


‘ Introduction

M Stomatal control models describe stomatal behavior as a function of
environmental conditions (and empirical parameters).

M But yet we know that:
B Stomata react to changes in leaf water and carbohydrate status.

W Leaves are connected to other plant parts. Carbon dioxide enters, whils water and

oxygen exit, through a leaf's stomata.




‘ Introduction

M All processes within a tree are somehow coupled to each other.
B Changes in source, sink or transport processes affects changes in all other

processes.
M Can we try to understand stomatal behavior from whole tree level perspective?
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‘ Introduction

W Especially phloem transport links all tree processes: phloem transport
from sources to sinks is dependent on both source and sink function,
and on xylem water status.

M Change in any of these changes the osmotic concentration and turgor
pressure and flow rate in phloem.

Source cell

L ]
LN ] L L]
. .. L]
¢ Sucrose
L - -
Water
-
. .
L] .

Sieve tube (phloem)

Xylem vessel

Sink cell




‘_“ Dynamic modeling approach

B What if stomata would react in a way as to maximize instantaneous
rate of phloem transport?

W (and ABA tranport from leaves)?
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‘ Dynamic modeling approach

B A dynamic model formulation yields reasoable results, but impossible to
get analytical solution and solution is dependent on the time scale used.
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‘_ Steady state approach

B Maximize whole tree metabolic rate?

M In steady state mebolic rate = photosynthesis rate = phloem transport
rate = sink sugar utilization rate.
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‘ Steady state approach

M Description of different processes:

W Source sugar production

B Xylem transport

® Phloem transport Tr?f';”ﬁr;f”:

B Sink sugar utilization |
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Source

m Sugar concentration in leaf mesophyll and phloem are tighly coupled
In (most) trees species since phloem loading is passive by diffusion.
M It has been found in many studies that increasing leaf sugar

concentration (connecte with e.g. drought, sink limitation) decreases
photosynthesis rate for a given internal leaf CO2 concentration.
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Source

N Inc'reasing sugar concentration will cause a smaller photosynthesis rate for a
given ci, light and temperature (this is an assumption, which is under test).

M Changes in mesophyll conductance or biochemistry of photosynthesis

® Opening causes ¢, to increase, but photosynthesis rate for a given c; to

decrease.

B Maximum photosynthesis rate at an intermediate stomatal conductance

Assimilation rate A
N
v\
\
MY
\‘ \
v\
\ )
\
\ R\
§ j / \‘I ".‘
5] \
\
: \ sana

0 100 200 300 400

Figure 4. A schematic figure of the photosynthesis rate as a function of
leaf internal CO- concentration C; when ambient CO concentration is
held constant. Stomatal opening increases C; and causes movement
along any A-C; curve (¢p = 1, ¢ = 0.8 or ¢p = 0.6) to the upper right diag-
onal direction. Stomatal opening simultaneously causes ¢ to decrease
thus forcing a movement to a lower A-C; curve. The grey dotted lines
intersecting the x-axis at 400 ppm represent the supply functions of CO;
through the stomata.
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‘ Source

M How do structural and functional properties, as well as environmental

conditions come into play in this scheme:

Dependent on e.g. photosynthetic parameters, light level, ambient CO2
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Figure 4. A schematic figure of the photosynthesis rate as a function of
leaf internal COz concentration C; when ambient COz concentration is
held constant. Stomatal opening increases C; and causes movement
along any A-C; curve (¢p =1, ¢ = 0.8 or ¢ = 0.6) to the upper right diag-
onal direction. Stomatal opening simultaneously causes ¢ to decrease
thus forcing a movement to a lower A-C; curve. The grey dotted lines
intersecting the x-axis at 400 ppm represent the supply functions of CO;
through the stomata.
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‘ Xylem transport

M |Leaf osmotic concentration and water potential are tightly correlated due
to water pot. equilbrium and phloem transport.

B Decrease in water potential is higher for a given stomatal opening when
VPD is high and hydraulic conductance from solil to leaf is low.
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‘ Xylem transport

M Soil conductance is dependent on soil water content.
B Xylem hydraulic is dependent on plant water content (and stomatal
conductance).
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Embolism and stomatal control

»

B Due to embolism, there is a maximum water transport rate that can be sustained with a

given xylem structure.

B The maximum water transport rate is achieved when some embolism is allowed.

B This maximum water transport is not necessarily the solution to maximing metabolic rate.
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‘ Phloem transport

M Phloem is at water potential equilibrium with xylem at each location -
water potential and phloem osmotic concentration are tightly coupled.
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. Phloem transport is affected by xylem
‘ transport, a modeling example

B What happens e.g. when transpiration rate increases:
Wear @Nd Y, . decrease and Y, . — W4 INCrease
Xylem draws water from the phloem, and more at the source in relation to sink

Phloem turgor and its gradient decreases and phloem flow slows down.

N
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Transpiration rate
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. Phloem transport is affected by xylem
‘ transport, a modeling example

M Decreased phloem flow rate starts to increase sugar concentration in the source

phloem.
M A new steady state phloem transport is reached when phloem flow rate

increases to the level of sugar loading rate.
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‘ Phloem transport

¥ Phloem hydraulic conductance determines the pressure loss (coupled
to sugar concentration) in phloem.

¥ Phloem conductance changes with viscosity (function of temperature
and sugar concentration).

B Similarly to xylem transport, there is a maximum possible phloem
transport rate.
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‘ Sink sugar utilization

B Sugar usage rate is determined by sink strenght and phloem sugar
concentration Cg (or turgor pressure which is connected to
concentration).

M Sink strength ag,, iIs dependent on temperature, hormonal growth.

(a) Phloem unloading into growing leaves of sugar beets (b) Phloem unloading into roots of sugar beets
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Transpiration:
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Stomatal control
Xylem sap flow:
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Cavitation: f:
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Water uptake from soil:
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‘ Results

M We can reproduce the well known trends of stomatal control to:
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Results

B Stomatal and non-stomatal limitations to photosynthesis are tightly
correlated:

M Non-stomatal limitations to photosynthesis are coupled to stomatal
action.

B Stomata react to non-stomatal limitations to maximize metabolic rate.
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Results

® Empirical coefficient (g,) of stomatal control models (Ball-Berry,
Leuning) can be explained by soil to leaf hydraulic conductance (and
sink strength, phloem condutance, vulnerability to cavitation)

A is photosynthesis rate

A dw is VPD
g=gy+ Ca is ambient CO2 concentration
Jd Cq gl is empirical coefficient

W "Cost of water” A in optimal stomatal control models can be explained
by soll to leaf hydraulic conductance (and sink strength, phloem
condutance, vulnerability to cavitation)




‘ Analytical solution

W Forget about carbon side, and make photosynthesis respond to leaf
water potential.

CO, flux through stomata:
A= g(Ca— CE)

‘ f@ Carbon fixation in photosynthesis:

Transpiration:

E=16gd

Stomatal control
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‘ Thank you

M Angi’s turn.
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A theoretical framework linking processes,

environmental drivers, structural and
functional properties and internal tree state
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