

Groundwater-related developments in the ORCHIDEE routing scheme

Agnès Ducharne, METIS-IPSL, Paris, agnes.ducharne@upmc.fr

- 1. Time constant of the groundwater reservoir [trunk]
- 2. Describing hillslope SM heterogeneities [branch ORCHIDEE-GWF]
 - 3. Some further perspectives

The trunk includes a very simple GW model

2. Assumes flat landscapes over tens to hundreds of kms

1. How to account for aquifer properties on GW discharge?

1. Standard timescales

 $\tau_i = k.g_i$

k = d/Vslope

Stream reservoir $g_1 = 0.24 \ 10^{-3} \ d/km$ Hillslope reservoir $g_2 = 3 \cdot 10^{-3} \, d/km$ $g_3 = 25 \ 10^{-3} \ d/km$ **GW** reservoir

2. GW timescale from Boussinesq equation

$$\tau_3 = \frac{n_e}{\pi^2 \cdot \delta^2 \cdot T_e}$$

n_e: effective porosity

 T_e : transmissity δ : drainage density

$$Q_{iout} = Vi/\tau_i$$

τ	Median
Streams	0.45 d
Fast/hillslopes	5 d
Slow/GW: standard	45 d
Slow/GW: new	65 y

Schneider (2017)

1. How to account for aquifer properties on GW discharge?

The sensitivity to τ_{GW} depends on drainage

Δ Ampli = A(τ_{ORC}) - A(τ_{G})

Evaluation of the two τ_{GW} against recession rates

Validation dataset from recession analysis

RECESS software

Data from GRDC, France, United Kingdom and United States

 au_{obs} range from 18 days to 3.5 years

 au_G from Boussinesq is largely overestimated and not suitable for parametrization of a shallow linear groundwater reservoir

2. How to account for hillslope SM heterogeneities?

since landscapes are not flat...

Photographs from Fan et al. 2019, WRR

2. How to account for hillslope SM heterogeneities?

...with impacts on surface/atmosphere coupling

Shallow WT with strong impact on atmosphere (and specific biogeochemical processes)

Introduction of a lowland fraction

Introduction of a lowland fraction

Lowland fraction prescribed from global wetland map

GIEMS-D15 + JRC surface water + ESA CCI wetland class

GDW Ground-water driven wetland

Fan et al. 2013

15 arc-sec resolution

Impact on SM and ET (off-line simulations)

Land surface water budget

River discharge in major basins (off-line)

Preliminary parameter sensitivity

Tested parameters:

- Soil depth = max water table depth
- RC: adjustment factor in $Q_{wt} = L.RC.T(z) \Delta z/B$
- τ_{GW} : the time constant of the GW reservoir

Preliminary parameter sensitivity

Tested parameters:

- Soil depth = max water table depth
- RC: adjustment factor in $Q_{wt} = L.RC.T(z) \Delta z/B$
- τ_{GW} : the time constant of the GW reservoir

These three parameters act on discharge amplitude and recession rate, τ_{GW} being the most effective.

The time of peak flow may be related to the lowland fraction extent.

Parameter influence

Simulated climate

A glimpse to the future...

Accounting for subgrid scale hillslope flow to a lowland fraction allows us

To mitigate some global warming manifestations

Many shortcomings

- Simulations with ORCHIDEE2.0 → no nitrogen, no CAN, missing bug fixes, etc.
- Many options switched off for simplicity
 - Soil freezing
 - Floodplains and swamps
 - Irrigation
- Need for parameter exploration / optimisation, but...
- Potential interactions with many developments
 - Multi-tile energy budget
 - High-resolution routing
 - New floodplains (Ronny), wetland processes (methane, peats, etc.)
 - Lakes, reservoirs, water use
 - PFT composition, vegetation density, rooting depths

How to describe complex waterscapes without too much complexity?

And what about including the GW and hillslope reservoirs (local) into hydrol.f90?

Thanks for your attention

Other remarks on the trunk

- There is a scale problem, since the three time constant don't follow the grid-cell size → solution coded in the HR version of Trung, but not committed in the trunk
- We had problems with Frédérique in zoomed mode with the construction of the river network → can it be solved by Trung's version?
- Can we merge all the developments to get one unified routing scheme?
- Then, it would be good to recalibrate the time constants in the major river basins, with all processes activated
- What about parallelisation?