
2 Radiation in plant canopies 

2.1 Introduction 

In simulation models of plant growth, the absorption of radiation 
by the leaves of a canopy is a major factor governing photosynthesis 
and transpiration. During the last few years there have been several 
publications on this subject. Lemeur & Blad (1974) gave an excellent 
review of these light models, so that it suffices here to give a short 
survey of the work done. 
In 1953 Monsi & Saeki introduced the idea of the exponential extinc-
tion of radiation in a canopy. In 1959, de Wit first used an analytical 
method to calculate the light distribution, but applied later in 1965 
an entirely numerical method. Some extensions to this work were 
presented by Anderson (1966), Cowan (1968), Lemeur (1971) and 
Ross & Nilson (1966). They used primarily analytical methods, but 
sometimes computer programs as well. Cowan's analytical method is 
only applicable to a canopy with horizontal leaves. Ross & Nilson 
used a more general, but also a more complicated and laborious 
method. 
An attempt was made to design models, sufficiently general to be 
realistic, and to formulate their results in terms sufficiently simple to 
be applicable without excessive effort. 
First the basic elements of the model are presented (Section 2.2). 
Subsequently an analytical study is made for canopies with horizontal 
leaves (Section 2.3.1). In Section 2.3.2 the more general case of non-
horizontal leaf angle distributions is studied by an extension of de 
Wit's numerical method to multiple scattering. The results of this 
numerical model are summarized in Section 2.3.3, mainly by generaliz-
ing the earlier results for horizontal leaves. In Section 2.3.4, the results 
obtained so far are evaluated by checking with experimental data, 
largely from literature. The model presented is also used for the treat-
ment of thermal radiation( In Section 2.4 some model extensions are 
given. The first one concerns the case of individual elements with a 
very high scattering coefficient. In the next extension the constraint is 



removed that the leaf reflection should equal the leaf transmission 
coefficient. Subsequently leaf positionings other than random are 
considered. The radiation field in plant stands, cultivated in rows, 
deserves special attention and is treated in Section 2.4.4. 

2.2 Basic elements 

2.2.1 Geometry 

The canopy is supposed to be homogeneous in a horizontal plane 
so that there is no horizontal clustering of leaves. The leaf area den-
sity is height dependent with the dimension m2 leaf per m3 air. The 
number of leaves expected in a layer is equal to the leaf area density 
multiplied by the air volume of this layer and divided by the area per 
leaf. In maize the actual number of leaves in a volume element can be 
described by a Poisson distribution (Sinclair & Lemon, 1974), but in 
this model only the expection values of leaf area and radiant fluxes 
are considered. This is allowed if the horizontal extension of the layers 
is sufficiently large. Thus there is no correlation between the positions 
of leaves in subsequent layers and the horizontal layers are considered 
continuous. Each layer has a leaf area L% per unit of ground area. Ls 
is made so small that mutual shading within such a layer can be neglec-
ted. For this purpose a value for L% of 0.1 is sufficiently small. The 
total number of layers equals leaf area index L/l/divided by Z*. 
The leaves may have different inclinations, given by the leaf angle 
distribution, which may be a function of height and consists of nine 
classes often degrees each. Absence of azimuthal preference is assumed. 
The average projection of leaves with inclination X in a direction with 
inclination /? can then be calculated. 
The sine of the angle of incidence 0 on a leaf was given by de Wit 
(1965). 

sin0 = sin/? cosA + cos/? shU sinoc (2.1) 
where a is the difference in azimuth between the leafs normal and 
the incident ray. 
The mean projection of the leaves can be found by averaging over a: 



f*/2 
I sin0 da 

0(0,2) = J-^f2 (2.2) I da 
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As the interception of the rays by the under and the upper side of a 
leaf has the same effect, the absolute value of sin0 must be taken in 
the integration. Thus 

O(jM) = sinjS cosA X^fi (2.3a) 

2/ • 
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0(/U) = - {sin/? cosA arcsin | ^ ) + 

21 „:„2o\0.5 + (sin2A - sin2j3) A>0 (2.3b) 

The average projection of all the leaves together is given by 

0(p) = t F{X) 0(/M) (2.4) 

where F(A) describes the leaf inclination distribution, so that 

Some special leaf angle distributions are 
- horizontal 

Here 0(/M) is given by 0(/M) = sin/? (2.5) 
- vertical 

Here 0(/M) is given by 0(jM) = 2/ic COS0 (2.6) 
- spherical or isotropic 

The distribution function of the leaf inclinations is the same as for the 
surface elements of a sphere. Then F(l - 9) is given by 
F(l - 9) = 0.015;0.045;0.074;0.099;0.124;0.143;0.158;0.168;0.174 
calculated from cos 0 — cos 10, cos 10 - cos 20, etc. 
The word isotropic is also used because the projection O(P) is the 
same in all directions and equal to 0.5. This value is the ratio between 
the area of the base of a hemisphere and that of the hemisphere 
itself. 



