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Simulations & Analysis
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Climate Modelling

classical approach
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Climate Modelling

biogeochemical approach
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Climate-Carbon Feedback

« Seminal studies indicate a positive
feedback (with some uncertainty)

 Since then, positive feedback never
refuted and most often confirmed

2015

2018

2020

Cox et al. 2000, Nature

Acceleration of global warming
due to carbon-cycle feedbacks
in a coupled climate model

Friedlingstein et al. 2001, GRL

Positive feedback between future climate change
and the carbon cycle

Dufresne et al. 2002, GRL
On the magnitude of positive feedback between future
climate change and the carbon cycle
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Concentration vs. Emission Driven
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Compatible Emissions ( E¢f)

Compatible emissions (E¢() are the emissions that it would be required
to force the model with, in order to simulate a given concentration

Etot = Ery +Eune|= Gatm +[Socean]+

Fossil Fuel Emissions under the SSPs
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* Model spread is more important
for SSP5-8.5 and SSP3-7.0



Compatible Emissions (E¢;
model breakdown

Fossil Fuel CO; Emissions rate under the Shared Socioeconomic Pathways
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Terrestrial Carbon Fluxes (Siuna — Eie)

Net Biosphere Productivity
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Although the model mean exhibits
some inter-scenario spread in the
timeseries of NBP, there is very little
evidence of this in some models
(ACCESS, IPSL, UKESM) and
(CESM2 and NorESM2), while NBP in
other models is very scenario-
dependent (CanESM5, MIROC)

Liddicoat et al. (2021)
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Change in Land Carbon Store

Net Biosphere Productivity
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The change in vegetation
carbon is primarily

responsible for the
evolution of land carbon
throughout the 21st century

Liddicoat et al. (2021)
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Change in Vegetation Carbon Pool

200 Change in Vegetation Carbon
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Change of vegetation carbon pool
simulated by IPSL is not extremely
different from that of models with

which it was in agreement on NBP
(ACCESS and UKESM)

Yet, different approach to N (and P)
cycle(s) modelling
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Why worry about the N Cycle?

Carbon cycle

respiration
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N leaching

Affects spatial distribution of
productivity

Affects carbon allocation and
turnover of ecosystems

Causes soil processes to affect
vegetation growth and allocation

Attenuates ability of ecosystems to
respond to elevated CO, and
warming

Courtesy of Sonke Zahele



Take Away

« “ Reduced spread in CMIP6 carbon cycle feedbacks
compared to CMIP5 has been postulated to be due to
the inclusion of nitrogen cycle processes in about half
of CMIP6 ESMs ”

* “ The inclusion of the N cycle results in lower absolute
strength of the feedback parameters over land. In
addition, the land models that include a representation
of the N cycle exhibit a reduced spread in their
feedback parameters, despite the additional
complexity, compared to when all models are
considered. ”

* “ This suggests that if all models were to include the N
limitation of photosynthesis, the spread across them

will potentially reduce. ”
Arora et al., (2020)



At global and regional scale, does the
IPSL CO, downregulation allow to
simulate the weakening of carbon

sinks due to climate change as best
as models with explicit N cycle?



