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Context/Motivation

LULCC is a major driving factor of the global carbon unbalance and of regional-scale climate shifts.
> Nowadays accounted for in most ESMs patrticipating in CMIP initiative.

However, the historical and future (IAM-based) scenarios of LU used in CMIP5 —and the

underlying climate/hydrological response of the models— seem to be particularly optimistic in the
tropics (see Brovkin et al., JClimate 2013).
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Additional (CMIP5-like) RCP 8.5 runs were carried out with IPSL-CM5A (MR) in order
to account for a severe but realistic pathway of Amazon LU, as projected by the

LuccME scenario C.

Table 1. Set of IPSL-CMS5A simulations used to evaluate biophysical and biochemical impacts of LU

Sim. reference GHGs & aerosols Land cover (Amazonia) # runs
S1 (CMIPS) 1850-2005 (HIST) 1850-2005 (LUH-HYDE) 3
2006-2100 (RCP 8.5) 2006-2100 (LUH-MESSAGE)
S2 (AMAZALERT) 1980-2005 (HIST) 1980-2010 (PRODES-Killen) 3
2006-2050 (RCP 8.5) 2011-2050 (LuccMEc)
a. Forest cover 1980 b. Difference 2050-1980 c. Difference 2050-1980
e S | | LUH y == LUH/MESSAGE y == | LUH/LuccMEc
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Climate vs. LU impacts
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Annual rainfall is actually more likely to
decrease within the Amazon basin.

This dominating pattern is associated
with a lengthening of the dry season,
a signal that also matches observed
recent trends (Fu et al., 2013).
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Climate vs. LU impacts
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Large (~—20%) remote
effects of LULCC in precip.
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a. Simulated (coupled) ET response to LULCC
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b. Estimated off-line ET response to LULCC
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The L-A coupling seems to produce a strong negative feedback on ET (VPD-driven ?)
> To account for when evaluating hydrological changes using forced simulations.



South Amazonia
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The L-A coupling seems to produce a strong negative feedback on ET (VPD-driven ?)
> To account for when evaluating hydrological changes using forced simulations.



Summary

IPSL-CM5A simulates important changes in the Amazon water cycle in response to a severe but
realistic scenario of deforestation (following present-day rates).

The land-atmosphere interaction seems to play a leading role controlling these changes both in
areas of strong LU perturbations and away from them.

- Decreases in precipitation lead to decreases in runoff (the opposite impact of deforestation is
expected from offline simulations)

- ET decrease in response to deforestation but the changes are of lower amplitude (~ 30%)
than expected offline.

Based on these results, the key question within AMAZALERT remains particularly open:
Can the atmospheric feedbacks of LU perturbations trigger a natural response of vegetation ?



