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s u m m a r y

The impact of model structure and parameterization on the estimation of evaporation is investigated across
a range of Penman–Monteith type models. To examine the role of model structure on flux retrievals, three
different retrieval schemes are compared. The schemes include a traditional single-source Penman–
Monteith model (Monteith, 1965), a two-layer model based on Shuttleworth and Wallace (1985) and a
three-source model based on Mu et al. (2011). To assess the impact of parameterization choice on model
performance, a number of commonly used formulations for aerodynamic and surface resistances were sub-
stituted into the different formulations. Model response to these changes was evaluated against data from
twenty globally distributed FLUXNET towers, representing a cross-section of biomes that include grassland,
cropland, shrubland, evergreen needleleaf forest and deciduous broadleaf forest.

Scenarios based on 14 different combinations of model structure and parameterization were ranked
based on their mean value of Nash–Sutcliffe Efficiency. Results illustrated considerable variability in model
performance both within and between biome types. Indeed, no single model consistently outperformed any
other when considered across all biomes. For instance, in grassland and shrubland sites, the single-source
Penman–Monteith model performed the best. In croplands it was the three-source Mu model, while for
evergreen needleleaf and deciduous broadleaf forests, the Shuttleworth–Wallace model rated highest.
Interestingly, these top ranked scenarios all shared the simple lookup-table based surface resistance
parameterization of Mu et al. (2011), while a more complex Jarvis multiplicative method for surface resis-
tance produced lower ranked simulations. The highly ranked scenarios mostly employed a version of the
Thom (1975) formulation for aerodynamic resistance that incorporated dynamic values of roughness
parameters. This was true for all cases except over deciduous broadleaf sites, where the simpler aerody-
namic resistance approach of Mu et al. (2011) showed improved performance.

Overall, the results illustrate the sensitivity of Penman–Monteith type models to model structure, param-
eterization choice and biome type. A particular challenge in flux estimation relates to developing robust and
broadly applicable model formulations. With many choices available for use, providing guidance on the
most appropriate scheme to employ is required to advance approaches for routine global scale flux esti-
mates, undertake hydrometeorological assessments or develop hydrological forecasting tools, among
many other applications. In such cases, a multi-model ensemble or biome-specific tiled evaporation pro-
duct may be an appropriate solution, given the inherent variability in model and parameterization choice
that is observed within single product estimates.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

Accurate estimates of evaporation are required in water
resources management, irrigation management and hydrologic

studies. For this reason, a range of models have been developed
to provide evaporation products across different spatial and tem-
poral scales (Kalma et al., 2008; Wang and Dickinson, 2012). The
Penman–Monteith (PM) model (Monteith, 1965) is one of the most
widely employed approaches for the estimation of evaporation, as
it has a process-based formulation that utilizes commonly avail-
able meteorological variables, including air temperature, wind
speed, humidity and radiation. The PM model forms the theoretical
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basis of a number of continental and global scale evaporation mod-
els (Ferguson et al., 2010; Mu et al., 2011) and land surface
schemes (Chen and Dudhia, 2001), albeit with some variations in
formulation and parameterization.

Underlying the performance of this common approach are
important issues of model structure and parameterization that
influence the utility of the technique for general application. In
its simplest form, the Penman–Monteith model is a single-source
‘‘big-leaf’’ model that lumps the heterogeneity of the land surface
into a single evaporative element. In this configuration, no distinc-
tion is made between evaporation from bare soil, evaporation from
canopy intercepted water or transpiration via the canopy (pro-
cesses encompassed herein via the term evaporation, following
the definition in Kalma et al., 2008). However, other versions of
the PM model have been developed that consider the land surface
as a layered system (e.g. Shuttleworth and Wallace, 1985) or dis-
criminate components of the land surface into different evapora-
tive sources (e.g. soil and canopy), with a PM model formulated
in each layer or component (e.g. Mu et al., 2011).

Inherent in the choice of model structure is the development
and selection of appropriate parameterizations to describe the
physical processes occurring within the system. In PM type mod-
els, the aerodynamic (ra) and surface resistance (rs) schemes repre-
sent critical controls on heat and vapor flux transfer through the
soil, plant and atmospheric continuum. Given the importance of
the resistance parameterization in flux estimation (McCabe et al.,
2005), a number of studies have examined various resistance
parameterization techniques in PM type models. The underlying
assumption in many of these studies has been that if the resistance
parameters are estimated accurately, then the (single-source) PM
type model should be able to provide an accurate estimate of evap-
oration (Raupach and Finnigan, 1988). Of course, the challenge is
that direct independent measurement of resistances is difficult,
so discriminating good parameterizations from bad is not trivial.

In addition to uncertainties that originate from inadequate sur-
face resistance and aerodynamic resistance formulations, the sin-
gle-source structure of the PM model can also cause errors in
estimating evaporation. In terms of model structure, the single-
source PM model was originally developed for the special case of
a dense, well-watered canopy that absorbs most of the available
energy. However, in sparse canopies, evaporation from the soil
can be as important as the canopy transpiration (Shuttleworth
and Wallace, 1985). In these scenarios, the partitioning of total
evaporation to different sources or layers is important (Allen
et al., 2011). Furthermore, the ‘‘big-leaf’’ assumption requires that
the sources of heat and water vapor occur at the same level within
the canopy (Finnigan et al., 2003; Foken et al., 2012). This require-
ment might be met in a short and dense canopy or a bare soil sur-
face, but is unlikely to be true for a tall or sparse canopy (Wallace,
1995).

As a consequence of these limitations and a desire to develop
approaches with more general or universal application, a number
of efforts have been directed toward improving the structure of
the single source PM model to multi-layer or multi-source
schemes. In a multi-layer scheme, the representation of the soil–
canopy–atmosphere system is improved by vertically dividing
the canopy structure into separate layers, with each utilizing the
PM model, but linked via a network of resistances. Such a multi-
layer configuration means that the resistances are coupled in series
and have interactions (Shuttleworth and Wallace, 1985;
Choudhury and Monteith, 1988). In multi-source schemes, the
total evaporation from the land surface is generally partitioned
into evaporation from the soil, transpiration from the canopy and
evaporation from the intercepted water in the canopy (with the
latter absent in two-layer schemes). In contrast to multi-layer

schemes, multi-source schemes have resistances that are often in
parallel and hence have no interaction.

Relatively few studies have focused on an intercomparison of
PM based models to evaluate the significance and effectiveness
of both the model structure and the choice of parameterization
(Stannard, 1993; Huntingford et al., 1995; Fisher et al., 2005). In
reviewing the literature it is readily apparent that there are few
definitive outcomes with which to guide the selection of the most
appropriate model configuration for a particular land surface. A
missing element of many previous efforts was a comprehensive
examination of model and data characteristics, such as the role
of model structure (e.g. single-source, multi-layer, multi-source),
impact of model parameterizations (e.g. resistances and rough-
ness) and variability in climate zone and biome type (e.g. grass-
land, cropland, forest). Furthermore, most studies were
performed over relatively short periods of weeks to months (e.g.
Stannard, 1993; Huntingford et al., 1995) as a consequence of data
limitations, with few cases extending into yearly time periods (e.g.
Fisher et al., 2005; Ortega-Farias et al., 2010). Clearly, multi-year
datasets are better able to represent the dynamics in the bio-phys-
iological and hydro-meteorological variability of the land surface:
issues that are central in evaporation estimation and comprehen-
sive model evaluation.

These issues provide the motivation to evaluate the role of
model structure and parameterization across a range of PM type
models. For this purpose, we selected three model structures: the
original single-source Penman–Monteith model (Monteith, 1965),
a modified two-layer model (Shuttleworth and Wallace, 1985)
and a three-source model (Mu et al., 2011). Each scheme was then
adjusted to incorporate a variety of aerodynamic and surface
resistance parameterizations. To maintain a realistic range of land
surface dynamics, we used a globally distributed set of eddy-
covariance towers that contain (relatively) long periods of data.
These in-situ measurements provide the needed meteorological
forcing to drive the different schemes and the observed heat flux
data required to evaluate the model simulations. Our model
assessment and intercomparison exercise is used to address the
following research questions: What is the significance of model
structure in the performance of Penman–Monteith type models?
What is the relative significance of aerodynamic and surface resis-
tances? Which of the model structures and parameterizations are
most appropriate for the accurate estimation of evaporation over
different landscapes and biome types?

