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ABSTRACT

The mapped rivers and streams of the contiguous United States are available in a geographic information

system (GIS) dataset called National Hydrography Dataset Plus (NHDPlus). This hydrographic dataset has

about 3 million river and water body reaches along with information on how they are connected into net-

works. The U.S. Geological Survey (USGS) National Water Information System (NWIS) provides stream-

flow observations at about 20 thousand gauges located on the NHDPlus river network. A river network model

called Routing Application for Parallel Computation of Discharge (RAPID) is developed for the NHDPlus

river network whose lateral inflow to the river network is calculated by a land surface model. A matrix-based

version of the Muskingum method is developed herein, which RAPID uses to calculate flow and volume

of water in all reaches of a river network with many thousands of reaches, including at ungauged locations.

Gauges situated across river basins (not only at basin outlets) are used to automatically optimize the

Muskingum parameters and to assess river flow computations, hence allowing the diagnosis of runoff com-

putations provided by land surface models. RAPID is applied to the Guadalupe and San Antonio River basins

in Texas, where flow wave celerities are estimated at multiple locations using 15-min data and can be

reproduced reasonably with RAPID. This river model can be adapted for parallel computing and although

the matrix method initially adds a large overhead, river flow results can be obtained faster than with the

traditional Muskingum method when using a few processing cores, as demonstrated in a synthetic study using

the upper Mississippi River basin.

1. Introduction

Land surface models (LSMs) have been developed by

the atmospheric science community to provide atmo-

spheric models with bottom boundary conditions (water

and energy balance) and to serve as the land base for

hydrologic modeling. Over the past two decades, over-

land and subsurface runoff calculations done by LSMs

have extensively been used to provide water inflow to

river routing models that calculate river discharge (De

Roo et al. 2003; Habets et al. 1999a–c, 2008; Lohmann

et al. 1998a,b, 2004; Maurer et al. 2001; Oki et al. 2001;

Olivera et al. 2000). However, river routing within LSMs

has traditionally been done using gridded river net-

works that best fit the computational domain used in

LSMs. Today, geographic information system (GIS) hy-

drographic datasets are increasingly becoming available

at continental [e.g., the National Hydrography Dataset

Plus (NHDPlus; Horizon Systems Corporation 2007)] and

global scales [e.g., Hydrological Data and Maps Based

on Shuttle Elevation Derivatives at Multiple Scales

(HydroSHEDS; Lehner et al. 2006)]. These datasets

provide a vector-based representation of the river net-

work using the ‘‘blue line’’ mapped rivers and streams.

Furthermore, observations of the river systems are

now widely available in databases such as the U.S. Geo-

logical Survey (USGS) National Water Information Sys-

tem (NWIS) for the United States, in which thousands

of gauges are available along with their exact location

on the NHDPlus river network. Most studies mentioned

above—with the exception of Habets et al. (2008)—use
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a limited number of gauges throughout large river ba-

sins, often focusing on gauges located at river mouths.

As the spatial and temporal resolutions of weather and

climate models and their underlying land surface models

increase, using gauges located across basins would help

in diagnosing the quality of LSM computations. The

latest work on general circulation models by the in-

ternational scientific community, especially by the In-

tergovernmental Panel on Climate Change (Solomon

et al. 2007), opens potential studies of the evolution

of water resources with global change. Using mapped

streams and water bodies in LSMs could benefit the

resulting assessment of the impact of global change in

water resources by providing estimation of changes at

the blue-line level. Furthermore, the use of parallel

computing is quite common in regional- to global-scale

atmospheric and ocean modeling but comparatively in-

frequent in modeling of large river networks. Gener-

ally, parallel computing can be utilized to either solve

problems of increasing size [as done with the Parallel

Flow simulator (ParFlow); Jones and Woodward 2001;

Kollet and Maxwell 2006; Kollet et al. 2010] or to de-

crease computation time (see, e.g., Apostolopoulos and

Georgakakos 1997; Larson et al. 2007; Leopold et al.

2006; von Bloh et al. 2010). These two types of ap-

proaches to parallel computing are respectively referred

to as scalability and speedup of calculations; the work

presented herein focuses on the latter. Apostolopoulos

and Georgakakos (1997) investigated the speedup of

streamflow computations using hydrologic models in

river networks as a function of network decomposition

and of the computing time ratio between vertical and

horizontal water balance calculations. Simple river rout-

ing within LSMs being traditionally performed by carry-

ing computations from upstream to downstream, one

way to speed up river flow modeling is to use a sequen-

tial river routing code to compute independent basins

on different processing cores, as done in Leopold et al.

(2006) and in Larson et al. (2007). Such methods allow

avoiding interprocessor communication but result in im-

balanced computing loads when some basins are much

larger than others. Leopold et al. (2006) partly addressed

load imbalance by using parallel computing for surface

water balance, but the river routing part remains se-

quential. Von Bloh et al. (2010) implemented a routing

method in which computations do not have to be carried

in order from upstream to downstream, therefore ob-

taining almost perfect speedup. The work developed

herein investigates a way to obtain speedup while re-

taining traditional upstream-to-downstream computa-

tions that are used in most river routing schemes.

The present study links a land surface model with a

new river network model called Routing Application

for Parallel Computation of Discharge (RAPID) using

NHDPlus for the representation of the river network

and USGS NWIS gauges for the optimization of model

parameters and the assessment of river flow computa-

tions. All models and datasets used herein are available

at least for the contiguous United States. The work

presented here focuses first on the Guadalupe and San

Antonio River basins in Texas (see Fig. 1), together

covering a surface area of about 26 000 km2. These

basins have about 5000 river reaches and their corre-

sponding catchments in the NHDPlus dataset (see Fig. 2)

out of 3 million for the United States. These two basins

are also chosen for study because of significant contri-

butions to surface water flow from groundwater sources,

because of a large reservoir at Canyon Lake where the

impacts of constructed infrastructure on flow dynamics

have to be considered, and because these rivers flow out

into an estuarine system at San Antonio Bay. A syn-

thetic study of the performance of RAPID in a parallel

computing environment is also presented using the up-

per Mississippi River basin (see Fig. 3), which has about

180 000 river reaches in NHDPlus and covers an area of

about 490 000 km2.

The research presented in this paper aims at answer-

ing the following questions: how can a river model be

developed for calculation of flow and volume of water in

a river network of thousands of blue-line river reaches?

How can the connectivity information in NHDPlus be

used to run a river network model in part of the United

States? How can flow at ungauged locations be recon-

structed? How can model computations be assessed and

optimized based on all available measurements? How

can parallel computing be used to speed up upstream-to-

downstream computations of river flow within a large

river network?

First, the development of the RAPID model is pre-

sented. Then, the modeling framework for calculation

of river flow in the Guadalupe and San Antonio River

basins using runoff data from a land surface model is

developed, followed by results. Finally, the speedup of

RAPID in a parallel computing environment is assessed.

2. Model development

The model presented here is named RAPID (http://

www.geo.utexas.edu/scientist/david/rapid.htm). RAPID

is based on the traditional Muskingum method that was

first introduced by McCarthy (1938) and has been ex-

tensively studied in the literature in the past 70 years.

The Muskingum method has two parameters, k and x,

respectively a time and a dimensionless parameter.

Among the most noteworthy papers related to the Mus-

kingum method, Cunge (1969) showed the Muskingum
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method is a first-order approximation of the kinematic

and diffusive wave equation and proposed a method

known as the Muskingum–Cunge method—a second-

order approximation of the kinematic and diffusive wave

equation—in which the Muskingum parameters are com-

puted based on mean physical characteristics of the river

channel and of the flow wave. Koussis (1978) proposed

a variable-parameter Muskingum method based on the

FIG. 1. Guadalupe and San Antonio River basins.

FIG. 2. NHDPlus river network and catchments for the Guadalupe and San Antonio River

basins.
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Muskingum–Cunge method where k varies with the

flow but x remains constant on the grounds that the

Muskingum method is relatively insensitive to this pa-

rameter. Other variable-parameter Muskingum methods

allow both k and x to vary (see, e.g., Miller and Cunge

1975; Ponce and Yevjevich 1978), although these variable-

parameter methods fail to conserve mass (Ponce and

Yevjevich 1978). Notable large-scale uses of the variable-

parameter Muskingum–Cunge method include Orlandini

and Rosso (1998) and Orlandini et al. (2003). More

recently, Todini (2007) developed a mass-conservative

variable-parameter Muskingum method known as the

Muskingum–Cunge–Todini method.

