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First written at the end of the 90’s but not distributed at the time

In order to simplify the implementation of the implicit coupling between surface schemes and
atmospheric models we propose here a new set of variables to be exchanged between the two
models.

In Polcher et al. (1998) the proposed list of variables to be exchanged was made complicated
by the fact that it had to leave a choice open between computing the surface drag in the surface
scheme or the atmospheric model. Since publication of this paper a new formulation of the
exchange variables was proposed which simplifies the variables to be exchanged and gives them
clear physical meaning (Best et al., 2004).

In the present note the new variables to be exchanged are presented. We also discuss their
application for solving the surface energy balance.

1 Simplified interface variables

In order to achieve this simplification of the exchanged data we start from equation 15 in Polcher
et al. (1998) for the first level of the atmosphere. The aim is to obtain a linear relation between
the surface fluxes and the temperature and specific humidity at the first level. The calculations
are started with equation 15 re-written as follows :
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where X is potential enthalpy (θ) (As defined in equation 21 of Polcher et al. 1998.) or specific
humidity (q) and K is the “eddy-diffusivity”. To simplify this equation we need to replace Xt+1

2

by its relation to the temperature on the lower level given in equation 16 of (Polcher et al.,
1998). This information is available when the planetary boundary layer diffusion is solved with
the method proposed by Richtmeyer and Morton (1967) . Some calculus yield the following
relation between lowest atmospheric variables and the surface fluxes :
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AX and BX do not contain any information on the surface condition at time t + 1 and can
thus be computed in the PBL prior to the land-surface processes. Passing these variables to the
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land-surface schemes allows to solve elegantly the problem of the surface drag as K1/2 is not
used in their calculation. Thus these variables leave the choice open to compute the surface drag
in the surface scheme or in the atmosphere.

Using equation 2 between first level atmospheric variables and surface fluxes allows to simplify
the calculation of the surface fluxes in the case of an implicit coupling. For the other numerical
methods nothing changes as the surface and the atmosphere are not solved together. Thus, AX
and BX are not used.

Starting from the surface flux equation (20 in Polcher et al (1998)) we can derive a simplified
equations for the implicit coupling :
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replacing Xt+1
1 by equation 2 we obtain :
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= F̃X,1/2 − F ′X,1/2∆X0 (9)

In equation 9 the new surface flux has been split into two components : The first one is based
on the old surface conditions (F̃X,1/2) and the evolving atmospheric state while the second one
describes the sensitivity of the flux (F ′X,1/2) to the variations of the surface variables.

When AX and BX are passed to the land-surface scheme one can still fall back to the explicit
coupling. This is the case when the variations of the atmospheric conditions induced by the
surface fluxes are not taken into account when solving the surface energy balance. It is achieved
by choosing the following values for AX and BX :

AX = 0 (10)

BX = Xt
1 (11)

As in this case the atmospheric variables are not allowed to adjust to the new surface fluxes the
interpretation of the equation 9 is simpler. It is easily recognised that the first term is the flux
obtained for the old surface and atmospheric conditions (F̃X,1/2) and the second one a correction
term (F ′X,1/2) linked to the variations of surface conditions when integrating from t to t+ 1.

2 Solving the surface energy balance equation for an im-
plicit coupling

The unstressed surface energy balance is written as :

Cs
θt+1

0 − θt0
∆t

=
Cs
∆t

∆θ0 = Rt+1
n +Ht+1 + fsLsE

t+1 + (1− fs)LeEt+1 +G (12)

where E is the potential evaporation, fs the snow fraction and Ls the latent heat of sublimation
and Le the latent heat of evaporation. All other variables have their standard meaning !
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All the fluxes in the above equation which have a dependence on the surface temperature
need to be simplified so that the energy balance can be solved without any iteration. Their
dependence on atmospheric variables needs to be expanded as in equation 9 to make an implicit
coupling possible.

2.1 Net surface radiation :

The aim is to achieve a linear approximation of the net surface radiation for the new surface
temperature. Using a limited Taylor series of the emitted long wave radiation we obtain an
estimation of net radiation for the new surface temperature :
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2.2 Sensible heat flux :

This flux is simplified using equation 7 :
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2.3 Potential evaporation :

In order to solve for the potential evaporation of the next time step, we have to linearise with a
limited Taylor expansion the saturated humidity at the surface temperature. This can be written
as :
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From this follows the implicit formulation for potential evaporation.
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= Ẽ − E′∆θ0 (27)

It has to be noted that if E is reduced by an α factor (i.e. Et+1 =
Kq,1/2
δz0

(qt+1
1 − αqs(θt+1

0 )))
the same reasoning as above holds and the following terms are obtained for E :
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δz0

Kq,1/2
−Aq

(28)

E′ =

αQ′

cp
∆θ0

δz0
Kq,1/2

−Aq
(29)

Using Equation 27 the sum of latent heat fluxes (LE = fsLsE
t+1 + (1− fs)LeEt+1) used in

the unstressed surface energy balance (12) will be written as :

LE = fsLs(Ẽ − E′∆θ0) + (1− fs)Le(Ẽ − E′∆θ0) (30)