2. Data and methodology

2.1. Input forcing and evaluation data

The data used for the development and evaluation of the mod-
els in this study comprise of 20 globally distributed eddy-covari-
ance towers from the FLUXNET project (Baldocchi et al., 2001).
While there are more than 500 towers available from this data
archive, a limiting factor on tower selection was the need for soil
moisture data for calculations of the surface resistance (see
Section 2.3.1). As this variable is not monitored routinely at most
tower sites, the capacity for more extensive tower based assess-
ment was significantly reduced. The selected towers are dis-
tributed across a range of biome types that include grassland,
cropland, shrubland, evergreen needleleaf forest and deciduous
broadleaf forest. In each of these biomes, four towers were
selected, each with a different canopy height. The period of data
across the selected towers varies from 1.5 to 10 years at either
hourly or half-hourly time steps, effectively capturing the required
variability in canopy development and hydrometeorological
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conditions. All data were filtered for daytime only measurements,
which was defined as when the shortwave downward radiation
was greater than 20 W m!2. This criterion also filters early morn-
ing and late afternoon transitions in the atmospheric boundary
layer. The data were also filtered for rain events, for frozen periods
(when air or land temperature is equal or below zero), for negative
turbulent fluxes, for gap-filled records and for low-quality control
flags (i.e. quality flag = 0). In total, more than 100 site-years of data
(or approximately 500,000 filtered records) were processed for
each model formulation. Attributes of the selected towers are
listed in Table A1 and a map of the tower locations is provided in
Fig. 1.

2.2. Satellite based vegetation data

Phenological characteristics of vegetation, such as the leaf area
index and fractional vegetation cover, are required for the param-
eterization of aerodynamic and surface resistances. As in-situ veg-
etation data are not generally available at the tower sites, an
alternative is to estimate vegetation indices and parameters from
remote sensing data. Here, we use remote sensing products from
the Moderate-Resolution Imaging Spectroradiometer (MODIS) sen-
sor, which have been employed for this purpose in a number of
previous investigations (e.g. Fisher et al., 2008; Mu et al., 2011).
We also use a time series of the Normalized Difference
Vegetation Index (NDVI) based on the MODIS MOD13Q1 product
(Solano et al., 2010) at 250 m spatial resolution and 16 day tempo-
ral frequency for the pixel containing each tower. A 3 " 3 window
has been used in other evaporation studies to reduce geo-location
errors (Wolfe et al., 2002) and gridding artefacts (Tan et al., 2006)
that may present in single-day or 8-day products. While a single
pixel is expected to better match the footprint of the eddy-covari-
ance towers, comparison of NDVI derived from a single pixel versus
a 3 " 3 window showed a high level of agreement, with an average

coefficient of determination (R2) of 0.96 and a root-mean-square
difference (RMSD) of 0.03 when averaged across all towers.

NDVI time series were obtained from the Simple Object Access
Protocol (SOAP) web service of the Oak Ridge National Laboratory
(ORNL) MODIS Land Product Subsets (http://daac.ornl.gov/MODIS/).
Gaps in the NDVI records were filled by a simple linear interpola-
tion between the 16 day retrievals. Given the reliance on satellite
data, the tower records coincide with the start of the MODIS record
in the year 2000. The gap-filled NDVI time series was converted to
leaf area index (LAI) using the methodology developed by Ross
(1976), with coefficients from Fisher et al. (2008). The fractional
vegetation cover was calculated using the methodology presented
by Jiménez-Muñoz et al. (2009). A summary of statistics for the
fractional vegetation cover and LAI at tower sites is provided in
Table S1 of the Supplementary Materials.

2.3. Description of Penman–Monteith model structures

Following is a description of each of the models examined in
this analysis, along with the default resistance schemes that com-
prise the implemented version of the model. While the model for-
mulations are described herein, the reader is referred to
Appendices B–D and the provided principal model references for
further details.

2.3.1. Single-source Penman–Monteith (PM) model
The Penman model (Penman, 1948) was originally developed

for the estimation of the potential evaporation from open water
and saturated land surfaces. To generalize the Penman equation
for water-stressed crops, Monteith (1965) incorporated a canopy
resistance term to describe the effect that partially closed stomata
have on evaporation (Inclán and Forkel, 1995). The PM model con-
ceptualizes the land surface as a so-called ‘‘big-leaf’’, describing the
land surface–atmosphere exchange via a single bulk stomatal

Fig. 1. Location of the eddy-covariance towers used to provide forcing and validation data in this study, derived from Ershadi et al. (2014).
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resistance and a single aerodynamic resistance to heat and vapor.
The PM model for estimation of actual evaporation can be formu-
lated as follows (Brutsaert, 2005):

kE ¼ DAþ qcpðe& ! eÞ=ra

Dþ c 1þ rs
ra

! " ð1Þ

where kE is actual evaporation in W m!2, k is the latent heat of
vaporization (2.43 " 106 J kg!1), D is the slope of the saturation
water vapor pressure curve at an air temperature Ta, q is air density
(m3 kg!1), c is the psychrometric constant defined as
c ¼ cpPa=ð0:622kÞ with cp being specific heat capacity of air
(J kg!1 K!1), and Pa is the air pressure in Pa. e⁄ ! e is the vapor pres-
sure deficit, with e⁄ the saturation vapor pressure and e the actual
vapor pressure of the surrounding air (both in Pa). The aerodynamic
and surface resistance parameters (ra and rs) are in units of s m!1. A
is the available energy, defined as A = Rn ! G0 with Rn and G0

describing the net radiation and ground heat flux, respectively.
The aerodynamic resistance formulation used in the standard

PM model of this study is that of Thom (1975) (hereafter Thom’s
equation):

ra ¼
1

j2ua
ln

z! d0

z0m

# $
ln

z! d0

z0v

# $% &
ð2Þ

where z is measurement height (m), ua is wind speed (m s!1),
j = 0.41 is von Karman’s constant, d0 is displacement height and
z0m and z0v are the roughness heights for momentum and water
vapor transfer, respectively (all in meters). Following Brutsaert
(2005), we assume z0v = z0h with z0h being the roughness height
for heat transfer. It is common practice to use roughness parameters
(d0, z0m, z0h) with static values calculated as a fraction of the canopy
height (hc), so here we employ the equations suggested by Brutsaert
(2005):

d0 ¼ 0:6 _6hc

z0m ¼ 0:1hc

z0h ¼ 0:01hc

ð3Þ

For the estimation of the surface resistance, the Jarvis scheme of
Jacquemin and Noilhan (1990) (hereafter Jarvis method) is used
(see Appendix B).

2.3.2. Two-layer Shuttleworth–Wallace (SW) model
The Penman–Monteith model was extended to a two-layer con-

figuration by Shuttleworth and Wallace (1985) (SW) that included
separate canopy and soil layers. The total evaporation in the SW
model is kE ¼ CcPMc þ CsPMs, where Cc and Cs are resistance func-
tions for canopy and soil (respectively). PMc and PMs are terms that
represent the Penman–Monteith equation applied to full canopy
and to bare soil:

PMc ¼
DAþ qcpðe&!eÞ!Drc

aAs
ra

aþrc
a

Dþ c 1þ rc
s=ðra

a þ rc
aÞ

' ( ð4Þ

PMs ¼
DAþ qcpðe&!eÞ!Drs

aðA!AsÞ
ra

aþrs
a

Dþ c 1þ rc
s=ðra

a þ rc
aÞ

' ( ð5Þ

where A is the available energy for the complete canopy
(A = Rn ! G0) and As is the available energy at the soil surface
(As ¼ Rs

n ! G0)). Rs
n is net radiation at the soil surface, which can be

calculated using Beer’s law as Rs
n ¼ Rn expð!C ( LAIÞ, with C = 0.7

representing the extinction coefficient of the vegetation for net
radiation. The resistance parameters in the SW model include bulk
canopy resistance (rc

s), soil surface resistance (rs
s), aerodynamic

resistance between soil and canopy (rs
a), canopy bulk boundary

layer resistance (rc
a) and aerodynamic resistance between the

canopy source height and a reference level above the canopy (ra
a).

In application of the SW model, ra
a and rs

a are calculated using the
methodology by Shuttleworth and Gurney (1990) (hereafter
SG90). Details of the SW model formulation, as well as the standard
parameterization of the resistances used in this study are detailed
in Appendix C.