As a first step, the traditional Muskingum method

with temporally constant parameters calculated partly

based on the work of Cunge (1969) is used in this study

because there are significant challenges to overcome in

adapting the Muskingum method for river networks, in

efficiently running it within a parallel computing envi-

ronment, and in developing an automated parameter

estimation procedure before more sophisticated flow

equations are used. However, the physics of flow could be

improved with many variations based on the Muskingum

method or adapted to the Saint Venant equations.

a. Calculation of flow and volume of water
in a river network

In a network of thousands of reaches, matrices are

needed for network connectivity and flow computation.

The backbone of RAPID is a vector-matrix version of

the Muskingum method shown in Eq. (1) and derived

subsequently in this section:

(I 2 C1 � N) �Q(t 1 Dt)

5 C1 �Q
e(t) 1 C2 � [N �Q(t) 1 Qe(t)] 1 C3 �Q(t),

(1)

where t is time and Dt is the river routing time step. The

bold roman notation is used for vectors and bold sans

serif font for matrices: I is the identity matrix; N is the

river network matrix; and C1, C2, and C3 are parameter

matrices; Q is a vector of outflows from each reach; and

Qe is a vector of lateral inflows for each reach. Such a

vector-matrix formulation of the Muskingum method

has to our knowledge never been previously published.

Equation (1) is used for river network routing and can

be solved using a linear system solver. The vector-matrix

notation provides one flow equation for the entire river

network, therefore avoiding spatial iterations. For a river

network with m river reaches, all vectors are of size m

and all matrices are square of size m. Each element of

a vector corresponds to one river reach in the network.

For performance purposes, all matrices are stored as

sparse matrices (only the nonzero values are recorded).

A five-reach, two-node, and two-gauge river network is

used here to clarify the mathematical formulation of the

river network model and is shown in Fig. 4a. The river

FIG. 3. Upper Mississippi River basin.
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network is made up of a combination of river reaches

similar to that of Fig. 4b. The model formulation is pre-

sented here for a small river network but can be gener-

alized to any size of river network.

The vector Q is a vector of the outflows Qj of all

reaches of the river network, where j is the index of a

river reach within the network:

Q(t) 5

Q1(t)

Q2(t)

Q3(t)

Q4(t)

Q5(t)

3
7777755 [Qj(t)]j2[1,m]

,

2
666664 (2)

and Qe is a vector of flows Qe
j that are lateral inflows to

the river network. Lateral inflows include runoff, ground-

water, or any type of forced inflow (outflow at a dam,

pumping, etc.):

Qe(t) 5 [Qe
j (t)]j2[1,m]

. (3)

A land surface model whose time step is coarser than the

river routing time step provides Qe. Two assumptions

are made in the development of RAPID, one regarding

the temporal variability of Qe and one regarding the lo-

cation at which Qe enters the river network. In this study,

the river routing time step is 15 min and inflow from land

surface runoff is available every 3 h. In the derivation of

Eq. (1), Qe is assumed constant [i.e., Qe(t 1 Dt) 5 Qe(t)]

over all 15-min river routing time steps included within

a given land surface model 3-h time step. This partial

temporal uniformity simplifies the river network model

formulation, limits the quantity of input data, and

facilitates the coupling with land surface models. This

assumption is valid at all times except at the last routing

time steps before a new Qe is made available by the land

surface model. Also, the external inflow Qe is assumed to

enter the network as an addition to the upstream flow.

With these two assumptions, the Muskingum method ap-

plied to reach 5 in Fig. 4b gives the following:

Q5(t 1 Dt) 5 C1[Q3(t 1 Dt) 1 Q4(t 1 Dt) 1 Qe
5(t)]

1 C2[Q3(t) 1 Q4(t) 1 Qe
5(t)] 1 C3Q5(t),

(4)

where C1, C2, and C3 are the Muskingum parameters

that are stated in Eq. (6). The reader should note that

these two assumptions are equivalent to using a unit-

width lateral inflow along with a term C4 as found in

available literature (see, e.g., Fread 1993; NERC 1975;

Orlandini and Rosso 1998; Ponce 1986). Equation (1) is a

generalization of Eq. (4) using a vector-matrix notation.

Berge (1958) proposed the concept of matrices asso-

ciated with graphs. This concept can be applied to the

river network in Fig. 4a in order to create the network

connectivity matrix N given in Eq. (5) in both full and

sparse formats. The network connectivity matrix is a

square matrix whose dimension is the total number of

reaches in the network. A value of one is used at row i

and column j if reach j flows into reach i, and zero is

used everywhere else:

N 5

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 1 1 0

3
7777755 1 1

1 1

3
777775.

2
666664

2
666664 (5)

The upstream inflow to the network can therefore be

computed by multiplying the network connectivity ma-

trix N by the vector of outflows Q. In case of a di-

vergence in the river network (when going downstream)

or in case of a loop, a unique reach (the major diver-

gence) is used to carry all the upstream flow, and the

other reaches (minor divergences) carry only the flow

that results from their lateral inflow. This formulation

could be modified to take into account given fractions

of flows that separate into different parts of a divergence

if that information is available.

The matrices C1, C2, and C3 are diagonal matrices

with their diagonal elements being the coefficients used in

the Muskingum method (McCarthy 1938), respectively

C1j, C2j, and C3j, such that

FIG. 4. River network.

OCTOBER 2011 D A V I D E T A L . 917

ducharne
Texte surligné 

ducharne
Texte surligné 



C1j 5

Dt

2
2 kjxj

kj(1 2 xj) 1
Dt

2

, C2j 5

Dt

2
1 kjxj

kj(1 2 xj) 1
Dt

2

, and

C3j 5
kj(1 2 xj) 2

Dt

2

kj(1 2 xj) 1
Dt

2

, (6)

where kj is a storage constant (with dimension of a time)

and xj a dimensionless weighting factor characterizing

the relative influence of the inflow and the outflow on

the volume of the reach j. The Muskingum method is

stable for any x 2 [0, 0.5], regardless of the value of k

and Dt (Cunge 1969). For any j, C1j 1 C2j 1 C3j 5 1.

In RAPID, the parameters k and x of the Muskingum

method are allowed to differ from one river reach to an-

other, and corresponding vectors are defined in Eq. (7):

k 5 [kj]j2[1,m]
, x 5 [xj]j2[1,m]

. (7)

The constants defined in Eq. (6) are used as the diagonal

elements of the matrices C1, C2, and C3. Equation (8)

shows an example for C1; C2 and C3 are treated similarly:

C1 5

C1
1

C1
2

C1
3

C1
4

C1
5

3
77777775

.

2
66666664

(8)

The sum C1 1 C2 1 C3 equals the identity matrix.

The calculation of the volume of water in a given reach

can be needed for coupling with groundwater models.

Here, the first-order, explicit, forward Euler method is

applied to the continuity equation to calculate the volume

of water in each river reach of the network, as shown

in Eq. (9) where the first, second, and third terms of the

right-hand side are the volume of water that respectively

were in the river reach, flowed into the reach, and dis-

charged from the reach:

V(t 1 Dt) 5 V(t) 1 [NQ(t) 1 Qe(t)]Dt 2 Q(t)Dt, (9)

where V is a vector of the volume of water Vj in each

river reach j:

V(t) 5 [Vj(t)]j2[1,m]
. (10)

Details on the massively parallel implementation of

the matrix-based Muskingum method presented in this

section, and of the automated parameter estimation pre-

sented in the section below, are given in appendix A.

b. Parameter estimation

To estimate the parameters k and x to be used in

RAPID, an inverse method is developed. The principle

of an inverse method is to optimize the parameters of

a model so that the outputs of the model approach ob-

servations. A cost function reflecting the difference be-

tween model calculations and observations is needed to

assess the quality of a set of model parameters. The best

set of parameters is chosen as the set that minimizes the

cost function and is determined through optimization.

A square-error cost function f is chosen:

f(k, x) 5 �
t5t

f

t5t
o

�
Q(t)2Qg(t)

f

�T
� G �

�
Q(t) 2 Qg(t)

f

�)
,

(

(11)

where the summation is made daily. The T in the ex-

ponent is for vector transpose, and to and tf are re-

spectively the first and last day used for the calculation

of f. The model parameter vectors k and x are kept

constant within the temporal interval [to, tf], and the cost

function is calculated several times with different sets

of parameters during the optimization procedure. The

scalar f allows f to be on the order of magnitude of 101,

which is helpful for automated optimization procedures;

Q(t) is the daily average outflow vector, calculated based

on the mean of all routing time steps in a given day; Qg(t)

is a vector with the total number of river reaches for

dimension, with the daily value observed Q
g
j (t) corre-

sponding to reach j where gauge measurements are avail-

able and zero where no gauge is available; G is a sparse

diagonal matrix that allows the dot product to survive only

where gauges are available, so that G has a value of one on

the diagonal element of index j if a gauge is available on

reach j and zero everywhere else. Using the example net-

work given in Fig. 4a, G and Qg(t) take the following form:

G 5 1

1

3
777775, Qg(t) 5

0

0

Q
g
3(t)

0

Q
g
5(t)

3
777775.

