# ORCHIDEE-CNP

#### Daniel S. Goll,

Y. Sun, J. Chang, Y. Huang, F. Maignan, A. Jornet, P. Ciais, among many others











# Why would you want P in ORCHIDEE? What processes are implemented?

Does the model work?

What could a CNP model be used for?

**Technical aspects** 

# Why would you want P in a land surface model?

## CO<sub>2</sub> fertilization

#### The global carbon cycle





# Negative feedback: dampening climate change



## **Ecosystem manipulation experiments**



Free Air Carbon Enrichment Experiment (FACE)



# Nutrient limitation of growth is widespread





#### Nitrogen is increasingly included into models

|                                                                | Bookkeeping<br>models |                           | DGVMs     |                |        |      |      |        |       |           |      |                |        |              |                |                |        |       |
|----------------------------------------------------------------|-----------------------|---------------------------|-----------|----------------|--------|------|------|--------|-------|-----------|------|----------------|--------|--------------|----------------|----------------|--------|-------|
|                                                                | H&N2017               | BLUE                      | CABLE-POP | CLASS-CTEM     | CLM5.0 | DLEM | ISAM | JSBACH | JULES | LPJ-GUESS | LPJ  | LPX-Bern       | OCN    | ORCHIDEE-CNP | ORCHIDEE-Trunk | SDGVM          | SURFEX | VISIT |
| Processes relevant for $E_{LUC}$                               |                       |                           |           |                |        |      |      |        |       |           |      |                |        |              |                |                |        |       |
| Wood harvest and forest<br>degradation <sup>a</sup>            | Y                     | Y                         | Y         | N              | Y      | Y    | Y    | Y      | N     | Y         | Y    | N <sup>d</sup> | Y      | N            | Y              | N              | N      | Y     |
| Shifting cultivation/sub-grid-scale transitions                | $N^b$                 | Y                         | Y         | N              | Y      | N    | N    | Y      | N     | Y         | Y    | $N^d$          | N      | N            | N              | N              | N      | Y     |
| Cropland harvest (removed, r,<br>or added to litter, l)        | Y(r)h                 | Y(r)h                     | Y(r)      | Y(l)           | Y(r)   | Y    | Y    | Y(r,l) | N     | Y(r)      | Y(l) | Y(r)           | Y(r,l) | Y(r)         | Y(r)           | Y(r)           | N      | Y(r)  |
| Peat fires                                                     | Y                     | Y                         | N         | N              | Y      | N    | N    | N      | N     | N         | N    | N              | N      | N            | N              | N              | N      | N     |
| Fire as a management tool                                      | Y <sup>h</sup>        | Yh                        | N         | N              | N      | N    | N    | N      | N     | N         | N    | N              | N      | N            | N              | N              | N      | N     |
| N fertilisation                                                | Yh                    | Yh                        | N         | N              | Y      | Y    | Y    | N      | N     | Y         | N    | Y              | Y      | Y            | N              | N              | N      | N     |
| Tillage                                                        | Y <sup>h</sup>        | Yh                        | Y         | Ye             | N      | N    | N    | N      | N     | Y         | N    | N              | N      | N            | Yg             | N              | N      | N     |
| Irrigation                                                     | $Y^h$                 | $Y^h$                     | N         | N              | Y      | Y    | Y    | N      | N     | Y         | N    | N              | N      | N            | N              | N              | Yg     | N     |
| Wetland drainage                                               | $Y^h$                 | $\mathbf{Y}^{\mathbf{h}}$ | N         | N              | N      | N    | N    | N      | N     | N         | N    | N              | N      | N            | N              | N              | N      | N     |
| Erosion                                                        | $Y^h$                 | $Y^h$                     | N         | N              | N      | N    | N    | N      | N     | N         | N    | N              | N      | N            | N              | N              | N      | Y     |
| Southeast Asia peat drainage                                   | Y                     | Y                         | N         | N              | N      | N    | N    | N      | N     | N         | N    | N              | N      | N            | N              | N              | N      | N     |
| Grazing and mowing harvest (removed, r, or added to litter, l) | Y(r)h                 | Y(r)h                     | Y(r)      | N              | N      | N    | Y(l) | Y(l)   | N     | Y(r)      | Y(l) | N              | Y(r,l) | N            | N              | N              | N      | N     |
| Processes relevant also for S <sub>LAND</sub>                  |                       |                           | 1         |                |        |      |      |        |       |           |      |                |        |              |                |                |        |       |
| Fire simulation                                                | US only               | N                         | N         | Y              | Y      | Y    | N    | Y      | N     | Y         | Y    | Y              | N      | N            | N              | Y              | Y      | Y     |
| Climate and variability                                        | N                     | N                         | Y         | Y              | Y      | Y    | Y    | Y      | Y     | Y         | Y    | Y              | Y      | Y            | Y              | Y              | Y      | Y     |
| CO <sub>2</sub> fertilisation                                  | $N^f$                 | Nf                        | Y         | Y              | Y      | Y    | Y    | Y      | Y     | Y         | Y    | Y              | Y      | Y            | Ye             | Y              | Y      | Y     |
| Carbon–nitrogen interactions,<br>including N deposition        | N <sup>h</sup>        | Nh                        | Y         | N <sup>d</sup> | Y      | Y    | Y    | Y      | N     | Y         | N    | Y              | Y      | Y            | N              | Y <sup>c</sup> | Ni     | N     |