2.3.3. Three-source Mu et al. (2011) (Mu) model
The three-source PM model used in this investigation is based

on that developed by Mu et al. (2011). In the Mu model, total evap-
oration is partitioned into evaporation from the intercepted water
in the wet canopy (kEwc), transpiration from the canopy (kEt) and
evaporation from the soil (kEs), defined as kE ¼ kEs þ kEt þ kEwc.
Evaporation for each source component is derived from the PM
equation and weighted based on fractional vegetation cover (fc),
relative surface wetness (fw) and available energy.
Parameterization of aerodynamic and surface resistance for each
source is based on biome specific (constant) values of leaf and
stomatal conductances for water vapor and sensible heat transfer,
scaled by vegetation phenology and meteorological variables. From
a forcing data perspective, one advantage of the resistance param-
eterization in the Mu model is that it does not require wind speed
and soil moisture data: two variables that are often difficult to pre-
scribe accurately. Specific details of the model formulation are pro-
vided in Appendix D.

2.4. Inclusion of a dynamic roughness parameterization

In addition to assuming roughness parameters (d0, z0m, z0h) as a
constant fraction of the canopy height (i.e. static roughness) as
detailed above, these variables can also be estimated via a physi-
cally-based method. Su et al. (2001) used vegetation phenology,
air temperature and wind speed to provide dynamic values of
roughness parameters based on the land surface condition.
Details of this method are provided in Appendix E.

2.5. Developing model parameterization scenarios

To examine the influence of resistance schemes and model
structure on flux simulations, we developed fourteen unique sce-
narios. Details of these distinct combinations are provided in
Table 1. For the default model implementations described above
(denoted here as PM0, SW0 and Mu0), parameterizations of the
aerodynamic and surface resistances are not modified. For each
model type, alternative scenarios are developed to examine the
influence of aerodynamic and surface resistance parameterization
(see Appendices B–E) and are denoted by superscripts 1, 2, 3, 4

Table 1
Features of the fourteen model parameterisation combinations for estimating
evaporation, where rs is the surface resistance and ra is the aerodynamic resistance
(see Section 2.3 and Appendices B–D for model and parameterization details).

Scenario Model rs ra Roughness

PM0 PM Jarvis Thom Static
PM1 PM Mu Thom Static
PM2 PM Jarvis Thom Dynamic
PM3 PM Mu Thom Dynamic
PM4 PM Mu Mu N/A

SW0 SW Jarvis SG90 Static
SW1 SW Mu SG90 Static
SW2 SW Jarvis Thom Dynamic
SW3 SW Mu Thom Dynamic
SW4 SW Mu Mu N/A

Mu0 Mu Mu Mu N/A
Mu1 Mu Mu Thom Dynamic
Mu2 Mu Mu Thom Static
Mu3 Mu Jarvis Mu N/A
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(e.g. PM1, PM2). For example, a comparison of PM0 and PM1 (see
Table 1) illustrates the effect of changing the surface resistance
parameterization only, while comparison of PM0 and PM2 show
the effect of changing the aerodynamic resistance parameteriza-
tion only (via a change in roughness parameterization). PM3 and
PM4 show the combined effect of both aerodynamic and surface
resistances. In a similar vein for the SW model, comparison of
SW0 and SW1 isolates the effect of changing the surface resistance
parameterization only, while comparison of SW0 and SW2 shows
the effect of changing the aerodynamic resistance parameteriza-
tion only. SW3 and SW4 are similar to those of PM3 and PM4. For
the Mu model, three alternative scenarios are considered to exam-
ine the effects of changing aerodynamic resistance (with static and
dynamic roughness) and surface resistance. Table S3 in the
Supplementary Materials lists the forcing variables that are
required to run each case of the resistance parameterizations.

2.6. Statistical evaluation of model response

We used the R2, RMSD, the relative error (RE) and the Nash–
Sutcliffe Efficiency (NSE) coefficient for statistical evaluation of
the model intercomparison and parameterization scenarios. The
relative error is defined as the RMSD normalized by the mean value
of the observed evaporation (kEobsÞ, i.e. RE ¼ RMSD=kEobs, which is
used in a number of similar studies (Su et al., 2005; Kalma et al.,
2008). The NSE is a normalized statistic that determines the rela-
tive magnitude of the residual variance (noise) compared to the
variance of the measured response (Nash and Sutcliffe, 1970) and
defined as:

NSE ¼ 1!
Pn

i¼1 kEi;obs ! kEi;sim
) *2

Pn
i¼1 kEi;obs ! kEobs
) *2

2

4

3

5 ð6Þ

where kEi;obs is the i th observed kE, kEi;sim is the i th simulated kE and
n is the total number of observations. The NSE coefficient is an indi-
cator of linear fit to the scatterplot of observed versus simulated
data to the 1:1 line. This coefficient has a range between !1 and
1.0, with an NSE = 1 indicating an optimal value. Generally, NSE val-
ues that are in the range 0–1 describe acceptable modeling perfor-
mance, whereas negative NSE values indicate poor performance
(Moriasi et al., 2007). The NSEavg, R2

avg and REavg are used in this
paper to represent the average values of the statistics for multiple
towers, and NSEstd is used to calculate the standard deviation of
NSE for multiple towers. Hourly or half-hourly filtered data (depen-
dent on the forcing data source) were used together with the
model-simulated responses to calculate these statistical measures.

It should be noted that measurement uncertainty in observed
tower fluxes is not explicitly included in these analyses. As such,
some caution is required in their interpretation, especially when
evaporation is low and measurement uncertainty might equal
the modeling uncertainty. Furthermore, the issue of non-closure
implicit in the eddy-covariance approach (Twine et al., 2000) can
increase the uncertainty in observations. The issue was evaluated
in Ershadi et al. (2014) through examining the energy residual
and the Bowen-ratio closure methods using the same towers
employed herein. Ershadi et al. (2014) found that the energy resid-
ual closure correction technique provided better agreement with
modeling results and therefore that approach has been adopted
here.

3. Results

Plots of R2, RE and NSE for the modeling scenarios are provided
in the following sections. Evaluation of the different scenarios
focuses mainly on the NSE of individual towers or on the NSEavg

as a representative value for a biome (see Table 2), as neither the
R2 as a correlation metric nor the RE as a bias error metric are sui-
ted as stand-alone measures of scenario performance. For example,
a model may show a high R2, but with large slope or y-intercept for
the linear regression (e.g. Fig. S8 in the Supplementary Materials).
Nevertheless, scatterplots and the statistical metrics are provided
for each simulation scenario and each tower site in the
Supplementary Materials.

3.1. Penman–Monteith model

Influence of rs parameterization: The impact of changing the sur-
face resistance scheme from the standard Jarvis method (Eq. (B1))
in PM0, to that used in the Mu model (Eq. (D6)) in PM1 is shown in
Fig. 2 (an equivalent bar plot can be found in Fig. S16 of the
Supplementary Materials). A key assumption in the surface resis-
tance parameterization of the Mu model is that the near-surface
humidity reflects variations in the soil moisture and hence a
humidity-index can be substituted for soil–water stress (Fisher
et al., 2008). If this approach can be shown to provide a good rep-
resentation of the surface resistance, it would remove the reliance
on the use of error-prone soil moisture data in calculating this
parameter. Based on the NSE, an improved modeling performance
is observed for most towers relative to the standard Jarvis method,
excluding G1, E2, D1, D2 and D3 sites. From PM0 to PM1, the change
in NSEavg (i.e. the mean NSE of multiple towers) is positive for
grasslands (0.34 ? 0.50), for croplands (0.24 ? 0.53), for shrub-
lands (0.12 ? 0.29) and for evergreen needleleaf forest
(0.09 ? 0.21), but negative for deciduous broadleaf forest sites

Table 2
NSEavg values of all scenarios over various biomes, with the standard deviation of NSE
values shown in parenthesis. Values in the shaded cells identify the top-ranked
scenarios for each biome. Biomes shown in the first column include grassland (GRA),
cropland (CRO), shrubland (SHR), evergreen needleleaf forest (ENF) and deciduous
broadleaf forest (DBF).

A. Ershadi et al. / Journal of Hydrology 525 (2015) 521–535 525



(0.40 ? 0.36). Among grassland, cropland, shrubland and ever-
green needleleaf forest biomes, the improvement in NSE is more
evident for cropland sites, where the range in NSE is increased from
0.07–0.44 to 0.42–0.65 and the range in RMSD is reduced from
107–126 W m!2 to 75–103 W m!2 (see Figs. S1, S4, S7, S10 and
S13 in the Supplementary Materials for statistics). Comparison of
PM2 with PM3 (changing Jarvis rs to Mu rs) confirms a similar
response of trends in NSEavg across the biomes.