2
666664

2
666664 (12)

According to Fread (1993), x2 [0.1, 0.3] in most streams.

By analogy with the kinematic wave equation, Cunge

(1969) showed that the parameter k of the Muskingum

method is the travel time of a flow wave through a river

reach. For a given river reach j of length Lj where a flow
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wave of celerity cj travels, kj is obtained by dividing the

length by the celerity of the wave, as shown in Eq. (13):

kj 5
Lj

cj

. (13)

Although the routing model defined by Eq. (1) allows

for variability of the parameters (kj, xj) on a reach-to-

reach basis, attempting to automatically estimate model

parameters independently for all the reaches of a basin

would be a costly undertaking. Therefore, the search for

optimal parameters is limited to determining two mul-

tiplying factors lk and lx such that

kj 5 lk

Lj

cj

, xj 5 0:1lx. (14)

To minimize the influence of the initial guess on the op-

timization procedure, three different initial guesses for

(lk, lx) are used. Out of the three corresponding optimal

(lk, lx) obtained, only the one couple leading to the

minimum value of the cost function f is kept. There-

fore, the optimization procedure leads to only one opti-

mal couple (lk, lx) for a given basin in the network. Note

that—as a first step—x is here constant over a given basin

on the grounds that the Muskingum method is relatively

insensitive to this parameter (Koussis 1978). Some data

available in NHDPlus (such as mean flow, mean velocity,

slope, etc.) associated with available formulations for x

(e.g., Cunge 1969; Orlandini and Rosso 1998) could be

used to improve the proposed method.

3. Application

RAPID is designed to handle large routing problems.

Given a river network and connectivity information as

well as lateral inflow to the river network, RAPID can

run on any river network. In this study, a framework

for computation of river flow in the Guadalupe and San

Antonio River basins is developed that uses a one-way

modeling framework with an atmospheric dataset, a land

surface model, and RAPID as the river model. This

section presents how the Guadalupe and San Antonio

River basins are described in the NHDPlus dataset, how

a land surface model is used to provide lateral inflow to

the river network, and how the meteorological forcing is

prepared.

a. RAPID used on NHDPlus

There are a total of 5175 river reaches with known di-

rection and connectivity within the NHDPlus description

of the Guadalupe and San Antonio river basins (as shown

in Fig. 2). These 5175 reaches have an average length of

3.00 km and the average catchment defined around them

is 5.11 km2 in area; all are used for this study. Details on

the fields used in the NHDPlus dataset, including the

unique ‘‘common identifier’’ (COMID) used for all river

reaches and their corresponding catchments, and on how

NHDPlus is used with RAPID, are given in appendix B.

In this study, the vector of outflows in all river reaches Q

was arbitrarily initialized to the uniform value of 0 m3 s21

prior to running RAPID.

b. Land surface model and coupling with RAPID

Within this study, the core physical model governing

the one-dimensional vertical fluxes of energy and mois-

ture is the community Noah land surface model with

multiparameterization options (Noah-MP; Niu et al. 2011).

Noah-MP offers multiple options for choosing the mod-

eling of certain physical phenomena. In this study, the soil

moisture factor for stomatal resistance is of ‘‘Noah type’’

(Niu et al. 2011) and the runoff scheme is TOPMODEL

based, using a simple groundwater model (SIMGM; Niu

et al. 2007). The soil column is 2 m deep, below which is

an unconfined aquifer. To represent the characteristics of

the structural soil over the model domain, the saturated hy-

draulic conductivity, which is determined by the soil tex-

ture data, is enlarged by factor of 10 (through calibration).

The soil hydrology of Noah (soil moisture) is run at an

hourly time step and runoff data are produced every three

hours. In this study, the state variables of Noah were

initialized through a spinup method.

Noah-MP calculates the amount of water that runs off

on and below the land surface. This quantity is used to

provide RAPID with the water inflow from outside of

the river network. David et al. (2009) presented a cou-

pling technique using a hydrologically enhanced version

of the Noah LSM called ‘‘Noah distributed’’ (Gochis

and Chen 2003) that allows physically based modeling

of the horizontal movement of surface and subsurface

water from the land surface to a river reach. In interest

of a simpler coupling scheme, the work of David et al.

(2009) has been modified. In this study, a flux coupler

between Noah and RAPID is developed using the catch-

ments available in the NHDPlus dataset.

The NHDPlus catchments contributing runoff to each

river reach were determined as part of the NHDPlus

development using a digital elevation model and its as-

sociated flow accumulation and flow direction grids.

These grids have a native resolution of 30 m. The map

of catchments is available in NHDPlus in both gridded

(at 30-m resolution) and vector formats in a shape file.

Running a land surface model at a 30-m resolution is

very resource demanding. Therefore, a coarser resolution

of 900-m cell size is chosen. The shape file of NHDPlus
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catchment boundaries is converted to a grid of size

900 m. Within this conversion process, the accuracy of

the boundaries of the catchments is lowered but the

catchment boundaries are reasonably respected and the

computational cost of the land surface model calcula-

tions is reasonable. For each 3-h output of the Noah

model, surface and subsurface runoff data is super-

imposed onto the catchment grid, and all runoff that

corresponds to the catchment of each river reach is

summed and used as the water inflow to the river reach.

Figure 5 shows the principle of the flux coupler in which

the 900-m runoff data generated by the Noah model is

superimposed on the 900-m map of NHDPlus catchment

COMIDs to determine the lateral inflow for NHDPlus

reaches used by RAPID.

Therefore, no horizontal routing is used between the

land surface and the river network in the proposed scheme.

This differs from some other models that use runoff from

a one-dimensional model to force a river routing model.

For instance, the two-dimensional wave equation is used in

Gochis and Chen (2003) or the linear reservoir equation is

used in Ledoux et al. (1989).

The coupling method used here can be adapted to

any land surface model that computes surface and sub-

surface runoff on a grid. This coupling technique is au-

tomated in a FORTRAN program.

c. Meteorological forcing

Land surface models need meteorological forcing in

order to compute the water and the energy balance at

the surface. The Noah LSM requires seven meteoro-

logical parameters: precipitation, specific humidity, air

temperature, air pressure, wind speed, downward short-

wave, and downward longwave radiation. Hourly pre-

cipitation is obtained from the Next Generation Weather

Radar (NEXRAD) and downscaled from its original

resolution (4.763 km) to 900 m using the method de-

veloped in Guan et al. (2009). All other meteorological

parameters are downloaded from the 3-hourly North

American Regional Reanalysis (NARR) and converted

from its original resolution (32.463 km) to 900 m using

a simple triangle-based linear interpolation. All meteo-

rological data are prepared for four years (1 January

2004–31 December 2007).

4. Calibration and results for the Guadalupe
and San Antonio River basins

The framework for computation of river flow that is

developed in the previous section is used to calculate

river flow in all 5175 river reaches of the Guadalupe and

San Antonio River basins for four years (1 January 2004–31

December 2007). In this section, flow wave celerities

in several subbasins are estimated from measurements,

the model parameters used in RAPID are presented,

and flows computed are compared to observed flows.

Issues related to the time step used in RAPID and to the

simulated wave celerities are also presented.

a. Estimation of wave celerities

The USGS Instantaneous Data Archive (IDA; http://

ida.water.usgs.gov/ida/) provides 15-min flow data that

can be used to determine the flow wave celerity. Data at

fifteen gauging stations within the two basins studied are

obtained from IDA over two time periods (1 January

2004–30 June 2004 and for 1 January 2007–30 June 2007).

The maximum lagged cross correlation between hy-

drographs at two consecutive gauging stations is used

to determine the flow wave celerity. The lagged cross-

correlation r is a measure of similarity between two

wave forms as a function of a lag time tlag applied to

one of them, as shown in Eq. (15):

r 5
�[Qa(t) 2 Qa][Qb(t 1 tlag) 2 Qb]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�[Qa(t) 2 Qa]2�[Qb(t 1 tlag) 2 Qb]2

r , (15)

where Qa and Qb are the flows measured at the upstream

and downstream station, respectively, and the summa-

tion is here made every 15 min for six months. Figure 6

shows the correlation as a function of increasing lag time

between three different sets of consecutive gauging

stations. The lag time giving the maximum correlation is

taken as the travel time ttravel for the flow wave between

the two stations. The travel times are estimated for 11 sets

of two stations and are shown on Table 1. Travel times

FIG. 5. Principle of flux coupler between Noah and RAPID.

