
Ex.3.3 - Derivation of the Penman equation

We start by writing E and H using their aerodynamic formulations, and assuming that rav = rah. In
doing so, we also convert q to e, using the fact that :

qa '
εea
pa

(1)

For a saturated surface (e0 = es(T0)), this leads to

H =ρa cp
(T0 − Ta)

ra
(2)

E =ρa
ε

pa

(es(T0)− ea)

ra
(3)

(4)

E can be written as

E = ρa
ε

pa

(es(T0)− es(Ta) + es(Ta)− ea)

ra
(5)

We introduce the drying power EA :

EA =
ρa ε

pa ra
(es(Ta)− ea) (6)

Note that ra depends on horizontal wind speed. It follows that :

E = ρa
ε

pa

(es(T0)− es(Ta))

ra
+ EA (7)

The next step is to linearize es(T0) using a �rst order limited development around Ta, which is close to
T0 :

es(T0) ' es(Ta) + e′s(Ta) (T0 − Ta) = es(Ta) + ∆ (T0 − Ta) (8)

This leads to

E = ρa
ε

pa

∆ (T0 − Ta)

ra
+ EA (9)

We then use the relation between (T0 − Ta) and H :

E =
ε∆

cp pa
H + EA (10)

and the energy budget equation :
Rn = H + LE +G (11)

The downward heat �ux G into the soil (counted here positively if the �ux cools the surface) exhibits a
very strong diurnal cycle, with values that can exceed 100 W.m−2 at noon, and conversely very negative
values (warming the surface) at night. This �ux depends a lot on surface temperature, which we want
to eliminate. It can be neglected if we work on average over one day, or any multiple of one day. This
is a very important validity condition for the Penman equation. In such conditions, the surface
energy budget can be simpli�ed as :

Rn = H + LE (12)

so that

E =
ε∆

cp pa
(Rn − LE) + EA (13)
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Introducing the psychrometric "constant" γ = (cp pa)/(εL), we get

ε∆

cp pa
=

∆

γ L
(14)

E =
∆

γ

(
Rn

L
− E

)
+ EA (15)

Re-arranging this expression to isolate E gives the Penman equation :

E =
∆

∆ + γ

Rn

L
+

γ

∆ + γ
EA (16)

Remark 1 : the above development assumes that Rn is independent from T0, which is far from
true, since it includes the upward long-wave radiation from the surface :

Rlu = εsσT
4
0 (17)

Most often, this term is estimated using Ta instead of T0. In particular, it is the case in the FAO report on
crop evaporation. A better approximation could be a achieved using the �rst-order limited development
around Ta :

T 4
0 ' T 4

a + 4T 3
a (T0 − Ta) (18)

Introducing the net short-wave radiation Rsn = (1−as)Rsd, the energy budget equation can be rewritten
as

Rsn + εsσT
3
a (T0 − Ta) = ρa cp

(T0 − Ta)

ra
+ LE (19)

From this, we can �nd (T0 − Ta) as a function of Rsn, Ta, and E, then proceed from Eq. 9.

Remark 2 : to derive the Penman-Monteith (1965) equation for unstressed vegetation, we follow
the same sequence as for the Penman equation, but we use the following initial expression of E, depending
on the minimum stomatal resistance r0 :

E = ρa
ε

pa

(es(T0)− ea)

ra + r0
(20)

what leads to

E =
∆ Rn

L + γ EA

∆ + γ
(

ra+r0
ra

) (21)

The FAO report from Allen et al. (1986) de�nes the reference ET, ET0, from the Penman-Monteith
equation, with ra = 208 /u(z = 2m) and r0 = 70 s.m−1

Actual ET can also be estimated by the the Penman-Monteith equation, by accounting the e�ects of
environmental stresses and vegetation properties (albedo, physiology (r0), LAI, height and roughness)
owing to appropriate resistance formulations.
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