Influence of ra parameterization: The influence of dynamic versus
static roughness on modeling performance can be tracked in com-
parisons of two sets of scenarios: PM2 and PM0, and PM3 and PM1.
In PM2, adjusting the aerodynamic resistance parameterization via
the use of dynamic roughness values only improved modeling per-
formance slightly when compared to PM0. This improvement (in
terms of NSEavg) is more evident for croplands (0.24 ? 0.38) and
for deciduous broadleaf forest sites (0.40 ? 0.64). Improvements
in NSEavg from PM0 to PM2 are smaller for grasslands
(0.34 ? 0.40), shrublands (0.12 ? 0.16) and for evergreen needle-
leaf forest (0.09 ? 0.20). Likewise, comparing PM3 with PM1 shows
that the NSE at all towers is increased. The results from both sets of
scenarios show the positive effect of adding dynamic roughness to
the single-source PM model structure.

The PM4 is designed to investigate whether the simple lookup-
table based aerodynamic parameterization of the Mu model (Eq.
(D11)) can be used in the single-source PM model. The benefit of
this approach is that the method does not require either roughness
parameters or wind speed. Comparison of NSE values of the PM4

with those of the PM3 shows that NSE at most towers is decreased
in PM4, except in deciduous broadleaf forest sites. Therefore, use of
the lookup table based approach of Mu for ra parameterization is
not recommended if wind and canopy height data are available.
However, comparison of PM4 and PM0 shows that in cases where
wind, canopy height and soil moisture data are not available, use

of the Mu based ra and rs parameterizations can increase NSE at
most sites, excluding G1, G3, S2 and E2 sites. This is an important
result, as these variables are the ones that are most often unavail-
able in data poor regions.

The best performing PM scenario: Overall, the PM3 (which uses
Mu rs and Thom ra) provides the best performance across most
biomes, except over deciduous broadleaf forest sites where PM2

(which uses Jarvis rs and Thom ra) presents the best outcome.
Both PM3 and PM2 utilize Thom’s equation with dynamic rough-
ness, which requires reliable wind speed and canopy height data.
Results also suggest that the Jarvis method (used in PM2) is suit-
able for deciduous broadleaf forest sites, but for other biomes the
simpler Mu model resistance (used in PM3) is more suitable.

3.2. Shuttleworth–Wallace model

Influence of rs parameterization: Fig. 3 and its equivalent bar plot
(see Fig. S17 in the Supplementary Materials) illustrate variations
of R2, RE and NSE coefficients for the different SW scenarios. A
change in surface resistance from Jarvis to Mu in SW0 to SW1

had a limited influence on evaporation estimation over grassland
sites (NSEavg remained constant at 0.43), but improved the NSEavg

for cropland (0.08 ? 0.36), evergreen needleleaf forest
(!0.04 ? 0.08) and deciduous broadleaf forest sites
(!0.37 ? 0.17) and decreased it for shrublands (0.07 ? 0.02).

The effect of change in rs parameterization from Jarvis to Mu
can also be evaluated by comparing SW2 and SW3 (which share
Thom ra with dynamic roughness). The comparison in terms of
NSEavg shows a similar trend (as observed for SW0 to SW1) for crop-
land (0.43 ? 0.48) and for evergreen needleleaf forest sites
(0.20 ? 0.38), but different trends across grassland (0.44 ? 0.29),
shrubland (0.17 ? 0.21) and deciduous broadleaf forest sites
(0.65 ? 0.66). The results identify that for the SW model, the
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Fig. 2. Performance of the Penman–Monteith (PM) model in response to adjusting the resistance parameterization. RE is relative error and NSE is the Nash–Sutcliff efficiency,
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influence of rs parameterization is impacted by the influence of the
choice of ra parameterization. As such, parameterizing resistances
for the SW model should be undertaken with care. Overall, a
change in surface resistance had less impact on the modeling effi-
ciency of the SW model structure when compared to that observed
for the single-source PM model (see Fig. 2).

Influence of ra parameterization: For aerodynamic resistance,
comparisons include evaluating the impact of changes from the
SG90 ra to the Thom ra with dynamic roughness (SW0 ? SW2 and
SW1 ? SW3), from SG90 ra to the Mu ra (SW1 ? SW4), and from
Thom ra with dynamic roughness to Mu ra (SW3 ? SW4).

Compared to SW0, employing Thom’s equation with dynamic
roughness in SW2 slightly improved the NSEavg for grasslands
(0.43 ? 0.44), considerably increased it for cropland
(0.08 ? 0.43), shrubland (0.07 ? 0.17) and evergreen needleleaf
forest sites (!0.04 ? 0.20) and dramatically improved it for decid-
uous broadleaf forest sites (!0.37 ? 0.65). The larger positive
response to the changes in ra parameterization in the cropland
and the deciduous broadleaf forest sites can be related to the struc-
ture of those canopies. That is, the Thom ra equation with dynamic
roughness is better able to represent the aerodynamic transfer pro-
cesses when full canopy and soil/understory layers are vertically
represented and interact in series as in the SW model structure.

For application of the Mu ra in the SW model, comparison of
SW1 (Mu rs, SG90 ra) with SW4 (Mu rs, Mu ra) shows that the
NSEavg is decreased for grasslands (0.43 ? 0.04) and shrublands
(0.02 ? !0.04), remained constant at 0.36 for croplands, but
is significantly increased for evergreen needleleaf forest sites
(0.08 ? 0.24) and for deciduous broadleaf forest sites
(0.17 ? 0.76). Also, a change of Thom ra with dynamic roughness
in SW3 to Mu ra in SW4 confirms a decrease in NSEavg for a majority
of the towers, except for deciduous broadleaf forest sites where it
increases (0.66 ? 0.76).

Overall, Thom ra with dynamic roughness (used in SW2 and
SW3) performed best over grassland, cropland, shrubland and ever-
green needleleaf forest sites, while Mu ra performed best over
deciduous broadleaf forest sites.

Influence of using Mu resistance parameterizations: Comparison of
SW4 and SW0 was designed to identify whether a simpler and less
data demanding resistance parameterization (i.e. using both rs and
ra from the Mu model) can be usefully employed in flux estimation.
Results show that such a parameterization is effective in increasing
the NSEavg across deciduous broadleaf forest sites (!0.37 ? 0.76),
evergreen needleleaf forest sites (!0.04 ? 0.24) and croplands
(0.08 ? 0.36). However, the performance is degraded across grass-
lands (0.43 ? 0.04) and shrublands (0.07 ? !0.04). As such, the
use of the SW4 configuration is not advised for grasslands and
shrublands.

The best performing SW scenarios: Among the studied biomes, the
SW2 has the best performance over grasslands (marginal improve-
ment over SW0 and SW1), while SW4 has the best performance over
deciduous broadleaf forest sites. For other biomes, SW3 is the best
option. The use of the Mu surface resistance in SW3 and SW4 relaxes
the need for soil moisture data. In contrast, the use of the Jarvis sur-
face resistance in SW2 demands reliable soil moisture data. Also,
application of the Mu ra parameterization for deciduous broadleaf
forest sites in SW4 removes the need for wind and canopy height
data. However, accurate wind speed and canopy height data are
required for SW2 and SW3, both of which use Thom ra.

3.3. Mu Model

Influence of ra parameterization: Fig. 4 and its equivalent bar plot
(see Fig. S18 in the Supplementary Materials) indicate that from
Mu0 to Mu1 the NSEavg is increased for grassland (0.43 ? 0.47),
cropland (0.65 ? 0.67), shrubland (0.10 ? 0.18) and evergreen
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Fig. 3. Performance of the Shuttleworth–Wallace (SW) model in response to adjusting the resistance parameterization. RE is relative error and NSE is the Nash–Sutcliff
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needleleaf forest sites (0.30 ? 0.35), but is decreased for deciduous
broadleaf forest sites (0.71 ? 0.66). As such, Thom ra with dynamic
roughness slightly improves the performance of the model, except
over deciduous broadleaf forest sites. Comparison of Mu0 to Mu2

(changing Mu ra to Thom ra with static roughness) shows a similar
response of trends in NSEavg, but smaller in magnitude, across the
biomes. These results suggest that the change in aerodynamic
resistance in the Mu model has a relatively small influence on
the modeling performance, except for deciduous broadleaf forest
sites.