Section 2.3.4 gives an important simplification for the calculation 
of O(p), which was developed by Ross (1975). 
The radiation at each level in the canopy is divided in upward and 
downward radiant fluxes. Both are subdivided into 9 classes of 10 
degrees each, thus covering the upper and the lower hemisphere. An 
azimuthal classification of the radiation is not needed because the 
leaves have no azimuthal preference. The direct solar flux is treated 
separately. Its extinction can be calculated with the same equations 
as used for extinction of radiation in a canopy with black leaves. 

2.2.2 Incoming radiation 

The incoming radiation may be divided into four spectral regions. 
For each of these regions the geometric composition should be known 
which has to be classified only in terms of an inclination distribution, 
as the leaves do not have an azimuthal preference. Still, with four 
main spectral regions and nine inclination classes, there are 36 classes 
of incoming radiation. Fortunately a great simplification is possible. 

Spectral regions 
The first division of the incoming radiation concerns the distinction 
between thermal radiation (wavelength larger than 3000 nm) and 
short-wave radiation (wavelength less than 3000 nm). Compared 
with the thermal radiation of the sky and that of other spectral regions 
in the solar radiation the direct solar contribution to the thermal 
radiation can be neglected. In principle the treatment of the thermal 
or long-wave radiation is more complex than that of the short-wave 
radiation, because the leaves themselves radiate in the thermal 
region. Therefore the modelling of thermal radiation is given after 
that of the short-wave radiation (Section 2.3.6). There is no practicable 
correlation between the net thermal radiant flux and the incoming 
solar radiation, so that they must be measured separately. The thermal 
radiant flux can test be characterized by an apparent sky temperature. 
The solar or global radiation can be roughly divided in to three 
regions: the ultraviolet, the visible and the near-infrared region. At 
sea level the ultraviolet region (wavelength less than 400 nm) contains 
only about 3 percent of the total solar radiant energy so that it is 
neglected further. Thus the spectral composition of the solar radia-
tion is characterized by the ratio of the incoming visible and near-
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infrared radiation. Under a clear sky each of them contains about half 
of the incoming flux, and under an overcast sky the ratio shifts to 
about 0.6:0.4 in favour of the visible region. 
More detailed figures can be found in Smithsonian Meteorological 
Tables (List, 1949) and in Sul'gin (1973). 

Geometric distribution 
The measured incoming radiation must be distributed over direct 
and diffuse radiation. The direct radiation has a known inclination, 
that of the sun. For the distribution of the diffuse light over the nine 
inclination classes there are two alternative assumptions. According 
to the first assumption the sky has a uniform radiance, resulting in an 
isotropic downward radiation. When the radiance is N, the contribu-
tion to the irradiance of a horizontal surface from a infinitesimal 
solid angle dco, at inclination /? and azimuth a amounts to 

dS = N sin/? do (2.7) 
The solid angle dco is given by 

dco - cos/? dp da (2.8) 
so that dS can also be written as 

dS = N sin/? cos/? dp da (2.9) 
Integration of the azimuth a from 0 to 2K results in the contribution 
from an infinitesimal zone d/? at inclination /? given by 

dS = 2KN sin/? cos/? dp (2.10) 
Integration of /? from zero to n/2 gives S = nN for a constant N. 
When the diffuse downward flux is denoted by Sd, dS equals: 

dS = 2Sd sin/? cos/? d/? (2.11) 
Integration of dS/S between the zone boundaries at ten-degree inter-
vals gives a distribution table, denoted by Bu: 

Bu(l - 9) = 0.030;0.087;0.133;0.163;0.174;0.163;0.133;0.087; 
0.030. 

This is the uniform overcast sky distribution (UOC). It will be used 
for the diffuse radiation from an overcast sky, a clear sky and for 
radiation reflected by the soil surface. 