920 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12

ducharne
Texte surligné 



of 0 s are reported at two stations, where the flow wave is

probably too fast to be captured by 15-min measurements.

The wave celerity c is then computed using Eq. (16):

c 5
d

ttravel

, (16)

where d is the distance between two stations. The

NHDPlus Flow Table Navigator Tool (http://www.

horizon-systems.com/nhdplus/tools.php) is used to esti-

mate the curvilinear distance between two stations along

the NHDPlus river network that are shown on Table 1.

The wave celerity has been estimated for 11 subbasins

within the Guadalupe and San Antonio River basins.

Table 2 shows the values that are obtained for the two

time periods considered as well as their average. Figure 7

shows the corresponding subbasins as well as the loca-

tions of all gauging stations.

b. Parameters used in RAPID

RAPID needs two vectors of parameters k and x that

can either be determined using physically based equa-

tions, through optimization, or a combination of both.

In this study, daily streamflow data are obtained from

the USGS National Water Information System (http://

waterdata.usgs.gov/nwis) in order to use the built-in

parameter estimation. Within the Guadalupe and San

Antonio River basins, NWIS has 74 gauges that measure

flow, 36 of them having full records of daily measurements

for the four years studied (1 January 2004–31 December

2007). These 36 stations are used for parameter estimation.

Four sets of model parameters—denoted by the super-

scripts a, b, g, and d—are used in this study. These sets of

parameters are all based on Eq. (14), which is used with

a uniform wave celerity of c0 5 1 km h21 5 0.28 m s21

throughout the basin or with the celerities cj determined

based on the IDA lagged cross-correlation study.

The first set (ka, xa) is obtained from parameter esti-

mation shown in Eq. (11) using the uniform wave ce-

lerity c0 5 0.28 m s21, and the resulting values of the two

multiplying factors lk and lx of Eq. (14) are

ka
j 5 la

k

Lj

c0
, xa

j 5 la
x 0:1

la
k 5 0:131 042, la

x 5 2:581 28. (17)

The parameters (kb, xb) are determined without opti-

mization using the celerities cj determined based on the

IDA lagged cross-correlation study and set to

k
b
j 5 l

b
k

Lj

cj

, x
b
j 5 lb

x 0:1

l
b
k 5 1, lb

x 5 1. (18)

The third set of parameters (kg, xg) is obtained through

optimization using the celerities cj determined based on

the IDA lagged cross-correlation study, and the result-

ing values are

FIG. 6. Lagged cross correlation as a function of lag time.
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k
g
j 5 l

g
k

Lj

cj

, x
g
j 5 lg

x 0:1

l
g
k 5 0:617 188, lg

x 5 1:958 98. (19)

The optimization converges to a value of k that is 38%

smaller than that estimated with the IDA lagged cross-

correlation, suggesting that a faster flow wave in the

river network produces better flow calculations. In the

present study, routing on the land surface from the catch-

ment to its corresponding reach is not modeled. There-

fore, one would expect that the optimized flow celerity

in the river network would be slower than that estimated

from river flow observations, which is not the case here.

This suggests that runoff is either produced too slowly or

too far upstream of each gauge, perhaps because runoff

in land surface models is often calibrated based on a

lumped value at the downstream gauge of a basin, as was

done here with Noah-MP. Further details on the quality

of runoff simulations are given in section 4d.

The fourth set of parameters (kd, xd) is determined for

a better match of celerity calculations, as explained later

in this paper.

c. Time step of RAPID simulation

Cunge (1969) showed that the Muskingum method is

stable for any x 2 [0, 0.5] and that the wave celerity

computed by the Muskingum method approaches the

theoretical wave celerity of the kinematic wave equation

if the time step of the river routing equals the travel time

of the wave (for x 5 0.5), as shown in Eq. (20):

"j 2 [1, m] cj ’
Lj

Dt
. (20)

However, both the celerity of flow and the length of river

reaches vary along the network, and the model formu-

lation of RAPID allows for only one unique value of

the time step Dt be chosen. In the Guadalupe and San

Antonio River basins, the mean length is 3 km and the

median length is 2.4 km. The probability density func-

tion and the cumulative distribution functions for the

lengths of river reaches are shown in Fig. 8. The celer-

ities estimated earlier are on the order of c 5 2.5 m s21.

Using the median value of the reach length along with c

5 2.5 m s21, Eq. (20) gives Dt 5 960 s. To have an in-

teger conversion between the river routing time step

and the land surface model time step (3 h), a value of

Dt 5 900 s 5 15 min is chosen.

d. Analysis of the quality of river flow computation

For various model simulations, the average and the

root-mean-square error (RMSE) of computed flow rate

are calculated using daily data and are given in Table 3.

The Nash efficiency (Nash and Sutcliffe 1970) is bounded

by the interval ]2‘, 1] and gives an estimate of the quality

of modeled river flow computations when compared to

FIG. 7. Wave celerities are estimated for 11 different subbasins within the Guadalupe and San

Antonio River basins. Location of 36 gauging stations used for optimization, and names of the

15 gauging stations used for estimation of wave celerities. The same subbasins are used for

distributed parameters in RAPID.
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observations, and is also given in Table 3. An efficiency

of 1 corresponds to a perfect model and 0 corresponds to

a model producing the mean of observations. The results

shown for a lumped model correspond to when runoff

from Noah is accumulated at the gauge directly without

any routing. The average values of flow in RAPID

simulations are tied to the amount of runoff water cal-

culated by the Noah LSM and the bias generated by the

land surface model cannot be fixed by RAPID. How-

ever, the internal connectivity of the NHDPlus river

network is well translated in RAPID and mass is con-

served within RAPID since the flow rates in the lumped

simulation and in all four simulations of RAPID are the

same. Figure 9 shows the ratio between observed and

lumped streamflow at 17 gauges located across the Gua-

dalupe and San Antonio River basins. This ratio is around

unity downstream of the Guadalupe and San Antonio

Rivers but is greater than seven upstream, suggesting that

runoff is most likely overestimated at the center of the

basin. Additionally, runoff is largely underestimated at

two stations just downstream of the outcrop area of the

Edwards Aquifer: the Comal River at New Braunfels and

the San Marcos River at San Marcos. These stations

measure large average streamflow (respectively 10.59 and

5.9 m3 s21) although draining a relatively small area

(respectively 336 and 129 km2), and are actually two of

the largest springs in Texas. These flows are much larger

than the lumped runoff (respectively 0.67 and

0.26 m3 s21), which is expected because the modeling

framework presented herein does not does not explicitly

simulate aquifers.

However, the RAPID simulations (ka, xa), (kb, xb),

and (kg, xg) lead to a smaller RMSE and a higher Nash

efficiency than the lumped runoff. This shows that an

explicit river routing scheme with carefully chosen pa-

rameters allows obtaining better streamflow calculations

than a simple lumped runoff scheme, as expected.

Within the different RAPID simulations, the set of

parameters (kd, xd) gives the best results for RMSE and

Nash efficiency, followed by (kb, xb), (ka, xa), and (kg, xg).

Therefore, a greater spatial variability in the values of

k contributes to the quality of model results, and the

built-in optimization in RAPID further enhances these

model results. An example hydrograph for the Gua-

dalupe River near Victoria, Texas is shown in Fig. 10, and

is computed using (kg, xg).

e. Comparison between estimated and computed
wave celerities

To assess the capacity of the modeling framework to

reproduce surface flow dynamics, the celerity of the flow

wave in outputs from RAPID are computed. Fifteen-

minute river flow is computed with RAPID, and the

lagged cross correlation presented earlier is used to cal-

culate the wave celerity within the RAPID simulation.

Table 2 shows the celerities that are computed from

RAPID outputs. In the first three sets of model pa-

rameters used, the wave celerities simulated in RAPID

are greater than those observed. One can also notice

than even for (kb, xb), the model-simulated celerities are

different than the observed celerities that are used to

determine the vector kb itself. This was predicted by

Cunge (1969), who showed that the difference between

the celerity of the kinematic wave equation and that

computed using the Muskingum method is a function of

both x and the quotient Dt/Lj. Only the specific values

x 5 0.5 and Dt verifying Dt/Lj 5 cj allow obtaining the

same celerity. Furthermore, the work herein is done in

a river network, and the celerity estimated between two

points does not correspond only to the main river stem

but rather to a combination of all river reaches present

in the network between the two points. The ratio of the

average celerities from RAPID using (kb, xb) over the

average observed celerities is 1.54. As a final experi-

ment, a new set of parameters (kd, xd) is created to ac-

count for the faster waves in RAPID:

kd
j 5 ld

k

Lj

cj

, xd
j 5 ld

x0:1

ld
k 5 1:54, ld

x 5 1. (21)

FIG. 8. Statistics of river reach lengths in Guadalupe and San Antonio River basins.

