# Data assimilation with ORCHIDEE

Natasha MacBean, Philippe Peylin, Cédric Bacour, Sebastien Leonard, Fabienne Maignan, Philippe Ciais

Laboratoire des Sciences du Climat et de l'Environnement, France







#### Outline

- What is Data Assimilation?
- Why do we need DA?
  - Example 1: Optimising the phenology of ORCHIDEE
- Example 2: Multi-site optimisation with FluxNet
- Example 3: Optimising the phenology with multiple data streams



Example 4: DA Inter-comparison study



#### What is data assimilation (DA)?

- ➢ Also referred to as "Model-Data Fusion" (MDF)...
- Data assimilation comprises of a set of statistical techniques aimed at integrating models (prior knowledge of a system) and observations (new information) to improve model predictions and to obtain an estimate of the distribution of the model prediction (i.e. the uncertainty)
- ➢ Based on Bayes' Theorem → update the prior probability of a hypothesis given new observations or evidence
- ➢ Basis of DA → the process of combining data with prior knowledge of the variables of a physical system to obtain an improved estimate of the variables

 $P(model, given the data) \propto P(model) \times P(observations given the model)$ 



# What is data assimilation (DA)?

- > Can optimise model state variables, initial conditions or parameters
- > Here we're talking about parameter (and initial condition) optimisation
- Describe the misfit between the observations and the model simulations, accounting for the uncertainty in both
- Try to MINIMIZE the misfit







#### Data assimilation for Dummies!















#### Simplest case!





#### Simplest case!





#### Not so simple case!

> We want to find the MINIMUM of the misfit function...

BUT! Your misfit function may look like this...!!



#### Not so simple case!

> We want to find the MINIMUM of the misfit function...

BUT! Your misfit function may look like this...!!





#### Not so simple case!

- > We want to find the MINIMUM of the misfit function...
- BUT! Your misfit function may look like this...!!
- > How do we find the minimum numerically?



"Gradient-descent" methods
 Describe a "cost function":

 $J(\mathbf{x}) = \frac{1}{2} (\mathbf{H} \cdot \mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \cdot \mathbf{x} - \mathbf{y}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathrm{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathrm{b}})$ 

Misfit between obs. and model (with given parameter value) Misfit between parameter value and its prior

0.5

0.3

0.2

Model-data "MISFIT"

4 3 2 1 (a' parameter value

- "Gradient-descent" methods
- Calculate the first derivative of the cost function in order to calculate the gradient...



- "Global search" methods (Genetic algorithm, Metropolis Hastings MCMC)
- Search parameter space...



- "Global search" methods (Genetic algorithm, Metropolis Hastings MCMC)
- Search parameter space...
- At each iteration calculate the misfit and accept or reject parameter



- "Global search" methods (Genetic algorithm, Metropolis Hastings MCMC)
- Search parameter space...
- > At each iteration calculate the misfit and accept or reject parameter



### Why do we do DA?

- Uncertain parameter values are one source of model error
  we don't know how big a source
- Want to optimise the parameter values
- Want to get a better estimation of the uncertainty on the model simulations
  - Make predictions (C budget etc)
- ➤ Want to improve the models → DA can help us figure out where there might be important structural errors
- ➤ Want to improve the DA system → other data sources, remaining issues...



# Why do we do DA?



# Optimisation of the phenology



Richardson et al. (2012) GCB - NACP

Phenology 1<sup>st</sup> order control on ecosystem fluxes

Incorrect growing season length in TBMs in temperate/boreal regions

Can this be improved with parameter optimisation?

Poorer understanding and representation of leaf phenology in tropics



# Leaf phenology in ORCHIDEE

# ONSET

Temperate/Boreal Deciduous Temperature-related threshold (GDD+NCD, NGD)

**Tropical raingreen** 

Moisture-related threshold (time since moisture minimum) SENESCENCE Critical leaf age + Temperature

threshold

Moisture threshold

C3 and C4 grasses

Temperature-related threshold (GDD) + Moisture-related threshold

Temperature threshold + Moisture threshold



# Carbon Cycle Data Assimilation System (CCDAS)



- 4 6 parameters per PFT
- > 15 random grid points with available obs.
- PFT vegetation cover > 0.6
- Multi-site and single-site optim.
- 4D variational + finite difference approach