9 out of 18

10 out of 18

Le Quere et al. 2018



#### 1 Biological nitrogen fixation

- 2 Plant uptake
- 3 Litter fall & mineralisation
- 4 Immobilisation
- 5 Fire emission
- 6 Erosion
- 7 Leaching
- 8 Denitrification



- 1 Weathering
- 2 Plant uptake
- 3 Litter fall & decomposition
- 4 Immobilisation
- 5 Fire emission
- 6 Erosion
- 7 Leaching

# What processes are implemented?

## ORCHIDEE-CNP (Goll et al. 2017b)

#### **CNP BALANCE**







#### Key paper:

Krinner et al. 2005
Zaehle & Friend 2010
Goll et al. 2012
Naudts et al. 2015
Vuichard et al. in review
Goll et al. 2017b



## **ORCHIDEE-CNP** (Goll et al. 2017b)



#### **Major interactions**



#### Feedbacks: e.g. ecosystem scale



#### Land management / fire

1. Cropland (trunk) & grassland management (Chang et al. 2013, ...)





2. Negative emission technologies (Goll et al. in prep)



3. Fire emission (trunk module)



#### publications / contributions

**Model description:** Goll et al. 2017b, Goll et al. 2018, Sun et al. in prep. **Evaluation, site-scale**: Goll et al. 2017b, Goll et al. 2018, Huang et al. in

prep., Combe et al. in prep.

**Evaluation**, **global**: Sun et al. in prep.

Resource-interactions and use efficiencies: Goll et al. 2018, Zhang et al.

2018, Sun et al. in prep., Cresto-Aleina et al. in prep.

#### **Model intercomparisons:**

AmazonFACE (Fleischer et al, in revision)

INTERFACE2 - precipitation response (Fatichi et al, in prep.)

Global N<sub>2</sub>O model intercomparison project (NMIP) (Tiang et al., 2018)

Global carbon budget 2018 (Le Quere et al., 2018)

GPP - leaf P relationship (Ellsworth et al, in prep.)

#### Does it work?

"Although it seems reasonable to expect that a model including a larger subset of processes that are known to be important should be more realistic than a simpler model, increases in reliability and robustness are by no means automatic." (Prentice

et al. 2015).

#### **Evaluation**

spatial extent: local, regional to global

data: forest inventories, eddy covariance towers, satellite products, river discharge ... ecosystem manipulation experiments: free air carbon enrichment, fertilization,

throughfall exclusion, ...



## Hawaii: fertilization experiments



## Hawaii: fertilization experiments





Goll et al. 2017b

#### Model evaluation: S-America







Huang et al. in prep







| Site   | EC    | $NIR_t$ | $NIR_v$ | C model | CNP mod | el |
|--------|-------|---------|---------|---------|---------|----|
| BR-MA2 | 0.195 | 0.211   | 0.242   | 0.402   | 0.143   | _  |
| BR-Sa1 | 0.104 | 0.189   | 0.236   | 0.408   | 0.267   |    |
| BR-Sa3 | 0.165 | 0.176   | 0.225   | 0.482   | 0.224   | ٧a |



Variability in C fluxes

Goll et al. 2018

#### Model evaluation: Africa







**CNP v0.9** 

## CO<sub>2</sub> fertilization effect of GPP



ORCHIDEE: uses an empirical down-regulation of CO2 fertilization based on short-term FACE experiments