924 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12



T
A

B
L

E
3

.
C

o
m

p
a

ri
so

n
o

f
o

b
se

rv
e

d
a

n
d

si
m

u
la

te
d

fl
o

w
s

a
t

1
5

lo
ca

ti
o

n
s

w
it

h
in

th
e

G
u

ad
a

lu
p

e
a

n
d

S
a

n
A

n
to

n
io

R
iv

e
r

b
a

si
n

s.

A
v

e
ra

g
e

d
a

il
y

st
re

a
m

fl
o

w
(m

3
s2

1
)

F
lo

w
ra

ti
o

R
M

S
e

rr
o

r
(m

3
s2

1
)

u
si

n
g

d
a

il
y

a
v

e
ra

g
e

s
N

a
sh

e
ffi

ci
e

n
cy

u
si

n
g

d
a

il
y

a
v

e
ra

g
e

s

G
a

u
g

in
g

st
a

ti
o

n
O

b
se

rv
ed

L
u

m
p

e
d

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

O
b

se
rv

ed
/

lu
m

p
e

d
L

u
m

p
e

d

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

L
u

m
p

e
d

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

R
A

P
ID

(k
a
,

xa
)

Jo
h

n
so

n
C

re
e

k
n

e
ar

In
g

ra
m

,
T

X

1
.1

6
0

.0
6

0
.0

6
0

.0
6

0
.0

6
0

.0
6

1
9

.3
3

4
.4

1
4

.4
1

4
.4

1
4

.4
1

4
.4

1
2

0
.0

5
2

0
.0

5
2

0
.0

5
2

0
.0

5
2

0
.0

5

G
u

ad
a

lu
p

e
R

iv
e

r

a
t

K
e

rr
v

il
le

,
T

X

4
.1

5
0

.1
4

0
.1

4
0

.1
4

0
.1

4
0

.1
4

2
9

.6
4

1
5

.0
4

1
5

.0
4

1
5

.0
4

1
5

.0
4

1
5

.0
4

2
0

.0
6

2
0

.0
5

2
0

.0
5

2
0

.0
5

2
0

.0
6

G
u

ad
a

lu
p

e
R

iv
e

r

a
t

C
o

m
fo

rt
,

T
X

9
.9

7
0

.8
1

0
.8

1
0

.8
1

0
.8

1
0

.8
1

1
2

.3
1

2
6

.5
7

2
6

.5
1

2
6

.5
1

2
6

.5
2

2
6

.5
3

2
0

.0
6

2
0

.0
6

2
0

.0
6

2
0

.0
6

2
0

.0
6

G
u

ad
a

lu
p

e
R

iv
e

r

n
e

a
r

S
p

ri
n

g

B
ra

n
ch

,
T

X

1
9

.7
4

5
.9

1
5

.9
1

5
.9

1
5

.9
1

5
.9

1
3

.3
4

4
2

.0
9

4
3

.0
6

4
3

.4
8

4
2

.7
2

4
4

.8
0

0
.2

6
0

.2
3

0
.2

1
0

.2
4

0
.1

6

G
u

ad
a

lu
p

e
R

iv
e

r

a
t

S
a

tt
le

r,
T

X

2
2

.0
4

6
.6

2
6

.6
2

6
.6

2
6

.6
2

6
.6

2
3

.3
3

4
0

.0
8

3
9

.8
5

3
9

.7
7

3
9

.9
4

3
9

.5
7

2
0

.0
6

2
0

.0
4

2
0

.0
4

2
0

.0
5

2
0

.0
3

G
u

ad
a

lu
p

e
R

iv
e

r

a
t

G
o

n
za

le
s,

T
X

6
4

.2
8

2
3

.2
7

2
3

.2
7

2
3

.2
7

2
3

.2
7

2
3

.2
7

2
.7

6
7

9
.8

3
8

0
.9

3
8

6
.4

4
8

0
.4

0
9

3
.7

8
0

.4
5

0
.4

4
0

.3
6

0
.4

5
0

.2
5

G
u

ad
a

lu
p

e
R

iv
e

r

a
t

C
u

e
ro

,
T

X

7
3

.2
3

5
2

.6
3

5
2

.6
2

5
2

.6
1

5
2

.6
2

5
2

.6
0

1
.3

9
7

6
.8

6
5

6
.4

1
6

4
.9

1
5

5
.5

2
8

2
.7

4
0

.5
9

0
.7

8
0

.7
1

0
.7

9
0

.5
3

G
u

ad
a

lu
p

e
R

iv
e

r

n
e
a
r

V
ic

to
ri

a

8
0

.9
6

6
1

.9
5

6
1

.9
3

6
1

.9
2

6
1

.9
3

6
1

.9
1

1
.3

1
9

3
.9

7
7

0
.1

1
6

5
.0

7
6

8
.0

5
8

9
.0

6
0

.5
4

0
.7

5
0

.7
8

0
.7

6
0

.5
9

C
o

le
to

C
re

e
k

a
t

A
rn

o
ld

R
o

a
d

n
e

a
r

S
ch

ro
ed

e
r,

T
X

3
.4

5
8

.7
8

8
.7

8
8

.7
8

8
.7

8
8

.7
8

0
.3

9
1

5
.4

3
1

5
.4

4
1

5
.4

5
1

5
.4

6
1

5
.4

4
0

.0
3

0
.0

3
0

.0
3

0
.0

2
0

.0
3

C
o

le
to

C
re

e
k

n
e

ar

V
ic

to
ri

a
,

T
X

3
.9

9
1

3
.7

2
1

3
.7

2
1

3
.7

2
1

3
.7

2
1

3
.7

2
0

.2
9

2
1

.8
2

2
2

.6
1

2
2

.4
6

2
2

.2
6

2
2

.6
5

0
.1

0
0

.0
3

0
.0

5
0

.0
6

0
.0

3

M
e

d
in

a
R

iv
e

r
a

t

B
a

n
d

e
ra

s,
T

X

5
.3

0
0

.7
5

0
.7

5
0

.7
5

0
.7

5
0

.7
5

7
.0

7
1

0
.7

8
1

0
.7

7
1

0
.7

7
1

0
.7

7
1

0
.7

7
0

.0
5

0
.0

5
0

.0
5

0
.0

5
0

.0
5

M
e

d
in

a
R

iv
e

r
n

e
a

r

M
a

cd
o

n
a

,
T

X

8
.7

3
2

.0
9

2
.0

9
2

.0
9

2
.0

9
2

.0
9

4
.1

8
1

2
.8

9
1

2
.7

4
1

2
.7

2
1

2
.7

4
1

2
.7

2
0

.2
9

0
.3

1
0

.3
1

0
.3

0
0

.3
1

S
a

n
A

n
to

n
io

R
iv

e
r

n
e

a
r

E
lm

en
d

o
rf

,

T
X

2
5

.0
5

7
.9

5
7

.9
5

7
.9

5
7

.9
5

7
.9

5
3

.1
5

3
9

.9
1

3
9

.2
7

3
9

.2
3

3
9

.4
1

3
9

.1
6

0
.3

4
0

.3
6

0
.3

6
0

.3
6

0
.3

7

S
a

n
A

n
to

n
io

R
iv

e
r

n
e

a
r

F
a

ll
s

C
it

y
,

T
X

2
5

.0
1

1
2

.3
6

1
2

.3
6

1
2

.3
6

1
2

.3
6

1
2

.3
6

2
.0

2
3

3
.2

3
3

1
.1

3
3

0
.6

3
3

1
.2

6
3

2
.0

0
0

.4
5

0
.5

2
0

.5
3

0
.5

1
0

.4
9

S
a

n
A

n
to

n
io

R
iv

e
r

a
t

G
o

li
ad

,
T

X

3
7

.5
4

3
4

.9
6

3
4

.9
5

3
4

.9
5

3
4

.9
5

3
4

.9
4

1
.0

7
4

2
.3

4
3

7
.7

3
3

4
.5

8
3

6
.9

2
3

9
.1

0
0

.5
6

0
.6

5
0

.7
1

0
.6

7
0

.6
3

M
e

a
n

2
5

.6
4

1
5

.4
7

1
5

.4
6

1
5

.4
6

1
5

.4
6

1
5

.4
6

3
7

.0
2

3
3

.7
3

3
4

.1
0

3
3

.4
3

3
7

.8
5

0
.2

3
0

.2
6

0
.2

6
0

.2
7

0
.2

2

OCTOBER 2011 D A V I D E T A L . 925



Table 2 shows that the parameters (kd, xd) allow for

wave celerities that are closer to the observed ones than

the celerities obtained with the other sets of parameters.

