Bare soil evaporation (BSE) in ORCHIDEE A short introduction

Agnès Ducharne

UMR METIS, UPMC

agnes.ducharne@upmc.fr

BSE is very sensitive to soil hydrology in ORCHIDEE

Servettaz, 2014 US-Bar **Temperate deciduous forest**

BSE is very sensitive to soil hydrology in ORCHIDEE

Simulations off-line de M. Guimberteau (30 ans)

Bare soil evaporation depends on soil resistance

r_{sol} is the main control of water stress onto bare soil evaporation

$$E_{sol} = \rho \, U_s \, rac{q_{sat}(T_s) - q_{air}}{r_a + r_{sol}}$$

$$E_{pot} = \rho \; \frac{q_{sat}(T_s) - q_{air}}{r_a}$$

r_{sol} depends on the dry soil height of PFT 1

$$r_{\text{soil}} = r_{\text{soil}}^{\text{m}} \left(h_{\text{dry}} + \frac{1}{100(h_{\text{tot}} - h_{\text{dry}})^2} \right)$$

(Bare) soil evaporation controlled by demand/supply

→ The principle is that soil evaporation follows a supply/demand approach

$$E_{soil} = \min(E_{pot}^*, Q_{up})$$

$$E_{pot}^* = \rho \frac{q_{sat}(T_w) - q_{air}}{r_a} = CorrFrac.E_{pot}$$

▶ In practice, this relies on dummy integrations of the water diffusion scheme

(Bare) soil evaporation controlled by demand/supply

Further comments

- Note that β comes from imposing E*_{pot}, but dividing by E_{pot} so β should never reach 1
- $\beta/2$ if the mean moisture in the litter (4 top layers) is below the wilting point

\Rightarrow β thus E_{soil} is calculated separately in the three soiltiles

In each soiltile: β is further multiplied by frac_bare_ns

At the scale of the grid-cell:

 $\beta_4 = [\Sigma_{jst} \beta_{jst} * soiltile(jst)] * vegtot$ (but $\Sigma_{ist} soiltile(jst) \ge vegtot)$

Question: how is z0 defined in each soiltile?

ORC11

All-or-nothing behavior with multi-layer hydrology

Result from R simple calculations (Tootchi, 2015)

BSE may be too high because we lack soil moisture stress

To be followed by Ardalan

BSE involved in both the water and energy budgets

E and β are separated into contributions for transpiration, bare soil evaporation, etc.