same for P1 and P2.

» Oceanic sink almost independent from Vcmax parametrization.

» Land sink split into 3 and y contributions.

» Compatible emissions = change in C pools: J ...

- 1pctCO2
Atmospheric CO2 -
Bl Oceanic sink
30 1 mmm Land sink 0.0
7"_‘ B contribution 54
p 2xXC02 : 525_ BN y contribution '
)]
. : =
- only difference is 2 50 .
internal model variability. 3
. . .é -
- half of the emissions ¢
are captured by carbon 3
sinks. 2 10
S
5 -
0 ' H ' . H ,
Pl 2xC02 P2 Pl 4xCco2 P2
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Results — Compatible emissions (CE)

Edt=ACO,+AC,+AC,
» Prescribed atmospheric CO2 concentrations = same for P1 and P2.

» Oceanic sink almost independent from Vcmax parametrization.

» Land sink split into [3 and y contributions.

» Compatible emissions = change in C pools: J ...

» 4xCO2:
. 1lpctCO2
- CE higher than at 2xCO2 Atmospheric CO2 -
B Oceanic sink 5
L 301 mmm Land sink ar —
- Partition has changed : 70% 8 contribution i .
of emissions remain in the 25| mm y contribution | |

atmosphere. Sinks efficiency <.
- For P1, land is not a sink o

anymore. For P2, the sink has

decreased compared to 2xCO2.

155

10 -

Compatible emissions (PgC. yr~1)

- Change in C uptake
dominated by  contribution. 5 -

- Higher CE for P2 come from 0

higher land sink (or higher 3 PL 2xCO2 P2 PL 4xcO2 P2
contribution). 36



Results — Regional GPP differences

GPP difference per unit surface P2-P1 at 4xC0O2 (kgC.m~2.yr~1)
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3 =3
o o
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» GPP difference per unit surface » GPP difference = change in

= change in GPP efficiency GPP efficiency + size of the region

between P2 and P1. (absolute change in GPP higher in

_ _ large regions).

» Higher for equatorial and _ _

tropical regions. » Higher for equatorial and
tropical regions, but less obvious
than per unit surface.
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Results — Vegetation in ORCHIDEE : PFTs

» Vegetation described by 15 Plant Functional Types (PFTs) representing
various ecosystems.

» GPP parametrization differs for each PFT = global GPP is a sum of all
ecosystems GPP.

» PFT2 (Tropical Broadleaf Evergeen trees) dominates in equatorial and
tropical regions.

Dominant PFT at each grid cell

1) Bare Soil
N 2) TrBE
Em 3) TrBR
H 4) TeNE
N 5) TeBE
6) TeBS
7) BoNE
8) BoBS
9) BoNS
10) TeNC3
11) NC4
12) AC3
HEEE 13) AC4
HEE 14) TTNC3
HEE 15) BoNC3
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Results — Vcmax evolution

» VVcmax is consistently higher
for P2 than P1. The biggest
difference occurs in the
equatorial and tropical areas.

» Difference in Vcmax between
Ilglzz_lgznd P1 is the highest for

— high parametrization effect
on GPP in the equatorial and
tropical regions is due to PFT2
being both dominant and more
sensitive to changes in
parametrization.

4 » Conclusion : the global
lower land uptake for P1 (lower
compatible emissions) mainly
results from a response of
equatorial and tropical areas,
dominated by PFT2 which is the
most sensitive to Vcmax

\_ parametrization.

~

J

60°N [®

30°N
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30°S

60°S

180°W

Vemax (umol. m=2, s71)

W
o
L

A Vcmax P2-P1

120°W 60°W 0° 60°E 120°E 180°E

—— PFT15

— PFT13
PFT12
PFT11
PFT10
PFT9
PFT8
PFT7
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{|— PFTS

— PFT4

dl=—i.PET3

— PFT2
— PFT1

1 — PFT14 =

____________
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Time (yr)
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o - N w 4 w (=)} ~l (o2}

umol. m=2. s71
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Idealized simulations — Comparison to C*MIP models

» Models with explicit N cycle have lower 3 due to N limitation effect at

high CO; concentrations.

» IPSL model is close to models with explicit N cycle :

= the global biogeochemical response is consistent with more

advanced models.

= Vcmax parametrization is efficient to get a correct global 3 effect.
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Change In land carbon stock — ACCESS with N and P cycles
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