The average flow wave celerity over the 11 calculations

in RAPID is within 3% of that estimated with IDA flows.

Unfortunately, these closer wave celerities also lead to

a decrease in the quality of RMSE and Nash efficiency.

Therefore, model celerities closer to celerities estimated

from observations can be obtained but generally de-

teriorate other statistics of calculations. Again, this might

be due to runoff being produced too slowly or too far

upstream of each gauge.

FIG. 9. Ratio between observed and modeled streamflow at 17 gauges, location of the Edwards

Aquifer, and location of the two largest springs in Texas.

FIG. 10. Hydrograph of observed, lumped, and routed flows for the Guadalupe River near

Victoria, using (kg, xg).
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f. Potential improvement of spatial variability
in RAPID parameters

In the work presented here, the parameter x is spa-

tially and temporally constant over the modeling do-

main and the parameter k is temporally constant but

varies at the river reach level based on the length of each

reach and on the celerity of the flow wave going through

it. Flow wave celerities are estimated for 11 subbasins

based on flow observations, and the spatial variability of

k presented in this study is therefore partly limited by

the size of the subbasins used for flow wave estimation.

However, such an approach for computation of RAPID

parameters allows taking into account wave celerities

that are estimated based on observations made at high

temporal resolution as well as verifying the modeling

framework through reproduction of estimated wave ce-

lerities. In a separate study applying RAPID to all rivers

of metropolitan France, David et al. (2011) present a

physically based formulation of k and a subbasin opti-

mization for both k and x, therefore allowing further

spatial variability of parameters. David et al. (2011) show

that using a combination of reach length, river bed slope,

and basin residence time for the parameter k and applying

the optimization procedure to subbasins both improve

the efficiency and the RMSE of RAPID flow computa-

tions. Such work could be adapted to the study herein

based on information provided in the NHDPlus dataset

(e.g., reach length, mean annual flow velocity, and river

bed slope), which would be advantageous when apply-

ing RAPID to domains larger than the Guadalupe and

San Antonio River basins where estimation of wave ce-

lerities everywhere may require excessive amounts of

computations.

g. Statistical significance

Changes in the routing procedure (i.e., no routing or

routing using various RAPID parameters) lead to vari-

ous changes in the values of efficiency and RMSE, as

shown in section 4b. The statistical significance of the

changes can be assessed in order to determine whether

or not various routing experiments are effective. For two

different routing procedures used, the efficiency (RMSE)

at one gauge can be compared to the efficiency (RMSE)

at the same gauge, although variability of efficiency

(RMSE) between independent gauges can be large.

Therefore, there is a logical pairing of efficiency and

RMSE calculated at a given gauge between two experi-

ments and, hence, matched pair tests are appropriate to

assess the statistical significance. Several common op-

tions are available for matched pair tests (with increasing

level of complexity): the sign test, the Wilcoxon signed-

rank test (Wilcoxon 1945), and the paired t test. The sign

test has no assumption on the shape of probability dis-

tributions of samples used but is quite simple since only

the sign of differences between two paired samples is ac-

counted for. The Wilcoxon signed-rank test incorporates

the magnitude of differences between paired samples

under the assumption that differences between pairs

are symmetrically distributed. The paired t test may be

used when the differences between pairs are known to

be normally distributed. The assumption of the Wilcoxon

signed-rank test (symmetry) is not as restrictive as that of

the paired t test (normality). In cases where small sample

sizes are used—as done in this study—testing for sym-

metry or normality may not be meaningful. Additionally,

violations of the symmetry assumption in the Wilcoxon

signed-rank test have minimal influence on the corre-

sponding p values (Helsel and Hirsch 2002). These two

reasons motivate the use of the Wilcoxon signed-rank test

in the study herein. The null hypothesis H0 for this test is

that the median of differences between two populations

is zero. The purpose of changes in the routing procedure

being to improve results by increasing the efficiency and

decreasing the RMSE, alternate hypotheses can assume

that one population tends to be generally either larger

(H1) or smaller (H2) than the other. Therefore, p values

corresponding to one-sided tests are used in this study.

Low significance levels mean that H0 is unlikely, hence

that a significant change is observed. The Wilcoxon

signed-rank test sorts pairs with nonzero difference based

on the absolute value of the differences and sums all posi-

tive (negative) ranks in a variable named W1 (W2). The

corresponding p values vary with the number of non-

zero differences and with the value of W1 and W2.

FORTRAN programs were created to compute the ex-

act value of the test statistic (not using a large-sample

approximation) as well as the corresponding p values.

Table 4 shows the results of the Wilcoxon signed-rank

test for both efficiency and RMSE and for several paired

experiments using two different routing procedures. The

same 15 stations named on Fig. 7 and used in Table 3

serve here for statistical significance assessment, and the

corresponding 15 values of efficiency and of RMSE are

utilized as sample values.

Several conclusions can be drawn from Table 4. First,

the Wilcoxon signed-rank tests comparing results ob-

tained by RAPID with parameters a, b, and g to a

lumped runoff approach show that the null hypothesis

can be rejected for a one-sided test at a 10% level of

significance in all cases, except for the efficiency between

RAPID with b parameters and a lumped approach at

a 13% level of significance. All these tests validate that

the improvements mentioned in section 4b (increased ef-

ficiency and decreased RMSE) are statistically significant

and confirm that an explicit river routing scheme allows
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for obtaining better streamflow calculations than a sim-

ple lumped runoff scheme, as expected. Second, com-

parisons between RAPID using a and g parameters

show that subbasin variability in wave celerities is ad-

vantageous to a spatially uniform wave celerity approach

at a 19% level of significance for efficiency and at a 7%

level for RMSE. Third, comparisons between RAPID

using g and d parameters confirms that wave celerities

close to those determined from observations deteriorate

results at a 3% level of significance for both efficiency and

RMSE. Finally, one cannot conclude on the statistical

significance of the comparison between RAPID using

b and g parameters concerning the improvement of

optimization procedure. However, since RAPID using

g parameters produce better average values than RAPID

using b parameters, and since the statistical significance

of RAPID using g parameters compared to a lumped

approach is better than that of RAPID using b pa-

rameters compared to lumped approach, the optimi-

zation can still be considered advantageous.

5. Synthetic study of the upper Mississippi River
basin, speedup of parallel computations

Through the use of mathematical and optimization

libraries that run in a parallel computing environment,

RAPID can be applied on several processing cores. The

work presented above focuses on the Guadalupe and

San Antonio River basins together forming a river

network with 5175 river and water body reaches, the size

of which does not justify the use of parallel computing.

However, all the tools and datasets used are available

for the contiguous United States, where the NHDPlus

dataset has about 3 million reaches. Adapting the

proposed framework to simultaneously compute flow

and volume of water in all mapped water bodies of the

contiguous United States would require solving matrix

equations of the size of 3 million. For such a large scientific

problem, parallel computing can be helpful if speedup can

be achieved—that is, if increasing the number of pro-

cessing cores decreases the total computing time.

a. Synthetic study used for assessment
of parallel performance

As a proof of concept, the evaluation of the parallel

computing capabilities of RAPID is presented here us-

ing the upper Mississippi River basin (shown on Fig. 3),

which has 182 240 river and water body reaches avail-

able as region 7 in the NHDPlus dataset. The number of

computational elements for the upper Mississippi River

basin is about 35 times larger than the combination of

the Guadalupe and San Antonio River basins, and about

16 times smaller than the entire contiguous United States.

The river network of the upper Mississippi River basin

is fully interconnected, all water eventually flowing to

a unique outlet.

To assess the performance of RAPID, the same prob-

lem consisting in the computation of river flow in all

TABLE 4. Results of the Wilcoxon signed-rank test applied to 15 stations for efficiency and RMSE and to various routing procedures.