Influence of rs parameterization: Compared to Mu0, which uses
the Mu surface resistance, application of the Jarvis surface resis-
tance in the Mu3 produced lower values of NSE, except for S1, E2
and D1 towers. In particular, the NSEavg is decreased over croplands
(0.65 ? 0.50) and evergreen needleleaf forest sites (0.30 ? 0.15).
However, change in NSEavg was marginal over deciduous broadleaf
forest sites (0.71 ? 0.70). Overall, the use of Mu rs provides more
robust flux estimation than does the use of the Jarvis method over
a majority of the studied biomes. Such findings are important in
the application of the Mu model in data sparse regions, where
accurate soil moisture data are not available.

The best performing Mu scenario: The Mu1 scenario has the high-
est NSEavg over grassland, cropland, shrubland and evergreen
needleleaf forest sites, and the Mu0 has the highest NSEavg for
deciduous broadleaf forest sites. When accurate wind speed data
or roughness parameters are not available, Mu0 can be used as a
replacement for Mu1 with a small compromise in estimation effi-
ciency, as the changes in NSEavg from Mu0 to Mu1 were relatively
small. Mu0 also performed better than Mu3 (Jarvis rs, Mu ra), except
over deciduous broadleaf forest sites where the performance was
similar.

3.4. Identification of the best performing models and
parameterizations

To develop an overall understanding on the performance of the
reviewed scenarios, the NSEavg and NSEstd of each scenario for each
biome were calculated (see Table 2). From this table it can be seen
that the best performing scenario for grassland and shrubland sites
is PM3, for croplands it is Mu1, for evergreen needleleaf forest sites
it is SW3 and for deciduous broadleaf forest sites it is SW4. In all of
these scenarios (PM3, Mu1, SW3, SW4) the surface resistance is
based on the Mu method, which requires no soil moisture data.
Of the selected top performing scenarios, the Mu ra method is only
used in SW4 (best performing in the deciduous broadleaf forest
sites). However, in the PM3, SW3 and Mu1 scenarios the aerody-
namic resistance is calculated using Thom’s equation with
dynamic roughness, which requires reliable wind and canopy
height data. As these forcing data are not always available for
large-scale applications, an important question is to determine
whether the scenarios that use Mu ra over grassland, cropland,
shrubland and evergreen needleleaf forest sites can produce
NSEavg values close to the top performing model?

To answer this, inspection of the NSEavg and NSEstd values in
Table 2 shows that for croplands, Mu0 satisfies the above constraint
(0.65 compared to 0.67 for the top model). However, for grassland
sites the next best scenario is PM1 (NSEavg = 0.50), which relies on
the Thom ra formulation. Likewise, no highly ranked alternative
scenario can be found for the shrubland and evergreen needleleaf
forest sites. As such, there are no alternative candidate scenarios
for grassland, shrubland and evergreen needleleaf forest biomes
that produce NSEavg values comparable to those realized from the
top-performing scenarios (see Table 2) by substituting the Mu ra

in the models.
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4. Discussion

In the present study, fourteen different scenarios were con-
structed to examine how changes in the default resistance param-
eterizations of a single-source, a two-layer and a three-source PM
type model might influence their performance in the reproduction
of actual evaporation. Intercomparison of these scenarios provided
insights into the influence of both model structure and
parameterizations.

4.1. Impact of changes in model structure

Influence of ra parameterization: The aerodynamic resistance
played a relatively minor role in flux estimation for the PM model,
in accord with the findings of Bailey and Davies (1981) and Irmak
and Mutiibwa (2010). Likewise, changes in the aerodynamic resis-
tance in the Mu scenarios produced only minor improvements in
model performance. In contrast, parameterization of the aerody-
namic resistance had a major influence on the performance of
the SW scenarios. Comparison of the various ra schemes in the
PM, SW and Mu models indicated that while the Thom ra with
dynamic roughness, which requires wind speed and canopy height
data, increased the NSEavg over a majority of the studied biomes,
the performance advantage relative to using the Mu ra was gener-
ally marginal for the PM and Mu models. Where wind speed and
canopy height data are available, Thom ra with dynamic roughness
is recommended for the SW model, except over the deciduous
broadleaf forest biome.

Influence of rs parameterization: Analysis of the scenarios illus-
trated that the surface resistance parameterization significantly
affects model performance in the PM and Mu models, while the
SW models showed variable responses. For the PM scenarios, the
Mu rs increased the overall performance (i.e. NSEavg) in croplands,
and to a lesser extent in shrubland, evergreen needleleaf forest
and in grassland sites. However, it did not improve the results in
the deciduous broadleaf forest sites. The response of the Mu model
to a change in surface resistance parameterization was somewhat
different. In the Mu scenarios, the default rs parameterization per-
formed better than that of the Jarvis method, except over decidu-
ous broadleaf forest sites where the performance change was
marginal. Nevertheless, pre-calibration of Mu rs might have con-
tributed in the increased efficiency of the scenarios that employ
those parameters, especially as 11 towers that were used in the
current study overlap with those in the Mu et al. (2011) study.

The top-ranked model and parameterizations: Overall, the top-
ranked scenarios (see Table 2) for each biome were: PM3 for grass-
lands (0.53) and shrublands (0.35), Mu1 for croplands (0.67), SW3

for evergreen needleleaf forest (0.38) and SW4 for deciduous
broadleaf forest sites (0.76) (NSEavg shown in parenthesis). These
results highlight the role of model structure in evaporation model-
ing, as the single source PM model provided better results over
short canopies (grasslands and shrublands) and the two-layer
structure of the SW model provided better results over forest
biomes. Interestingly, the three-source Mu model structure pro-
vided an exception here, as it performed the best when applied
over croplands (which have relatively short canopies).

The common element of the top-ranked scenarios is the use of
the Mu surface resistance. Likewise, PM3, SW3 and Mu1 all use the
Thom aerodynamic resistance with dynamic roughness, while SW4

uses the Mu ra. The Mu model itself showed low sensitivity to ra

parameterization, while its rs parameterization improved other
models.

Comparison with alternative process-based evaporation models:
The Penman–Monteith model variants of the current study showed
variable performances in evaporation estimation across the

different studied biomes, even when considering the top-ranked
configurations. In comparison, a number of alternative process-
based models have shown superior performance in related studies.
Recently, Ershadi et al. (2014) compared four process-based evap-
oration models that included the Surface Energy Balance System
(SEBS) (Su, 2002), PT–JPL (Fisher et al., 2008), Advection-Aridity
(Brutsaert and Stricker, 1979) and a single-source PM model with
Jarvis rs and Thom ra with dynamic roughness (i.e. similar to
PM2). Using the same dataset of the current study, they found that
an ensemble of model responses had the best performance, fol-
lowed by the PT–JPL and SEBS. The issue of appropriate model
selection is obviously a key consideration that will ultimately be
guided by user experience, data needs and data availability.
Nevertheless, adopting a multi-model strategy for flux estimation
seems a useful approach in understanding and constraining the
uncertainties that emerge from model structure and parameteriza-
tion configurations.

4.2. Issues of data uncertainty

As discussed above, a consideration in the choice of both the
model and parameterization scheme is the availability of reliable
data. Application of the surface resistance method of the Mu model
is important in relaxing the need for soil moisture data and is likely
to facilitate its application in evaporation estimation from field to
larger scales (Mu et al., 2012). Similar results were found in previ-
ous work using a modified Priestly–Taylor model (PT–JPL model;
Fisher et al., 2008). Like the Mu model, the PT–JPL approach does
not require wind speed or soil moisture data, and recent compar-
isons against more complex models illustrated that the PT–JPL per-
forms well (Vinukollu et al., 2011; Ershadi et al., 2014).

The aerodynamic resistance scheme used by the top-ranked sce-
narios examined here (except for deciduous broadleaf forest sites)
were all based on Thom ra with dynamic roughness, which requires
reliable wind speed and canopy height data. Generally, accurate in-
situ based wind speed data are not routinely available for many
study sites. Likewise, the only source for canopy height at the global
scale is a static product developed by NASA-JPL (Simard et al., 2011),
which has limited capability over short vegetation (e.g. grasslands
and croplands). Although the Mu model is designed for large scale
applications with coarse spatial (1 km) and temporal (8 day to
yearly) resolutions, the results of the current study show that in
the absence of required forcing data the Mu resistance scheme could
be used at the tower scale with reasonable performance.