#### NDVI from satellite reflectance data

- MODIS collection 5 5km surface reflectance data (2000-2008)
- Corrected for directional effects (Vermote et al., 2009)
- > Averaged at model grid scale, interpolated to daily timeseries
- Model LAI to fAPAR using simple Beer-Lambert Law
- ➢ Normalise MODIS NDVI / modelled fAPAR → assumption of linear relationship (5 95th percentile)



#### Temperate and boreal deciduous forest

#### **Example: Boreal broadleaved deciduous**



#### Temperate and boreal deciduous forest

#### **Example: Boreal broadleaved deciduous**



Natural C3 grass



#### Mean seasonal cycle



 $\bigcirc$ 

#### Mean seasonal cycle







# ONSET

 Decrease in fraction of carbohydrate reserve for leaf growth



# ONSET

- Decrease in fraction of carbohydrate reserve for leaf growth
- Scalar on GDD / NGD leaf
  onset threshold not
  strong constraint



# ONSET

- Decrease in fraction of carbohydrate reserve for leaf growth
- Scalar on GDD / NGD leaf
  onset threshold not
  strong constraint
- Minimum time since moisture minimum – no constraint for C3 grasses



# SENESCENCE

• Increase in temperature threshold for senescence



# SENESCENCE

- Increase in temperature threshold for senescence
- Some decrease in critical leaf age for senescence



# SENESCENCE

- Increase in temperature threshold for senescence
- Some decrease in critical leaf age for senescence
- Some decrease in the rate of leaf fall in autumn



# SENESCENCE

- Increase in temperature threshold for senescence
- Some decrease in critical leaf age for senescence
- Some decrease in the rate of leaf fall in autumn
- Increase in the moisture threshold for senescence for C3 grasses



# **Discussion points...**

- Are these values realistic?
- Do we really get an idea of which processes are missing?
- Edge-hitting parameters?

#### Posterior parameters – covariance





#### **Tropical raingreen forest**



Natural C4 grass



# Spatial and temporal validation

#### Multi-site posterior parameter used for validation

- Spatial validation
- Extra 15 grid points per PFT
- ≻ 2000 2008

| PFT   | Mean<br>uncertainty<br>reduction (%) | Prior<br>Correlation | Posterior<br>Correlation |
|-------|--------------------------------------|----------------------|--------------------------|
| TeBD  | 19                                   | 0.9                  | 0.93                     |
| BoBs  | 13                                   | 0.59                 | 0.65                     |
| BoNS  | 62                                   | 0.25                 | 0.88                     |
| NatC3 | 24                                   | 0.63                 | 0.74                     |

- > Temporal validation
- Original 15 optimisation grid pts
- Extra 2 years 2009 2010

| PFT   | Mean<br>uncertainty<br>reduction (%) | Prior<br>Correlation | Posterior<br>Correlation |
|-------|--------------------------------------|----------------------|--------------------------|
| TeBD  | 18                                   | 0.91                 | 0.93                     |
| BoBs  | 28                                   | 0.55                 | 0.72                     |
| BoNS  | 47                                   | 0.16                 | 0.85                     |
| NatC3 | 24                                   | 0.6                  | 0.75                     |



#### **Global MODIS NDVI evaluation**



| Median correlation value                 | prior | post1 |
|------------------------------------------|-------|-------|
| PFT 6 temperate broad-leaved summergreen | 0.88  | 0.89  |
| PFT 8 boreal broad-leaved summergreen    | 0.54  | 0.53  |
| PFT 9 boreal needeleaf summergreen       | 0.36  | 0.91  |
| PFT 10 C3 grass                          | 0.53  | 0.59  |

#### FluxNet evaluation - TeBS



#### FluxNet evaluation - TeBD

#### France (Hesse)



## FluxNet evaluation



 $\bigcirc$ 

#### Impact on phenology metrics

- ➤ CCGCRV curve fit (Thoning et al., 1989) → Fit and de-trend the signal
- Start of Season (SOS) and End of Season (EOS) when de-trended cycle crosses "zero line"
- ➢ Growing Season Length (GSL) = EOS − SOS



#### Impact on phenology metrics - SOS



Bias (obs – model)

#### Impact on phenology metrics - EOS



Bias (obs – model)

#### Impact of $\Delta$ GSL on net C fluxes





## Summary of phenology optimisation

- Improved fit to satellite NDVI for temperate and boreal deciduous forest and grass (C3) after optimisation
- $\succ$  Reduction in GSL  $\rightarrow$  earlier senescence  $\rightarrow$  reduction in annGPP
- Improved fit to SOS. EOS harder to represent, despite main improvement in autumn
- Need for better understanding of PFTs where phenology driven by moisture conditions (tropical regions)
- Need to analyse impact on hydrology and energy budgets
- Move towards more PFTs or more generalised phenology model?