Efficiency

x y

Number of

nonzero

differences

Total

rank

W1

(computed

for y 2 x)

p value

corresponding

to W1

W2

(computed

for y 2 x)

p value

corresponding

to W2

Lumped runoff RAPID (ka, xa) 11 66 51.0 0.061 52 15.0 0.949 22

Lumped runoff RAPID (kb, xb) 11 66 47.0 0.120 12 19.0 0.896 97

Lumped runoff RAPID (kg, xg) 11 66 51.0 0.061 52 15.0 0.949 22

Lumped runoff RAPID (kd, xd) 10 55 22.5 0.704 59 32.5 0.330 08

RAPID (ka, xa) RAPID (kg, xg) 10 55 37.0 0.187 50 18.0 0.838 87

RAPID (kb, xb) RAPID (kg, xg) 10 55 28.5 0.480 47 26.5 0.558 11

RAPID (kg, xg) RAPID (kd, xd) 12 78 13.0 0.982 91 65.0 0.021 24

RMSE

x y

Number of

nonzero

differences

Total

rank

W1

(computed

for y 2 x)

p value

corresponding

to W1

W2

(computed

for y 2 x)

p value

corresponding

to W2

Lumped runoff RAPID (ka, xa) 13 91 25.5 0.921 45 65.5 0.089 66

Lumped runoff RAPID (kb, xb) 13 91 26.0 0.916 14 65.0 0.095 46

Lumped runoff RAPID (kg, xg) 13 91 25.0 0.926 76 66.0 0.083 86

Lumped runoff RAPID (kd, xd) 13 91 42.5 0.593 45 48.5 0.432 99

RAPID (ka, xa) RAPID (kg, xg) 11 66 15.0 0.949 22 51.0 0.061 52

RAPID (kb, xb) RAPID (kg, xg) 12 78 41.0 0.454 83 37.0 0.574 95

RAPID (kg, xg) RAPID (kd, xd) 12 78 64.0 0.026 12 14.0 0.978 76
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reaches of the upper Mississippi River basin, over 100 days,

at a 900-s time step is solved for all results reported in

section 5c. For this performance study, the runoff data

symbolized by vector Qe in Eq. (1) are synthetically gen-

erated and set to 1 m3 every 3 h for all reaches and all

time steps, and the vectors of parameters k and x are

temporally and spatially uniform as shown in Eq. (22):

kj 5
Lj

2:5 m s21
, xj 5 0:3. (22)

b. Basics of solving a linear system on computers

Numerically solving a linear system is typically an

iterative process mainly involving two steps at each it-

eration: preconditioning followed by applying a linear

solver. Preconditioning is a procedure that transforms

a given linear system through matrix multiplication into

one that is more easily solved by linear solvers, hence

decreasing the total number of iterations to find the so-

lution and saving time. If the linear system is triangular,

preconditioning is sufficient to solve the problem, and

a linear solver is not needed. In a parallel computing en-

vironment, a matrix is separated into diagonal and off-

diagonal blocks, each processing core being assigned

one diagonal block and its adjacent off-diagonal block.

Solving a linear system in parallel is made using blocks,

and parallel preconditioning is determined based on

elements in the diagonal blocks. Preconditioning is suf-

ficient to solve a given parallel linear system if the system

is diagonal by blocks (i.e., all off-diagonal blocks are

empty) and if each diagonal block is triangular; in most

other cases, iterations of preconditioning and applying

a linear solver are needed.

c. Parallel speedup of the synthetic study

For comparison purposes, the traditional Muskingum

method was also implemented in RAPID in order to

assess the performance of the matrix-based Muskingum

method developed herein. Figure 11 shows a comparison

of computing time between the traditional Muskingum

method shown in Eq. (4) applied consecutively from up-

stream to downstream and the matrix-based Muskingum

method used in RAPID. Only one processor is used for

all results in Fig. 11 but the computation method differs.

The matrix I 2 C � N being triangular (see appendix B),

solving the linear system of Eq. (1) can be limited to

matrix preconditioning if using only one processing core.

In a parallel computing environment, I 2 C � N is sepa-

rated in blocks, each diagonal block corresponding to a

subbasin. With several processing cores, matrix precon-

ditioning would be sufficient to solve Eq. (1) if I 2 C � N
could be made diagonal by blocks, each diagonal block

being a triangular matrix. In a river network that is fully

interconnected, such as that of the upper Mississippi

River basin, I 2 C � N cannot be made diagonal by blocks

because the connectivity between adjacent subbasins

would always appear as an element in an off-diagonal

block matrix [cf. Equation (23) when i and j are con-

nected but belong to different subbasins]. This limitation

would not apply if one was to compute the Mississippi

River basin on one (or on one set of) processing core(s)

and the Colorado River basin on another (or on another

set of) processing core(s), for example. Therefore, when

solving Eq. (1) on several processing cores for the upper

Mississippi River basin, preconditioning is not sufficient

and iterative methods need be used. An iterative method

implies several computations including preconditioning,

matrix-vector multiplication, and calculation of residual

norm at each iteration.

On one processing core, solving the matrix-based

Muskingum method with preconditioning only is about

twice as long as solving the traditional Muskingum

method, as shown in Fig. 11. This extra time can be ex-

plained because the computation of the right-hand side

of Eq. (1) is approximately as expensive as solving the

traditional Muskingum method and approximately as

expensive as preconditioning. However, the computa-

tion of the right-hand side is done only once per time

step, regardless of the number of iterations if using an

iterative linear solver, and scales very well because all

operations require no communication except for the

product N � Q, which involves little communication.

Figure 11 also shows the computing time when using an

iterative solver. The sole purpose of the first iteration in

an iterative solver is to determine an initial residual er-

ror that is to be used as a criterion for convergence in

following iterations. This first iteration mainly involves

preconditioning and calculation of a residual norm. On

FIG. 11. Comparison of computing time between the traditional

Muskingum method and matrix methods.
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one processing core only, the second iteration converges

because preconditioning is sufficient. The two iterations

and calculations of norms explain the doubling of com-

puting time between preconditioning only and an iter-

ative solver on one unique processing core that is shown

in Fig. 11. Overall, the overhead created by an iterative

solver over the traditional Muskingum method is about

a factor of 4. Again, both preconditioning and calcula-

tion of residual norms scale well, although the latter can

be limited by communications. Therefore, the main issue

with using a matrix method is the number of iterations

needed before the iterative solver converges because all

other overhead dissipates with an increasing number

of processing cores used. Surprisingly, the number of it-

erations needed for the iterative solver to converge in-

creases much less quickly than the number of processing

cores used, hence allowing us to gain total computation

time with an increased number of processing cores and

to produce results faster than the traditional Muskingum

method, as shown on Fig. 12. This suggests that even in

a basin where all river reaches are interdependent, some

upstream and downstream subbasins can be computed

separately in an iterative scheme given that they are

distant enough from each other. The physical explana-

tion is that flow waves are not fast enough to travel

across the entire basin within one 15-min time step. This

decoupling of computations could not be achieved by

using the traditional version of the Muskingum method,

since computations are not iterative and have to be per-

formed going from upstream to downstream. Figure 12

shows that the total computing time with an iterative

matrix solver on 16 processing cores is almost a third of

the time needed by the traditional Muskingum method

and keeps decreasing further with more processing

cores. However, as the number of cores increase, the

relative importance of the computation of residual norms

within the iterative solver increases up to taking almost

half of the solving time, as shown in Fig. 12. This limita-

tion will most likely disappear as computer technology

advances and communication time decreases. One should

note that the output files match on a byte-to-byte basis

and, hence, model computations are strictly the same

regardless of the method used (i.e., traditional Musk-

ingum method or matrix-based Muskingum method, it-

erative or not). This strict similarity between output files

and the slow increase in iterations are also verified for the

study of the Guadalupe and San Antonio River basins

presented above; hence, the use of synthetic data and

simplified model parameters does not influence the

trends in speedup.

Computing loads are balanced for all simulations in

this study; that is, the number of river reaches assigned

to each processing core is almost identical across cores.

Figure 13 shows how subbasins of the upper Mississippi

River basin are divided among processing cores as well

as the longest river path of the basin. The longest path

goes through 8 subbasins on 8 cores and 13 subbasins on

16 cores. If one were to apply the traditional Muskingum

method on several processing cores with the division

in subbasins shown in Fig. 13, computations would have

to be made sequentially from upstream to downstream,

each core having to wait for its upstream core to be done

prior to starting its work. Hence, assuming that the total

computing time can be evenly divided by the total num-

ber of nodes and neglecting communication overhead,

one could only hope to decrease computing time by a

factor of 8/8 5 1(no gain) for 8 cores and by a factor of

16/13 = 1.23 for 16 cores. The iterative matrix solver

provides much better results (a decrease by a factor of

2.90 for 16 cores).

