Modification of the aerodynamic resistance formulation

A possible solution for reducing the bias on evaporation

N. Vuichard - LSCE

Context

 Shifting from the 2-layer hydrological scheme to the 11-layer one increases latent heat flux for some

PFT's

That is due to the evaporative component

 It acts at winter time for deciduous trees when no canopy coverage

Context

 Shifting from the 2-layer hydrological scheme to the 11-layer one increases latent heat flux for some PFT's

- That is due to the evaporative component
- It acts at winter time for deciduous trees when no canopy cover

How evaporation is represented?

 In the 2-layer scheme, there is an explicit soil resistance to evaporation

- In the 11-layer scheme, the potential evapotranspiration is the flux set as a boundary condition to the diffusion scheme.
 - Either the potential evapotranspiration can be supplied
 - Either a minimal evaporation flux is defined by setting the soil water content of the first layer to the residual

⇒Different schemes, no direct comparison

Many sources of uncertainties

 Only measurements of the evapotranspiration, no direct measurements of evaporation

- Evaporation and transpiration components are driven by the LAI which is computed by ORCHIDEE
 - ⇒Differences between observed and modelled LAI

Observed Energy budget is not closed by approx.
15-20%

Latent heat flux on different vegetation types

 Good performance of the 11-layer scheme over cropland sites, even during bare soil periods (only evaporation, no transpiration)

Searching for possible processes ...

- That may explain the bias on evaporation
- Modelled differently for crops and forests PFT within ORCHIDEE
- ⇒ Aerodynamic resistance and the parameterization of the roughness height

$$r_a = \frac{1}{\kappa^2 u_a} \left[\ln \left(\frac{z - d_0}{z_{0m}} \right) \ln \left(\frac{z - d_0}{z_{0v}} \right) \right]$$

where

- z is measurement height (m)
- u_a is wind speed (ms⁻¹)
- k von Karman's constant
- d₀ is displacement height

 z_{0m} and z_{0v} the roughness heights for momentum and water vapor transfer

Roughness height calculation in ORCHIDEE

- Calculation of the averaged z₀ for a grid point
 - For true bare soil and "bare soil" of vegetated PFTs $z_0 = 0.01 \text{ m}$ weighted by tot_baresoil
 - For grass and crops $z_0 = 1/16 * height weighted by veget$
 - For trees $z_0 = 1/16 * height weighted by veget_max$
- ⇒One assumes that the trunk and the branches impact as a full canopy coverage on z₀
- Search for literature supporting that z₀ varies with LAI
 - Ershadi et al. (2015) uses the formulation of Su et al. (2001)
 - An evaluation of different z_0 formulations by Liu et al. (2007)

Formulation of Su et al. (2001)

Roughness height for momentum transfer

$$z_{0m} = h_c \left(1 - \frac{d_0}{h_c} \right) \exp \left(-\frac{\kappa}{\eta} \right)$$

- $-h_c$ is the canopy height
- $-\eta$ is the ratio of friction velocity to wind speed, defined as function of LAI
- Roughness height for water vapor transfer

$$z_{0h} = z_{0m}/\exp(\kappa B^{-1})$$

$$\kappa B^{-1} = \frac{\kappa C_d}{4C_t \beta \left(1 - \exp\left(-\frac{n_{ec}}{2}\right)\right)} f_c^2 + 2f_c f_s \frac{\kappa \eta z_{0m}/h_c}{C_t^*} + \kappa B_s^{-1} f_s^2$$

where

where

 f_c the fraction of canopy coverage and f_s the fraction of soil coverage

Impacts on the energy budget

On the latent heat flux

$$L.E_s^t = L\rho |\overrightarrow{v}| C_d\beta(q_1^t - q_{sat}(T_s^t))$$

On the sensible heat flux

$$F_{H,s}^t = \rho |\overrightarrow{v}| C_d(H_1^t - H_s^t)$$

With C_d the drag coefficient = $(r_a u_a)^{-1}$

Evaluation at site level (1)

Evaluation at site level (1)

Evaluation at site level (1)

Evaluation at site level (2)

Conclusion & Perspectives

- Accounting for a roughness height varying with the canopy coverage
 - can correct alone for the bias on evaporation
 - a soil resistance can be added but it is not needed
- Implementation of the formulation of Su et al.
 - Relatively complex
 - More simple formulations could be envisaged ?
- Work on the water stress on GPP
 - Can now be envisaged

Conclusion & Perspectives

- Accounting for a roughness height varying with the canopy coverage
 - can correct alone for the bias on evaporation
 - a soil resistance can be added but it is not needed
- Implementation of the formulation of Su et al.
 - Relatively complex
 - More simple formulations could be envisaged?
- Work on the water stress on GPP

Thank you!

Can now be envisaged

Thanks to Vladislav Bastrikov for the post-treatment scripts and plots