Part of the deficiencies in model performance, especially over
shrubland sites (NSEavg < 0.34) is likely related to the spatio-tem-
poral resolution (i.e. 250 m, 16 days) of the MODIS data. MODIS
data are used in the estimation of vegetation indices, which are
subsequently used for parameterization of aerodynamic and sur-
face resistances. Shrubland sites display considerable land surface
heterogeneity and the contrasting bare soil and vegetation ele-
ments may not be well captured at the coarse remote sensing pix-
els (Stott et al., 1998; Montandon and Small, 2008). A difference
between the results of this and previous studies that have reported
higher performance of PM type models, may reflect the inherent
uncertainties introduced via the input data, since the majority of
prior investigations were performed with detailed field observa-
tions of vegetation characteristics (Huntingford et al., 1995; Li
et al., 2011). Clearly there is a need for high-quality in-situ pheno-
logical descriptions to undertake the types of globally distributed
analysis performed here, but unfortunately they are often lacking.
Likewise, a better understanding of the inherent scale issues in flux
estimation is required, particularly for the impact of both spatial
and temporal scaling on the performance of aerodynamic and sur-
face resistance terms (McCabe and Wood, 2006; Ershadi et al.,
2013).
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5. Conclusion

The influence of model structure and resistance parameteriza-
tion is an important, but often overlooked, consideration in the
performance of Penman–Monteith type evaporation models.
Understanding the effects of model structure and parameterization
configurations is non-trivial due to the mixed influence
of data uncertainty, hydrometeorological variability and the
complexity of the modeling system (Raupach and Finnigan,
1988). In this study, the effects of model structure and choice
of resistance parameterization were investigated using three
Penman–Monteith type models. The structure of the models varied
from single-source, to two-layer and three-source. To examine the
influence of model parameterization, a number of commonly
used resistance schemes were substituted into the models, with
flux estimates evaluated against locally measured evaporation at
a number of eddy-covariance tower sites.

Results illustrated the considerable variability in model perfor-
mance over the different biomes, with no single model structure or
scenario providing a consistently top-ranked result over the
twenty study sites. Indeed, the top-ranked scenarios highlighted
the importance of model structure. Except over croplands, where
the three-source Mu model structure performed the best, the sin-
gle-source PM structure performed better over short canopies
while the two-layer SW structure performed better over forest
canopies. Changes in resistance parameterizations, in particular
the surface resistance, were also seen to strongly influence the per-
formance of the models.

A key consideration from the findings of this work relates to the
application of Penman–Monteith type models across a range of
hydrological and related disciplines. Penman–Monteith type
approaches have been used with modifications in structure and
parameterizations in a number of global scale datasets (Zhang
et al., 2010), global circulation models (Dolman, 1993) and land
surface model applications. Hence, uncertainties and errors origi-
nating from non-optimum structure or parameterization of the
models can significantly influence the accuracy of simulation
results, evaluation of global trends (Jiménez et al., 2011; Mueller
et al., 2013) and decisions based on such results, including but
not limited to drought (Sheffield and Wood, 2008), land–atmo-
sphere interactions (Seneviratne et al., 2006) and climate change
projections (Droogers et al., 2012).

As the focus of this paper was on reporting biome-level effi-
ciency of model and parameterization configurations, the influence
of vegetation phenology (e.g. LAI, fractional vegetation cover), land
cover and climate zone were not explicitly considered in the anal-
ysis. Future work is needed to focus on site-level evaluation of the
models to address these important issues. Furthermore, given that
the top-ranked scenarios identified in this study varied across dif-
ferent biomes, an ensemble model based assessment might be an
appropriate approach for global flux estimation (Jiménez et al.,
2011; Mueller et al., 2011, 2013). Alternatively, a biome-specific
tiled evaporation product could also be developed by using the
best model and parameterization configuration for each biome
type. In either case, further understanding the role of parameteri-
zation on model performance is critical in assessing the impact
of choice on derived products.

Acknowledgements

Funding for this research was provided via an Australian
Research Council (ARC) Linkage (LP0989441) and Discovery
(DP120104718) project, together with a top-up scholarship to sup-
port Dr Ali Ershadi from the National Centre for Groundwater
Research and Training (NCGRT) in Australia during his PhD.

Research reported in this publication was also supported by the
King Abdullah University of Science and Technology (KAUST). We
thank the FLUXNET site investigators for allowing the use of their
meteorological data. This work used eddy-covariance data acquired
by the FLUXNET community and in particular by the AmeriFlux (U.S.
Department of Energy, Biological and Environmental Research,
Terrestrial Carbon Program: DE-FG02-04ER63917 and DE-FG02-
04ER63911) and OzFlux programs. We acknowledge the financial
support to the eddy-covariance data harmonization provided by
CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for
Biogeochemistry, National Science Foundation, University of
Tuscia, Université Laval and Environment Canada and US
Department of Energy and the database development and technical
support from Berkeley Water Centre, Lawrence Berkeley National
Laboratory, Microsoft Research eScience, Oak Ridge National
Laboratory, University of California – Berkeley, University of
Virginia. Data supplied by T. Kolb, School of Forestry, Northern
Arizona University, for the US-Fuf site was supported by
grants from the North American Carbon Program/USDA NRI
(2004-35111-15057; 2008-35101-19076), Science Foundation
Arizona (CAA 0-203-08), and the Arizona Water Institute. Matlab
scripts for automatic extraction of NDVI time series at towers were
provided by Dr Tristan Quaife, University College London via the
web portal at http://daac.ornl.gov/MODIS/MODIS-menu/modis_
webservice.html.

Appendix A. Details of the selected eddy-covariance towers

See Table A1.

Appendix B. Jarvis surface resistance parameterization method

The Jarvis method for estimation of surface resistance (rs) can be
expressed as:

rs ¼
rmin

s

LAI " F1 " F2 " F3 " F4
ðB1Þ

where rmin
s is the minimum canopy resistance (s m!1), LAI is the leaf

area index (m2 m!2) and F1, F2, F3 and F4 are weighting functions
representing the effects of solar radiation, humidity, soil moisture
and air temperature on plant stress. Following Chen and Dudhia
(2001), the weighting functions for Jarvis method type surface resis-
tance are defined as following:

F1 ¼
rmin

s =rmax
s þ f

1þ f
with f ¼ 0:55

Rg

Rgl

2
LAI

# $

F2 ¼
1

1þ hsðq& ! qÞ
F3 ¼ 1! 0:0016ðTref ! TaÞ2

F4 ¼
XNroot

i¼1

ðhi ! hwiltÞdi

ðhref ! hwiltÞdt

ðB2Þ

where rmax
s is the maximum canopy resistance (s m!1), Rgl is the

minimum solar radiation necessary for transpiration (W m!2), Rg

is the incident solar radiation (W m!2), hs is a parameter associated
with the water vapor deficit, q⁄ ! q represents the water vapor def-
icit (kg kg!1), q⁄ is saturation specific humidity, q is actual specific
humidity, Tref is the optimal temperature for photosynthesis (K)
and Ta is the air temperature (K). di is the thickness of the i th soil
layer (m), dt is the total thickness of the soil layer (m) and Nroot is
the number of soil layers. In this study, the observation depth of
the soil moisture sensor(s) (5–10 cm) is considered to be represen-
tative of the overall soil column. Obviously, there is potential for
rapid changes in the observed near-surface soil moisture (as a
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response to precipitation) which may not accurately reflect the dee-
per soil column response, especially for sites with deeply rooted
system. However, as there is limited availability of soil moisture
data with which to refine the technique, we employ this relatively
simple scheme as a compromise. The G1, S3, S4, E1, E3 and D4 tow-
ers (see Table A1) had one soil layer, and the rest of towers had two
soil layers included in the analysis. Values of rmin

s , rmax
s , Rgl, hs and Tref

were based on the vegetation lookup tables used in the NOAH land
surface model (see Kumar et al., 2011).