River flow is a causal phenomenon that mainly goes

downstream. Therefore, when using an upstream-to-

downstream computation scheme and unless dealing with

completely separated river basins, one cannot expect to

obtain perfect speedup (i.e., decreasing of computing

time by a factor equal to the number of cores). How-

ever, today’s supercomputers having tens of thousands

of computing cores, one could leverage such power to

save human time. Additionally, the matrix method de-

veloped here can be directly applied to a combination of

independent river basins, in which case speedup would

be ideally perfect. Furthermore, matrix methods such

as the one developed here could be adapted to more

complex river flow equations—like variable-parameter

Muskingum methods or schemes allowing for backwater

effects—in order to save total computing time. Finally,

the splitting up into subbasins used here is very simple,

FIG. 12. Total computing time for matrix method with an itera-

tive solver as a function of the number of processing cores, number

of iterations needed, and total computing time for the traditional

Muskingum method.

930 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12



and optimizing this partition by limiting connections be-

tween subbasins or taking into account flow wave celer-

ities relatively to basin sizes could help limit the number

of communications and the number of iterations, re-

spectively, in the linear system solver.

6. Conclusions

NHDPlus is a GIS dataset that describes the networks

of mapped rivers and water bodies of the United States.

One of the main advantages of NHDPlus is that con-

nectivity information for the river networks is available.

Therefore, this dataset offers possibilities for the de-

velopment of river routing models that simultaneously

calculate flow and volume of water in all water bodies of

the nation. Furthermore, the USGS National Water In-

formation System has thousands of gauges located on

the NHDPlus network that can be used to assess the

quality of such river models across river basins (not only

at basin outlets). The research presented in this paper

investigates how to develop a river network model

using NHDPlus networks and how to assess model

computations and optimize model parameters with

USGS streamflow measurements. All tools and datasets

used herein are available for the contiguous United

States, but this research addresses two smaller domains.

The combination of the Guadalupe and San Antonio

River basins in Texas is used in a 4-year case study, and

the upper Mississippi River basin is used in a speedup

study with synthetic data. Graph theory is applied to

a river network to create a network matrix that is used to

develop a vector-matrix version of the Muskingum

method and applied in a new river network model called

RAPID. It has been shown that a GIS-based hydro-

graphic dataset can be used as the river network for

a river model to compute flow in large networks of

thousands of reaches, including ungauged locations. A

simple flux coupler for connecting a land surface model

with an NHDPlus river network is presented. No hori-

zontal routing of flow from the land surface to the river

network is used in this study; such an addition would help

improve model calculations. An inverse method is de-

veloped to estimate model parameters in RAPID using

available gauge measurements located across the river

basins. Wave celerities are estimated in several loca-

tions of the basin studied. RMSE and Nash efficiency of

computed flow rates in four RAPID simulations are

compared with a basic lumped model where runoff is

FIG. 13. Longest path in the upper Mississippi River basin and location of subbasins when RAPID is used in a parallel

computing environment with 8 and 16 processing cores; different colors correspond to different cores.
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directly accumulated at the gauge, with gauge mea-

surements, and among themselves. RAPID produces

better RMSE and Nash efficiency than the lumped

model, and the improvements are statistically significant.

Although the quality of RAPID calculations is tied to

the quantity of runoff generated by the land surface

model that provides runoff, mass is conserved within

RAPID since the average flow rate is conserved. Spatial

variability of parameters enhances the RMSE and Nash

efficiency of RAPID calculations. Wave celerities are

reproduced within a few percents of the model pro-

posed, although wave celerities closer to those estimated

from gauge data generally deteriorate the other statistics

of calculations. This deterioration might be due to

runoff being produced too slowly or too far upstream of

each gauge. The parameters used in this study are

simple, but could be improved based on information

available in NHDPlus such as slope, mean flow, and

velocity of all reaches, or by using modified versions of

the Muskingum method with time-variable parameters,

although the latter would necessitate modification of the

optimization procedure developed herein. The matrix

formulation in RAPID can be transferred in a parallel

computing environment. A synthetic study of the upper

Mississippi River basin shows that although a large

initial overhead is added by the matrix method, this

overhead decreases with increasing number of processing

cores. More importantly, an iterative matrix solver allows

decoupling of subbasins—even if the main river basin is

fully interconnected—hence permitting computation of

subbasins separately if they are distant enough from

each other. As consequence, while producing the exact

same results as the traditional Muskingum method, the

matrix-based Muskingum method decreases the total

computing time when run on several processing cores.

Such a gain in computing time would be highly beneficial

if addressing larger scales, like the entire contiguous

United States, which would represent a square matrix

of the size of 3 million.
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APPENDIX A

Implementation of RAPID

The river network routing model is coded in

FORTRAN 90 using the Portable, Extensible Toolkit

for Scientific Computation (PETSc) mathematical li-

brary (Balay et al. 1997, 2008, 2009) and the Toolkit

for Advanced Optimization (TAO) optimization library

(McInnes et al. 2009). PETSc can be used to create ma-

trices and vectors and to apply a variety of linear oper-

ations such as matrix-vector multiplications or linear

system solving. TAO offers multiple methods for un-

constrained and constrained optimization. Both PETSc

and TAO are built upon the Message Passing Interface

(see special issue of International Journal of High Perfor-

mance Computing Applications, 1994, Vol. 8, No. 3–4)—a

standard for communications between processing cores—

and can seamlessly be run in a sequential or a parallel

computing environment. In this study, sparse matrices

are stored using the sequential AIJ format when using

one processing core and the MPIAIJ format when using

several cores. Linear systems are solved within PETSc

either by preconditioning only or with preconditioning

associated with a Richardson method. The precondi-

tioning methods used herein are incomplete lower up-

per (ILU) on one processing core, and block Jacobi

on several cores. The optimization method used in

TAO is a line search algorithm called the Nelder–

Mead method. The Network Common Data Form

(NetCDF) file format (Rew and Davis 1990) is utilized

for both inputs and outputs. RAPID is run on single-

and multiple-processor workstations as well as on

Lonestar, a supercomputer running at the Texas Advanced

Computing Center (TACC). This Dell Linux Cluster

has 1460 nodes, each node with 8 GB of memory and

with two dual-core sockets. Lonestar has a total of 5840

computing cores.

APPENDIX B

NHDPlus Used in RAPID

NHDPlus (Horizon Systems Corporation 2007) is a

geographic information system (GIS) dataset for the
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hydrography of the United States. This dataset provides

the mapped streams and rivers as well as the catchments

that surround them. NHDPlus is based on the medium-

resolution 1:100 000-scale national hydrographic data-

set (NHD). One of the main improvements in NHDPlus

is the network connectivity available in the value-added

attributes (VAA) table for the river network. Each

NHDPlus reach in the national network is assigned

a unique integer identifier called COMID. NHDPlus

catchments also have a COMID, the same COMID

being used for the reach and its local contributing catch-

ment. Nodes are located at the two ends of each NHDPlus

river reach. A unique integer identifier is given to all

nodes in the national river reach network. The VAA

table includes FromNode and ToNode fields that iden-

tify which node is upstream and which is downstream

of a given reach. Two reaches that are connected in a

river network share a node, and the reach j flows into

the reach i if ToNode( j) 5 FromNode(i). The NHDPlus

connectivity between reaches, catchments, and nodes is

illustrated for three catchments of the Guadalupe and

San Antonio River basins in Fig. B1.

In its current formulation, RAPID can handle several

upstream reaches but only one unique downstream reach.

However, divergences exist in mapped river networks,

as they do in NHDPlus. The VAA table offers a Di-

vergence field to each of the river reaches (with values

of 0—not part of a divergence, 1—main path of a di-

vergence, and 2—minor path of a divergence). In the

current formulation of RAPID, the main part of a di-

vergence carries all the upstream flow. The FromNode,

ToNode, and Divergence fields are used to populate the

network matrix given in Eq. (5), by means of the fol-

lowing logical statement:

"(i, j) 2 [1, m]2, if [FromNode(i) 5 ToNode( j)]

and [Divergence( j) 6¼ 2]0Ni,j 5 1, (23)

where Ni,j is the element of N located at row i and col-

umn j. Therefore, upstream-to-downstream connection

is conserved if the downstream reach is the major branch

of a divergence or if it is not part of a divergence at all,

but the connection is not made for a minor branch of a

divergence.

The VAA table also has information on the relative

location—upstream or downstream—of NHDPlus reaches.

This information is available in a field called Hydroseq,

consisting of a unique integer attributed to all NHDPlus

reaches. Sorting the Hydroseq field in decreasing order

prior to computations guarantees that all upstream el-

ements are computed prior to solving the flow equations

for any given river reach. This organization of compu-

tations allows the matrix I 2 C1 � N of Eq. (1) to be made

lower triangular, which increases the ease and speed of

solving this linear system.
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