At this stage all fluxes which include a surface temperature dependency and a coupling to the
atmosphere have been split into two components. The first term only depends on the old surface
temperature or surface saturation humidity while the other expresses the sensitivity of the flux
to the surface temperature variation. The unstressed surface energy balance (Equation 12) can
now be rewritten in a form which can easily be solved to obtain the surface temperature tendency
:

Cs
∆t

∆θ0 = R̃n + H̃ + fsLsẼs + (1− fs)LeẼ +G− (R′n +H ′ + fsLsE
′
s + (1− fs)LeE′)∆θ0 (31)

2.4 Introducing the stress functions

The above derivation makes the assumption that the potential evaporation is computed using
a bulk formulation. This is a rather strong assumption which we should be able to relax in
ORCHIDEE at some point. It has been shown for instance that the bulk formulation overesti-
mates potential evaporation and is more sensitive to climate change than the Penman-Monteith
formulation (Barella-Ortiz et al., 2013). It is thus of interest to be able to replace in the standard
surface energy balance equation the potential evaporation by the one obtained from an unstressed
surface energy balance equation (Equation 12) (see Barella-Ortiz et al. 2013 for further details).
In order to achieve this we will operate by analogy when introducing the stress functions. In all
generality we have one for sublimation (βs) and one for evaporation (β). This corresponds to
taking into account the stress functions in a time explicit way.

The standard surface energy balance equation is written :
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Cs
θt+1

0 − θt0
∆t

= Rt+1
n +Ht+1 + fsLsβsE

t+1 + (1− fs)LeβEt+1 +G (32)

Applying these stress function to the implicit formulation of the unstressed surface energy
balance equation we obtain :

Cs
∆t

∆θ0 = R̃n+H̃+fsLsβsẼs+(1−fs)LeβẼ+G−(R′n+H ′+fsLsβsE
′
s+(1−fs)LeβE′)∆θ0 (33)

3 The previous method for introducing the stress functions

In SECHIBA the beta function was directly integrated in the implicit resolution of the latent
heat flux. In order to illustrate the difference the equations used previously are derived with the
nomenclature used in this document.

Evaporation (Ev) is formulated directly with the stress function :

Et+1
v =

Kq,1/2

δz0
β(qt+1

1 − αqs(θt+1
0 )) (34)

Using directly equation 2 for moisture we obtain the following implicit formulation for evap-
oration :

Et+1 =
Bq − αqs(θt+1

0 )
δz0

βKq,1/2
−Aq

(35)

=
Bq − αqs(θt0)− αQ′

cp
∆θ0

δz0
βKq,1/2

−Aq
(36)

=
Bq − αqs(θt0)
δz0

βKq,1/2
−Aq

−
αQ′

cp
∆θ0

δz0
βKq,1/2

−Aq
(37)

= Ẽv − E′v∆θ0 (38)

This last equation can now be used to replace the potential evaporation in equation 12 by
using the appropriate β functions for evaporation and sublimation.

Because in this formulation potential evaporation is not clearly identified anymore, it was
chosen at the time ORCHIDEE was developed, to keep β as a multiplying factor for Ẽ and E′.

4 Forcing the surface with a relaxation to observations

Implemented in dim2 driver.f90 but not tested
Forcing a land-surface scheme directly with observed atmospheric variables may lead to nu-

merical problems as the consistency between simulated fluxes and atmospheric conditions is lost.
One remedy to this problem is to simulate atmospheric conditions as a result of surface fluxes
and a Newtonian relaxation towards observations.

The evolution equation for atmospheric conditions can easily be obtained with :

Xt+1
1 −Xt

1

∆t
=

1

∆zr

(
Kr

Xt+1
obs −X

t+1
1

δzr
− F t+1

X,1/2

)
(39)
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with δzr is the thickness of the relaxation layer. It follows that ∆zr = 1
2 (δz0 + δzr). X

t+1
obs is

the observed variable towards we will relax at time step t+ 1.In order to simplify the discussion
we will set Kr

δzr
= Λ and ∆zr = 1

2δz0.
Solving equation 39 with the same approach as in equation 2 we obtain :

Xt+1
1 = AXF t+1

X,1/2 + BX (40)

using :

AX =
1

δz0
2∆t + Λ

(41)

BX =
ΛXt+1

obs
δz0
2∆t + Λ

+
Xt

1

1 + 2∆t
δz0

Λ
(42)

Using the above equation the two extreme cases of the relaxation can be discussed.

Strongly constrained forcing : To achieve a forcing of the land-surface scheme which
follows closely the observed atmospheric variables large values of the relaxation constant needs
(Λ) to be chose. In this case the following relations are obtained :

Λ→∞⇒
{
AX → 0
BX → Xt+1

obs

⇒ Xt+1
1 = Xt+1

obs (43)

Excluding observations : The other extreme of the relaxation is to suppress the influence
of observed atmospheric condition on the forcing variables. To achieve this case the relaxation
constant needs to be very small :

Λ→ 0⇒
{
AX → 1
BX → Xt

1
⇒ Xt+1

1 = Xt
1 (44)

Does not work properly. The time filtering induces a time shift and dampens
strongly the diurnal cycle! To avoid the last effect vales of more than 1000 are
needed for the relaxation constant. Probably a higher order scheme is needed.
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