Multi-tiling in ORCHIDEE (i.e. energy/water budgets at sub-grid scale) as a surrogate for high resolution!

(Julien Alleon, Philippe P., Catherine O., Josefine G., Frederique C.,)

Few remarks / notations

- Notion of PFT will become Surface Functional Type (SFT)
 to group under the same terminology plants, lakes, glaciers, urban, etc...
 (Metaclass remains to help defining new SFT)
- Key Parameters / Variables :
 - Nener: number of energy budgets (excluding the snow specific budget) for each grid box;
 - Nhydro: number of water budgets for each grid box;
 - Natm: number of atmospheric columns (to be taken as 1 in a first approach)
 - Nsft : Number of SFT for each grid box
 - ⇒ Nener, Nhydro, Natm, Nsft could/should be variables of Npts (number of grid box)
 - SFT_type: a variable that gives the types of SFT (Tree, grass, crop, lake, glacier,)
- Tiling_flag: parameter to define the options for the tiles (see later)

Current scheme!

N_energy = 1; N_hydro = 3 (bare soil, short veg, trees)

1 atmospheric column (mixing fluxes at first level); 1 routing scheme!

New multi-tiling approach: maximum split

- Nhydro = Nener for each grid box; But different across grid cells!
- Note: keep 2 parameters to reproduce current config with Nhydro = 3 / Nener =1

New multi-tiling approach: « intermediate » split

- Define a set of intermediate grouping with different options
- Variable grouping per grid cell

How to define the number: Nener and Nhydro?

 Objective: describe for each pixel the grouping of SFTs that will share the same Energy and water budgets!

Tiling_flag :

- -1: To reproduce current implementation (should we keep it ?)
- 0: to read an input map of tiling flag per grid cell
- 1: One E/W budget for each SFT_type (Trees, Grass, Crops, Bare Soil, lake, glaciers, cities...)
- o 2: One E/W budget for each SFT (i.e. all tree types, grass types, etc)
- 3: One E/W budget for all the same Tree-pft (instead of 1 budget for each age class)
- o **4**:
- 5: ... Any "eco-hydrological" grouping like low lands versus high lands OR Hydrological Transfert Unit (HTU) or
- o 6:...
- Special Tiling_flag = 0 to read a map that contains for each grid cell the values
- Note: Keeping option "-1" (current set up) is not easy as Nener =/ Nhydro and having NOBIO complicates the code!

How to define the SFTs?

- Nb of Metaclasses should increase with new types (lake, glacier, cities, ..)
- Define SFT similarly to the PFT maps (from ESA-LC, LUH,...)
- BUT with potentially more complex options
 - Split SFT depending on the soil texture ?
 - Split SFT depending on low vs high lands?
 - Split SFT depending on eco-hydrological units ?
- SFTs are updated each year (like current PFTs)
- Get rid of "nobio" ⇒ becomes "glacier" SFT
- Bare soil becomes a unique SFT; separated from water bodies and cities

Potential SFT: combining "Soil texture" & Vegetation

Eco-hydrological units

⇒ To be defined beforehand with high resolution land cover & soil type maps!

Implicit coupling with the atmosphere (LMDZ)

- Some biblio on implicit coupling
 - A new page is created under Wiki/Documentation: implicit coupling with LMDZ https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation
 - It includes several notes / articles on the coupling with LMDZ
- Feasibility with respect to the general implicit coupling with atm PBL

$$\begin{array}{ll} \text{energy budget} & \text{surface fluxes} \\ C_0 \frac{\delta T_s}{\delta t} = F - k_g (T_s - T_g) | \text{on} & F = F_{rad} + F_1^H + L F_1^q & \left\{ \begin{array}{ll} X_l & = & C_l^X + D_l^X X_{l-1} & (2 \leq l \leq n) \\ X_1 & = & A^X + B^X F_s^X \delta t \end{array} \right. & (l = 1) \end{array}$$

- ⇒ **Assumption**: All surface fluxes Fs i (each tile) are well mixed in the lowest atmospheric boundary layer!
- \Rightarrow Flux(Fs) becomes a sum of Fs i (each tile)
- ⇒ Equations to be set up properly but in principle no conceptual issues.

WHO / WHEN / WHERE?

- To be carried primarily by Julien Alleon (with technical supervision by Josefine)
 (Potential additional contribution by Aude's CDD)
- To start after the summer break of 2022
- Targetting a first implementation in the Trunk
- Proceed step by step with evaluation of each step!
- FUTURE: improve the assumption of flux mixing in the first layer!!

Additional remarks / questions?

Complementary suggestions / modifications:

- Rewording &31, &32, ... => &33_{snow}, &33_{inter}, &33_{transp},
- Separate ßx in two terms : Fraction of grid cell ("Frac_x")

& Resistance ("Res_x")

- Remove ß23: Allow Transpiration to occur at the same time as "intercep loss"
- Others ??

Questions:

- Should we keep back compatibility with "Nener=1 and Nhydro=3"?
- How to define mixed ecosystems? (See Slide 16)
- ...

How to manage "sparse arrays"?

- Typical arrays are: X [Npts, Nsft_max, Ncircclass, (Ntracer)]
- ⇒ Large Nsft_max not needed for most pixels !! Ncirc only for Tree SFTs

Possible way forward:

- $X \Rightarrow X$ [Nelements]
- Use two functions to relate i_element ←> (i_pts, i_sft, i_circ, i_trac)
 - o ielement = F1 (i pts, i sft, i circ, i trac)
 - o [i_pts,i_sft,i_circ,i_trac] = F2 (i_element)
- Careful implementation for the parallelisation (possible according to Yann M.)
- Maybe new feature of F99 can help?
- ALL computations in the code would be made with X(Nelements) BUT the output could be transformed into X(Npts, Nsft max, Ncirclass, (Ntracer))