#### GPP in space in time





#### Carbon use efficiencies







#### C sink: too low



#### N and P fluxes: e.g. global fluxes

Uptake

Mineralization

Leaching



#### Leaf N:P ratio for model evaluation



Is a well observed property of ecosystems

#### **ORCHIDEE:**

- Dynamically computed in ORCHIDEE as function of availability and demand of nutrients
- Global uniform range parameterization / other models prescribe narrow PFT-specific range (see table)

| Parameter | unit  | 1         | 2          | 3         | 4          | 5          | 7         | 8          | 9          | 10         | 12         | 16         |
|-----------|-------|-----------|------------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|
| leaf N:P  | gN/gP | 9.8 (2.9) | 19.2 (1.2) | 8.1 (1.3) | 16.0 (4.7) | 10.1 (2.4) | 8.8 (0.8) | 17.0 (4.5) | 23.6 (4.5) | 20.0 (7.0) | 16.0 (3.4) | 10.0 (1.5) |

PFT 1-16 in CABLE-CNP (Wang et al 2010)

# Improving critical processes



#### How much P is in the soils?





#### Constraining inorganic P turnover



Estimates of meam—residence times of P in commonly-considered inorganic soil phosphorus pools

Julian Helfenstein¹\*, Chiara Pistocchi²\*, Astrid Oberson¹, Federica Tamburini¹, Daniel Goll³, Emmanuel Frossard¹

¹Institute of Agricultural Sciences, ETH Zurich, Lindau, 8315, Switzerland
²EcosSols, Montpellier SupAgro, University of Montpellier, CIRAD, INRA, IRD, 34060 Montpellier, France
¹Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE CEA/CNRS/UVSQ Saclay, Gif-sur-Yvette, France

**Next:** SNSF early-post doc mobility grant to integrate data into ORCHIDEE



Helfenstein et al. 2018, in prep.

#### **Constraining organic P turnover**





#### Phosphatases



Sun et al. in prep

#### Soil organic matter decomposition model





## What could a CNP model be used for?



### **Negative emission technologies (NETs)**





### **Costs & potential of NETs**



- A. Afforestation & reforestation
- B. Bioenergy carbon capture & storage
- C. Biocha
- D. Enhanced weathering
- E. Direct air capture
- F. Ocean fertilisation
- G. Soil carbon sequestration

### **Costs & potential of NETs**



A. Afforestation & reforestation

B. Bioenergy carbon capture & storage

C. Biochar

D. Enhanced weathering

E. Direct air capture

F. Ocean fertilisation

G. Soil carbon sequestration

# **Technical aspects**

# Coding

- **17,198 lines more than trunk** (incl. CAN allocation & N cycle, grassland management)
- all files/subroutines were modified which handle organic matter/biomass, as well as routine(s) for photosynthesis.
- **P-only processes:** all combined in stomate phosphorus.f90
- N-only processes: remain in stomate\_som.f90

#### coding standards:

- (nearly) all parameters are externalized
- avoidance of redundant code via new subroutines (e.g. root uptake kinetics, stoichiometric scaling functions, etc.)
- mass conservation and stoichiometry is ensured (at time step, within a single routine and among all routines of stomate)
- Added/revised/cleaned comments in code
- Runs stable with executable with "debug compilation"

## Additional boundary conditions

- Soil order map (to derive soil type specific parameters) potential conflicts with hydrological parameter
- 2. Lithological map
- 3. Nutrient boundary conditions (mineral fertilizer, manure and atmospheric deposition; annual fluxes)
- input reading is parallel (not sequent. Like trunk)

## coding issues solved: mass conservation

```
!DSG mass conservation ================================
mass before(:,:,:) = SUM(biomass(:,:,:,:),DIM=3)
CALL prescribe (npts, &
    veget cov_max, dt_days, PFTpresent, everywhere, when growthinit, 8020-2024 Appel pour les n
    biomass, leaf frac, ind, co2 to bm,n to bm,p to bm, &
    KF, senescence, age, npp_longterm, &
    lm lastyearmax,k latosa adapt)
IF(dsg debug) THEN
  CALL check_mass(npts,biomass(:,:,:),'lpj: after prescribe')
  mass_after(:,:,:) = SUM(biomass(:,:,:,:),DIM=3)
  mass_change(:,:,icarbon) = co2_to_bm
  mass change(:,:,initrogen) = n to bm
  mass change(:,:,iphosphorus) = p to bm
  CALL cons mass( mass_before(:,:,:),
                                      & ! mass before
        mass_after,
                                      & ! mass after
  mass_change(:,:,:),
                                      & ! net of fluxes - A STAGET ... W RIA-IA STAGET
        'lpj: after prescribe' )
ENDIF
```