Soil moisture content thresholds for field capacity (href) and
wilting point (hwilt) provide characteristics of the soil type. As soil
type information is not available for all sites from field investiga-
tions and the values in existing global soil databases are not reli-
able at the point scale, long-term surface layer soil moisture
observations from each tower are used to determine soil moisture
thresholds (Calvet et al., 1998; Zotarelli et al., 2010). To do this, the
field capacity is determined as the 99th percentile of the ‘‘after
rain’’ soil moisture records of the tower. The estimated href is con-
strained by the maximum value of href in the NOAH soil table, as
the length of soil moisture data might not be sufficient to result
a realistic href. Similarly, the wilting point threshold is determined
from the 1st percentile of the soil moisture records, but capped to
the minimum value of hwilt in the NOAH soil table. Both vegetation
and soil parameter tables of the NOAH model can be obtained from
http://www.ral.ucar.edu/research/land/technology/lsm.php.

Appendix C. Shuttleworth–Wallace model

In the SW model, Cc and Cs are resistance functions for canopy
and soil (respectively) and are given by the following equations:

Cc ¼ 1þ RcRa

RsðRc þ RaÞ

% &!1

ðC1Þ

Cs ¼ 1þ RsRa

RcðRs þ RaÞ

% &!1

ðC2Þ

where

Ra ¼ ðDþ cÞra
a ðC3Þ

The bulk stomatal resistance of the canopy (rc
s) is a surface resis-

tance, which is influenced by the surface area of the vegetation. In
the original derivation of the SW model, the bulk stomatal resis-
tance was calculated by upscaling the leaf scale stomatal resistance
(rST) based on the leaf area index (LAI) as rc

s ¼ rST=2" LAI, with rST

assumed as a constant value or calibrated based on evaporation
observations. However, we derive the bulk canopy resistance using
the Jarvis method of Noilhan and Planton (1989) (see Appendix B),
as is used in a number of previous studies of the Shuttleworth–
Wallace model (e.g. Zhou et al., 2006; Irmak, 2011). The soil surface
resistance (rs

s) is derived from the above mentioned Jarvis method,
using the ‘‘Barren and Sparsely Vegetated’’ category of the NOAH
vegetation table for the bare soil.

Three aerodynamic resistances appear in the SW model: an
aerodynamic resistance between the soil/substrate surface and
the canopy source height (rs

a), a bulk boundary layer resistance of
vegetative elements in the canopy (rc

a), and an aerodynamic resis-
tance between the canopy source height and a reference level
above the canopy (ra

a). The bulk boundary layer resistance (rc
a) is

calculated by scaling the leaf scale mean boundary layer resistance
rb to the canopy scale using LAI, as rc

a ¼ rb=2" LAI, with rb consid-
ered constant at 25 s m!1 (Shuttleworth and Wallace, 1985).
However, ra

a and rs
a are calculated using the following equations

(Shuttleworth and Gurney, 1990) (i.e. SG90):

ra
a ¼

1
ju&

ln
z! d0

hc ! d0

# $
þ hc

nKh
exp n 1! z0m þ d0

hc

# $% &
! 1

+ ,
ðC4Þ

rs
a ¼

hc expðnÞ
nKh

exp !nz00m

hc

# $
! exp !n

z0m þ d0

hc

# $% &+ ,
ðC5Þ

where z00m is the roughness length of bare soil surface (=0.01 m)
(van Bavel and Hillel, 1976) and n is the eddy diffusivity decay con-
stant (dimensionless), which is assumed fixed at 2.5 for agricultural

Table A1
Selected eddy-covariance towers and their characteristics (Ershadi et al., 2014). zg is the site elevation (above sea level) in m, zm is tower height in m, hc is the canopy height in m,
Y is the number of years of data and L is the processing level of data. Abbreviations for climate types are defined for Sub-Tropical Mediterranean (STM), Temperate Continental
(TC), Temperate (TEM) and Tropical (TRO).

ID Name Country Climate Lat. Lon. zg zm hc Y L Reference

Grasslands
G1 PT-Mi2 Mitra IV Tojal Portugal STM 38.5 !8.0 190 2.5 0.05 2 3 Gilmanov et al. (2007)
G2 US-Aud Audubon Research Ranch USA Dry 31.6 !110.5 1469 4 0.15 4 3 Krishnan et al. (2012)
G3 US-Goo Goodwin Creek USA STM 34.3 !89.9 87 4 0.3 4 3 Hollinger et al. (2010)
G4 US-Fpe Fort Peck USA Dry 48.3 !105.1 634 3.5 0.3 4 3 Horn and Schulz (2011)

Croplands
C1 US-ARM ARM SGP – Lamont USA STM 36.6 !97.5 314 60 0.5 4 3 Lokupitiya et al. (2009)
C2 US-Ne3 Mead – rainfed USA TC 41.2 !96.4 363 6 2.5 10 3 Richardson et al. (2006)
C3 US-Ne1 Mead – irrigated USA TC 41.2 !96.5 361 6 3 10 3 Richardson et al. (2006)
C4 US-Bo1 Bondville USA TC 40.0 !88.3 219 10 3 7 3 Hollinger et al. (2010)

Shrubland/woody savannah
S1 US-SRc Santa Rita Creosote USA Dry 31.9 !110.8 991 4.25 1.7 1.5 2 Cavanaugh et al. (2011)
S2 US-SRM Santa Rita Mesquite USA Dry 31.8 !110.9 1116 6.4 2.5 7 2 Scott et al. (2009)
S3 BW-Ma1 Maun – Mopane Woodland Botswana Dry !19.9 23.6 950 13.5 8 2 3 Veenendaal et al. (2004)
S4 AU-How Howard Springs Australia TRO !12.5 131.2 38 23 15 5 3 Hutley et al. (2005)

Evergreen needleleaf forest
E1 NL-Loo Loobos Netherlands TEM 52.2 5.7 25 52 15.9 5 3 Sulkava et al. (2011)
E2 US-Fuf Flagstaff – Unmanaged Forest USA TC 35.1 !111.8 2180 23 18 6 2 Román et al. (2009)
E3 DE-Tha Anchor St. Tharandt – old spruce Germany TEM 51.0 13.6 380 42 30 2 3 Delpierre et al. (2009)
E4 US-Wrc Wind River Crane Site USA TEM 45.8 !122.0 371 85 56.3 9 2 Wharton et al. (2009)

Deciduous broadleaf forest
D1 US-MOz Missouri Ozark Site USA STM 38.7 !92.2 219 30 24.2 5 2 Hollinger et al. (2010)
D2 US-WCr Willow Creek USA TC 45.8 !90.1 520 30 24.3 5 3 Curtis et al. (2002)
D3 US-MMS Morgan Monroe State Forest USA STM 39.3 !86.4 275 48 27 6 2 Dragoni et al. (2011)
D4 DE-Hai Hainich Germany TEM 51.1 10.5 430 43.5 33 3 3 Rebmann et al. (2005)
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crops by Shuttleworth and Wallace (1985). However, following
Zhang et al. (2008) and based on the values given by Brutsaert
(1982), we assume n = 2.5 when hc < 1 m and n = 4.25 when
hc > 10 m. For the cases where 1 P hc P 10, a linear interpolation
is applied as n = 0.1944hc + 2.3056. The eddy diffusion coefficient
at the top of canopy (Kh in m2 s!1) is calculated as
Kh = ju⁄(hc ! d0), with the friction velocity (u⁄ in m s!1) calculated
as u⁄ = jua/ln [(z ! d0)/z0m]. As is common in general applications
of the SW model, the roughness variables d0 and z0m are assumed
as a fraction of the canopy height (Brutsaert, 2005), as in Eq. (3).

Appendix D. Mu model evaporation component and resistances

D.1. Evaporation from wet canopy

Evaporation from a wet canopy (i.e. intercepted water) is calcu-
lated using the following equation:

kEwc ¼ f w
DAc þ f cqcpðe& ! eÞ=rwc

a

Dþ c rwc
s

rwc
a

ðD1Þ

where fc is fractional vegetation cover. fw is the relative surface wet-
ness and calculated as fw = RH4, which is based on the concept orig-
inally developed by Fisher et al. (2008). In the original Mu model,
daily average values of RH were used and fw was assumed zero
when daily average RH < 0.7. However, here we used hourly (or
half-hourly) data and did not filter fw based on low RH values.