Some investigations will be made with the other assumption, the 
standard overcast sky (SOC). According to an empirical relation, 
proposed by Moon & Spenser (1942) and later verified by Grace 
(1971), the radiance of the standard overcast sky is given by 

N= Nz(l + 2sin0)/3 (2.12) 
In this formula the radiance rises gradually by a factor 3 from the 
radiance at the horizon to the radiance in the zenith Nz. In Section 
2.4.1 this empirical relation will be given a theoretical foundation. 
Integration of Eqn (2.12) gives 

Sd = lnNz/9 (2.13) 
so that 

dS = - Sd (1 + 2sinj?) s'mp cosj? d/? (2.14) 

Integration of dS/S between the zone boundaries at ten-degree inter-
vals gives the distribution table for the SOC, denoted by B% 

Bs(l -9) = 0.015;0.057;0.106;0.150;0.180;0.184;0.160;0.110; 
0.038 

The numerical investigations, presented in Section 2.3.2, Table 5 and 
6, show that the light extinction and reflection hardly differ under a 
uniform and a standard overcast sky. Therefore the calculations 
are done with the simpler UOC distribution, unless stated otherwise. 

Table 1. The proportion of diffuse radiation for 
a very clear sky and some solar heights, for the 
visible region. 

Inclination of the sun Diffuse/total 

5 1.00 
15 0.32 
25 0.22 
35 0.18 
45 0.16 
90 0.13 
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The proportion of diffuse radiation for a very clear sky is given in 
Table 1, according to de Wit (1965), for some solar inclinations. For 
intermediate inclinations a linear interpolation is used. The total 
visible radiant flux under a very clear sky is given by 580 sin)? in 
J m"2 s""1, and one fifth of this value (116 sin/?) under an overcast 
sky. In the near-infrared region, the radiant flux is taken equal to the 
visible flux for a clear sky and to 0.7 of the visible flux for an over-
cast sky. The classification given in this section is summarized in 
Fig. 1. 

2.2.3 Optical properties 

The distinction between visible and near-infrared radiation is justified 
by the shape of the spectral dependence of leaf reflectance and trans-
mittance (Fig. 2). At about 700 nm there is a sharp increase of both. 
Moreover the reflection and transmission coefficients are almost 
equal to each other in both regions. In the visible region an average 
value of 0.1 can be used and of 0.4 in the near-infrared region. These 
figures hold for many plant species (Brandt & Tageeva, 1967; Gates 
et al., 1965; Woolley, 1971). Sometimes reflection contains a specular 
component, but this effect will be neglected in this study. It is assumed 

percent 
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Fig. 2 | Spectral dependence of the leaf reflection and transmission coefficient 
of a healthy maize leaf. 
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that leaves reflect and transmit radiation isotropically. It will be shown 
that this assumption results in isotropically scattered radiation only 
for horizontal leaves. 
Radiation reflected by the soil surface is assumed to be always iso-
tropic. The reflection coefficient of soil does not exhibit a sharp 
increase at 700 nm, but rises gradually from about 0.1 at 400 nm via 
0.2 at 700 nm to 0.35 at 1600 nm for a dry soil and from about 0.04 
at 400 nm via 0.1 at 700 nm to 0.25 at 1600 nm for a moist soil (Ver-
hoef & Bunnik, 1975). Thus an average value of 0.1 in the visible region 
and of 0.25 in the near-infrared region can be used as a first approxima-
tion for soil reflectance. 

2.3 Elementary models 

2.3.1 Horizontal leaves 

For horizontal leaves the fraction of radiation intercepted per layer 
is always equal to the leaf area per layer Ls, independent of the light 
inclination. Let us denote the downward and upward radiant fluxes 
between layer/ andy-1 by (pd(J) and q>u(j), the leaf reflection coefficient 
by p and the leaf transmission coefficient by T. The equations for the 
downward and upward radiation leaving theyth layer then read 

9d(/ + 1) = 0 - U)q>d{j) + Ls{Tcpd(f) + pcpuii + 1)} (2.15a) 
<pu(j) = (1 - Ls)<pu(j + 1) + Ls{pq)d(j) + Tcpu{j + 1)} (2.15b) 

To find a solution for this set of equations, it is assumed that for each 
subsequent layer both downward and upward fluxes are reduced by 
the same constant reduction factor M. Such an assumption is justified 
if a solution exists. We therefore try 

q>d(j+ l) = M(pd(J) (2.16a) 
q>u(j- 1) = A/?„(/) (2.16b) 