## coding issues (partly) solved: low precision

- Extensive use of thresholds, with rather large thresholds (1e-6)
- Can now be reduced to 1e-9 (for now LULCC calculations)

## Spinup issue: not resolved

### 5-8 kyr needed to reach equilibrium in N and P cycle





- Analytical spinup: no time improvement
- RK4: marginal acceleration, discontinued development
- libIGCM: much time (up to 25%) is spent to copy files of large forcing files (N&P boundary conditions) Albert is working on making libIGCM more efficient

#### **Documentation**



# Calibration of C cycle: partly resolved

 Several parameter values were adjusted (allocation, allometry, SOM turnover) to better match <u>large scale</u> fluxes & stocks

ORCHIDEE-CNP (v1.0)





# Structural changes to C and N cycle: examples

1. Simplification of non-structural carbohydrate dynamics





1. Simplification of non-structural carbohydrate dynamics



### 2. Simplification maintenance respiration

ORCHIDEE-CNP

Resp<sub>maint</sub> = 
$$f(T, N_{leaf}) = f(T) k_{calibrated} N_{leaf}$$

$$Resp_{maint} = f(T, N_{leaf}, N_{root}, N_{fruit}, N_{sapwood}, N_{labile}, CN_{leaf}, CN_{leaf,threshold})$$

 $Resp_{plant} = Resp_{maint} + Resp_{grwoth}$ 

 $Resp_{qrwoth} = 0.28 *GPP$ 

Based on LPJ (Sitch et al.)

#### 3. Simplification of Vcmax/Jmax controls

- a) Decline of Vcmax with leaf age: disabled. As it is conflict with the lack of evergreen phenology. Ongoing model development will address this issues: Peaucelle (extra-tropics) & Chen (tropics))
- b) Temperature acclimation of Vcmax: disabled. As pot. inconsistent with leaf nutrient Vcmax relationships (Kattge et al 2009, Ellsworth et al in prep) as leaf N co-varies with temperature. More data analysis needed.

# Major structural issues: not solved

#### Specific issues with ORCHIDEE

- (1) Growth / Allocation:
  - Calibration issues: over-parameterization, large biases in allocation (wood growth of natural vegetation unrealistic)
  - Implementation issues
  - Dynamics: allometry "jumps" between different states (see also work by E. Joetzjer)



- (2) Regrowth of vegetation from "air":
  - substantial amounts of P are generated when trees

## Summary

#### 1. ORCHIDEE-CNP

- a. goes beyond the state of the art global P cycle models
- b. overall performance is average (iLAMB)
- c. well accepted by the community (H2020 proposal, NERC Large Grant, ...)
- 2. Major issues are
  - a. primarily the same as for the trunk (evergr. phenology, allocation, som decomposition)
  - b. long spinup time
  - c. being addressed by ongoing and starting work
- 3. Comes with improvements in technical aspects
  - a. higher computation precision
  - b. detailed mass conservation diagnostics
  - c. among others (parallel input reading, etc)

# Appendix

### Model experiment: large-scale application of basalt





dissolution rate =  $f(T, q, d_M, M)$ 

T = temperature

q = runoff d<sub>M</sub> = diameter of mineral grain

M = type of mineral

Strefler et al. 2018



#### **One-time application:**

 $3 \text{ kg}^{(*)} \text{ m}^{-2}$  (~ 1 mm high layer)

 $d_{M} = 20 \mu m$  particles (cost-efficient size)

1.51 %P content (global average)

(\*)application as slurry to avoid fine dust issues

#### Boundary conditions (climate, CO<sub>2</sub>, land cover etc):

fixed to period: 2008 - 2017

## 1.2 N and P budgets and components

1.2.2 N and P budgets and components for each PFT



#### **Biomass**





# CO<sub>2</sub> fertilization effect

GPP increase ratio from atm\_ $CO_2$  296ppm to 396ppm for natural C3 and C4 plants



#### Linear Mixed-Effects model (LME)

LME with **only fixed** effects (= multi-variable linear regression):

Bias = 
$$c_1 + b_1*MAT + b_2*SWC + b_3*clay + ... + b_n*litterfall$$

**Fixed effect** 

LME with **fixed & random** effects:

Bias = 
$$c_1 + b_1*MAT + b_2*SWC + b_3*clay + ... + b_n*litterfall + RandomEffect (Site)$$



### Carbon use efficiencies







## Wildfires are important contributor to P deposition



Wang et al. 2015