The aerodynamic resistance rwc
a and surface resistance rwc

s for
wet canopy are defined as:

rwc
a ¼

rwc
h rwc

r

rwc
h þ rwc

r
ðD2Þ

rwc
s ¼

1
f wgeLAI

ðD3Þ

where rwc
h is wet canopy resistance to sensible heat transfer and rwc

r

is the wet canopy resistance to radiative heat transfer, which are
formulated as following:

rwc
h ¼

1
f wghLAI

rwc
r ¼

qcp

4rT3
a

ðD4Þ

ge and gh are leaf conductance to evaporated water vapor and sen-
sible heat (respectively) per unit LAI, Ta is air temperature ("C) and r
is the Stefan–Boltzmann constant. Based on Mu et al. (2011), ge and
gh are assumed similar and constant for each biome as listed in
Table B1. The available energy for crop and soil is partitioned based
on the fractional vegetation cover (fc) as Ac = fcRn and
As = (1 ! fc)Rn ! G0.

D.2. Canopy transpiration

The canopy transpiration kEt is calculated as:

kEt ¼ ð1! f wÞ
DAc þ f cqcpðe& ! eÞ=rt

a

Dþ c 1þ rt
s

rt
a

! " ðD5Þ

where rt
a and rt

s are aerodynamic and surface resistances for transpi-
ration, respectively. The bulk canopy resistance (rt

s) is the inverse of
the bulk canopy conductance (Cc) and calculated as:

rt
s ¼

1
Cc

ðD6Þ

The assumption here is that the stomatal conductance (Gst
s ) and

cuticular conductance (Gcu
s ) are in parallel, but both are in series

with the canopy boundary-layer conductance Gb
s . Therefore, the

canopy conductance to transpiration is calculated as:

Cc ¼
ð1! f wÞ

ðGst
s þGcu

s ÞG
b
s

Gst
s þGcu

s þGb
s
LAI; LAI > 0; ð1! f wÞ > 0

0; LAI ¼ 0; ð1! f wÞ ¼ 0

8
<

: ðD7Þ

where Gb
s ¼ gh, Gcu

s ¼ rcorrgcu and Gst
s ¼ cLmðTminÞmðVPDÞrcorr with

VPD being the vapor pressure deficit (Pa). The leaf cuticular conduc-
tance (gcu) is per unit LAI, and assumed equal to 0.00001 m s!1 for
all biomes. Also, the mean potential stomatal conductance (cL) is
per unit leaf area, and is assumed constant for each biome
(Table B1). The rcorr is the correction factor for Gst

s to adjust it based
on the standard air temperature and pressure (20 "C and
101,300 Pa) using the following equation:

rcorr ¼
1

101300
Pa

Ta þ 273:15
293:15

# $1:75 ðD8Þ

m(Tmin) is a multiplier that limits potential stomatal conductance by
minimum air temperature (Tmin), and m(VPD) is a multiplier used to
reduce the potential stomatal conductance when VPD = e⁄ ! e is
high enough to reduce canopy conductance. Following Mu et al.
(2007), m(Tmin) and m(VPD) are calculated as following:

mðTminÞ ¼

1 Tmin P Topen
min

Tmin ! Tclose
min

Topen
min ! Tclose

min

Tclose
min < Tmin < Topen

min

0 Tmin 6 Tclose
min

8
>>>><

>>>>:

ðD9Þ

mðVPDÞ ¼

1 VPD 6 VPDopen

VPDclose ! VPD
VPDclose ! VPDopen

VPDopen < VPD < VPDopen

0 VPD P VPDclose

8
>>><

>>>:
ðD10Þ

Values of Topen
min , Tclose

min , VPDopen and VPDclose are listed in Table B1 for
each biome type. Also, the aerodynamic resistance to canopy tran-
spiration, rt

a, is calculated based on the convective heat transfer
resistance rh and radiative heat transfer resistance rr, assuming they
are in parallel using the following equation (Thornton, 1998):

rt
a ¼

rt
hrt

r

rt
h þ rt

r
ðD11Þ

where rt
h ¼ 1=gbl and rt

r ¼ rwc
r with gbl being the leaf-scale boundary

layer conductance per unit LAI and assumed equal to that of the
sensible heat (i.e. gbl = gh).

D.3. Soil evaporation

Evaporation from the soil surface is calculated as the sum of
evaporation from wet soil (kEws) and evaporation from saturated
soil (kEss), such that:

kEs ¼ kEws þ kEss: ðD12Þ

Partitioning of the soil surface to wet and saturated components is
based on the relative surface wetness fw, with the evaporation from
the wet soil calculated as:

kEws ¼ f w
DAs þ ð1! f cÞqcpðe& ! eÞ=rs

a

Dþ c rs
s

rs
a

: ðD13Þ

Similarly, evaporation from the saturated soil is calculated as:

kEss ¼ RHVPD=bð1! f wÞ
DAs þ ð1! f cÞqcpðe& ! eÞ=rs

a

Dþ c rs
s

rs
a

532 A. Ershadi et al. / Journal of Hydrology 525 (2015) 521–535



where rs
a and rs

s are aerodynamic and surface resistances for the soil
surface. RHVPD=b is a soil moisture constraint that is used following
Fisher et al. (2008). This function is based on the complementary
hypothesis and describes land–atmosphere interactions via the air
vapor pressure deficit VPD and relative humidity RH, with b
assigned a constant value of 200. The soil surface resistance rs

s is cal-
culated as:

rs
s ¼ rcorrrtotc ðD14Þ

where rtotc is a function of VDP and biological parameters rmin
bl and

rmax
bl as follows:

rtotc ¼

rmax
bl VPD 6 VPDopen

rmax
bl !

rmax
bl !rmin

blð Þ"ðVPDclose!VPDÞ
VPDclose!VPDopen

VPDopen < VPD < VPDclose

rmin
bl VPD P VPDclose

8
>><

>>:

ðD15Þ

VPDopen is the VPD when there is no water stress on transpiration
and VPDclose is the VPD when water stress causes stomata to close
almost completely, halting plant transpiration. Values for rmax

bl ,
rmin

bl , VPDopen and VPDclose are listed in Table B1.
The aerodynamic resistance at the soil surface (rs

a) is parallel to
both the resistance to convective heat transfer (rs

h) and the resis-
tance to radiative heat transfer rs

r , with its components calculated
as:

rs
a ¼

rs
hrs

r

rs
h þ rs

r
ðD16Þ

where rs
r ¼ rwc

r and rs
h ¼ rs

s.
Table 2 shows the Biome-Property-Lookup-Table (BPLT) used in

the Mu model. As explained by Mu et al. (2011), VPD and Tmin

parameters were derived from calibrations performed by Zhao
et al. (2005), but other parameters were calibrated based on biome
aggregated observed evaporation and Gross Primary Production
(GPP) values at 46 AmeriFlux tower sites, some of which are
included in the current study.

Appendix E. The dynamic roughness parameterization method

In the Su et al. (2001) method, the roughness height for
momentum transfer is calculated as:

z0m ¼ hc 1! d0

hc

# $
exp !j

g

# $
ðE1Þ

where hc is the canopy height and g is the ratio of friction velocity to
the wind speed at the canopy top, calculated as
g = c1 ! c2 exp(!c3CdLAI) with c1 = 0.32, c2 = 0.264, c3 = 15.1 and
the drag coefficient Cd = 0.2. The roughness length for heat transfer
(z0h) can be derived by assuming an exponential relationship

between z0m and z0h as z0h = z0m/exp(jB!1), where B!1 is the inverse
Stanton number. To estimate the jB!1 parameter, the method of Su
et al. (2001) suggests:

jB!1 ¼ jCd

4Ctb 1! exp ! nec
2

) *) * f 2
c þ 2f cf s

jgz0m=hc

C&t
þ jB!1

s f 2
s ðE2Þ

where fc is the fractional canopy coverage and fs is its complement
(for soil coverage). Ct is the heat transfer coefficient of the leaf, C&t is
the heat transfer coefficient of the soil and nec is within-canopy
wind speed profile extinction coefficient.

As noted by Su (2002), the first term of Eq. (E2) follows the full
canopy model of Choudhury and Monteith (1988), the third term is
that of Brutsaert (1982) for a bare soil surface and the second term
describes the interaction between vegetation and a bare soil sur-
face. Following Brutsaert (1999), for a bare soil surface the jB!1

s

is calculated as jB!1
s ¼ 2:46Re1=4

& ! lnð7:4Þ with Re⁄ being the
Reynolds number. More details about the methodology and formu-
lation are available in Su et al. (2001) and Su (2002).

Appendix F. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jhydrol.2015.04.
008.
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