**Further questions** 

Questions of scale?

Satellite versus in-situ data?

• Optimising mixed pixels?

Normalising the data?

Other data streams?



# Fluxnet multi-site optimisations

|                                  |                                                                                                                | Parameter                                              | Genericity |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|
|                                  |                                                                                                                | V <sub>cmax,opt</sub>                                  |            |
|                                  |                                                                                                                | C <sub>T,min/opt/max</sub>                             |            |
|                                  |                                                                                                                | L <sub>age,crit</sub> , f <sub>stressh</sub>           | PFT        |
|                                  |                                                                                                                | G <sub>s,slope</sub>                                   | PFT        |
|                                  | The second s | LAI <sub>MAX</sub> , SLA                               | PFT        |
|                                  |                                                                                                                | LAI <sub>init</sub>                                    | Site       |
|                                  |                                                                                                                | K <sub>lai,alloc</sub>                                 | PFT        |
|                                  | · · · · · · · · · · · · · · · · · · ·                                                                          | K <sub>phenocrit</sub> , c <sub>senes</sub>            | PFT        |
| Tropical evergreen broadleaf     | A Boreal evergreen needleleaf                                                                                  | MR <sub>a</sub> , MR <sub>b</sub> , GR <sub>frac</sub> | PFT        |
| ▲ Temperate evergreen needleleaf | Boreal deciduous broadleaf                                                                                     | $Q_{10}$ , $HR_b$ , $HR_c$                             |            |
| Temperate evergreen broadleaf    | C3 grasslands                                                                                                  | Z <sub>decomp</sub>                                    | PFT        |
| Temperate deciduous broadleaf    |                                                                                                                | K <sub>soilC</sub>                                     | Site       |
|                                  |                                                                                                                | K <sub>albedo,veg</sub>                                | PFT        |

- Work done by Sylvain Kuppel during his PhD
- Figures taken from his soutenance presentation
- Refs: Kuppel et al. (2012) BG; Kuppel et al. (2014 sub)



## Fluxnet multi-site optimisations



 $\bigcirc$ 

### Fluxnet multi-site optimisations





#### Improvement at different time scales



- Largest improvement of NEE at yearly time scale
- Similar performances between single-site (SS) and multi-site (MS)
- Small improvement of interannual flux variability

#### **Parameter correlations**



#### **Parameter correlations**



#### **Parameter correlations**





#### Importance of multiple data streams



→ Also consider in-situ versus satellite fAPAR data

obs prior post fA in situ post fA ext in situ post fAPAR SPOT post fAPAR MERIS



Importance of multiple data streams



Far from seeing this as a disappointment I would argue it is an exemplary application of data assimilation.

Note that if we had not carried out the parameter optimization we could never have distinguished between parametric and structural errors in the model."

Rayner P. (2010), The Current State of Carbon Cycle Data Assimilation, *Current Opinion in Environmental Sustainability*, **2**, 289-296

→ Also consider in-situ versus satellite fAPAR data

prior post fA in situ post fA ext in situ post fAPAR SPOT post fAPAR MERIS



a) Fontaìnebleau

# Importance of multiple data streams



NEE

**f**APAR

GPP

Ratio between the posterior RMSE of fit and the prior RMSE, between the model simulations and the different observations:

- assimilations performed with only flux data (Flu),
- only fAPAR data (fA)
- combination of the two datastream (Flu+fA).

Values < 1 (> 1) indicates model improvement (degradation).



#### DA Intercomparison study – Fluxes



**NEE at Hesse, France** 





#### DA Intercomparison study – aboveground biomass



 $\bigcirc$ 

ORCHIDEE DEV Meeting, IPSL, Paris. Natasha MacBean (LSCE), 25/03/2014

#### DA Intercomparison study



#### DA Intercomparison study – model spread



6

#### Summary

- > DA SHOULD NOT JUST BE A BLACK BOX TOOL...
- Questions of scale?
- Optimising mixed pixels?
- Generality of posterior parameters / parameter correlations
- Model physics not accounted for?
- Do we have the right things for the wrong reasons?
- Importance of multiple data streams
- Interannual variability, partitioning of fluxes etc
  - STILL WORK TO BE DONE...



#### Sensitivity of fAPAR – BoBS





#### Sensitivity of fAPAR – Natural C3