The whole procedure is considerably simplified by assuming that 
x — p. From a physical point of view this is a good approximation 
(Section 2.2.3). The sum of reflection and transmission coefficient is 
called the scattering coefficient and denoted by o. After combination 
of Eqns (2.15) and (2.16) it is found that 
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<pu(j) = (M - 1 + Ls) 
^d(/) {i - mi -u)} 

The assumption of a constant M is equivalent to the assumption of 
exponential extinction. The extinction coefficient K is related to M 
as 

M = exp(- KL9) (2.18) 
For small values of L, this expression approaches 

A / - 1 - KU (2.19) 
When this equation is combined with Eqns (2.17), (2.16) and (2.15), 
and the simplification is used that T = p = 0.5a, we obtain 

Kh = (1 - a)0-5 (2.20) 
as was also found by Cowan (1968). The subscript h is used for referen-
ce to horizontal leaves. The expression for K can now be substituted 
into Eqn (2.19) for M, and M is used in Eqn (2.17) to find the ratio 
of the upward and downward flux. This ratio is independent of y, so 
that it also represents the reflection coefficient of the stand. We thus 
find: 

Ph = t; - \\ - *> t (2.2i) {1 - (1 - g)0-5} 
{1 + (1 - a)0'5} 

A similar, but more complicated procedure is followed when T does 
not equal p. For small values of U the extinction and reflection coeffi-
cient are then given by 

Kh = {(1 - T)2 - p2}0'5 (2.22) 
ph = (1 - T - Kh)/p (2.23) 

For low values of the leaf area index the reflection of the soil surface 
considerably disturbs the profiles found above, since in general the 
reflection coefficient of the soil surface ps is not equal to the reflection 
of a closed leaf canopy ph. Because of this boundary effect at the 
bottom, a second exponential profile in the opposite direction appears 
in the following equation: 

ipd(LAI) = q>id(0)exp(K.LAI) + (p2d(0)exp(- K.LAI) (2.24a) 

cpu{LAI) = (pid(0)exp(K.LAI) + (pid(0)ph exp(- K.LAI) (2.24b) 
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where ph is given by Eqn (2.21) and <pid(0) and <p2d(0) by 

9li(0) = , (pu - p,)exp(-K.LA[)<p*(Q) ( 2 25&) 

ps \zxp(K.LAI) + (ph - ps)exp(- K.LAI) 

(p» - —) Q\p(K.LAI)(pd(0) 
<̂ 2d(0) = 7 pr-i ph> (2.25b) 

ps \zxp(K.LAI) + (ph - ps)exp(- K.LAI) 
Ph) 

Here ps is the reflection coefficient of the soil surface and (pd(0) the 
downward flux at the top of the canopy. 
Now the effective reflection coefficient of the canopy-soil system is 
given by 

n _ (psPh - l)exp(K.LAI) + (1 - ps/ph)cxp(- K.LAI) n 0 , . Peff — — —T jz.zo; 
ps )exp(K.LAI) + (ph - ps)exp(- K.LAI) 

Ph) 
The transmitted fraction below the canopy is 

1 Ps 
teff = -7 p^ & (2.27) 

ps- — \exp(K.LAI) + (ph - ps)exp(- K.LAI) 
Ph) 

The apparent reflection coefficient is given in Fig. 3 as a function 
of the leaf area index for visible and near-infrared radiation. For the 
visible radiation (solid lines) ps was taken as 0 and 0.1 and for the 
near-infrared radiation (broken lines) p, was taken as 0 and 0.25. 
The scattering coefficients of the leaves are 0.2 and 0.8, respectively. 
Above a LAI of 2 the influence of the soil surface can be practically 
neglected. 

2.3.2 Canopies with a non - horizontal leaf angle distribution 

The fraction intercepted by a layer with leaf area L* is proportional 
to the average projection O(P) (Eqn (2.4)) and inversely proportional 
to the sine of the inclination of the incident light sin)?. Therefore the 
intercepted fraction is given by 
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near 
infrared 

LAI 

Fig. 3 | Apparent reflection coefficient of the canopy-soil system as function 
of the leaf area index for two values of the soil reflectance p%. For the visible 
region (solid lines) the values are indicated on the left ordinate and for the near-
infrared region (broken lines) on the right ordinate. 

M0) = JUD(P)/smp 
The fraction of light transmitted through a layer is 

Mt(p) - 1 - M0) 

(2.28) 

(2.29) 
In each subsequent layer the same fraction is transmitted and inter-
cepted. This follows from the assumptions that the leaf angle distribu-
tion is not a function of height, that the positions of the leaves in 
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