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II.1. Vegetation Canopy Structure 
 
Turbid Medium Approximation: The vegetation canopy is idealized as a medium filled 
densely with small planar elements of negligible thickness and area, i.e., a turbid 
medium. All organs other than green leaves are ignored for the time being. Two 
important structural attributes – leaf area density and leaf normal orientation distribution 
– are first defined in order to quantify vegetation-photon interactions. 
 
Leaf Area Density Distribution: The one-sided green leaf area per unit volume in the 
vegetation canopy is defined as the leaf area density distribution  The 
quantity, 
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is called the leaf area index, one-sided green leaf area per unit ground area at (x,y). Here 
ZH is depth of the vegetation canopy. The vertical distribution of (z),u L  
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where XS and YS are horizontal dimensions of a stand, shows the profile of leaf area 
distribution along the vertical. The variables L and (z)uL are key parameters of climate, 
hydrology, bio-geochemistry and ecology models as they govern the exchange of energy, 
mass and momentum between the land surface and the atmospheric planetary boundary 
layer. 
 
Direct measurements of L and (z)uL are labor-intensive and expensive. The modeling of 

 is a challenge as it requires computer simulation of vegetation canopies based on 
tedious field measurements (Fig. 1). Hence the interest in remote sensing of these 
variables from space-based measurements of reflected solar radiation and lidar 
backscatter returns (Fig. 2). 
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Needle Area Density Distribution: For non-flat leaves such as conifer needles, the 
counterpart to one-sided leaf area is the hemi-surface or half-of-total leaf (needle) area. In 
coniferous canopies, thus, the hemi-surface needle area is used in expressing the leaf area 
density (uL) and leaf area index (LAI).  



 

 
Figure 1. Computer simulated Norway spruce stand about 50 km near Goettingen, Germany, in the Harz 
mountains. The stand is about 45 years old and situated on the south slope. A 40×40 m2 section of the stand 
with 297 trees was sampled for reconstruction. The stem diameters varied from 6 to 28 m and the tallest 
trees were about 12.5 m in height. The trees were divided into five groups with respect to stem diameter. A 
model of a Norway spruce based on fractal theory was used to build a representative of each group 
[Knyazikhin et al., 1996]. Given the distribution of tree stems in the stand, the diameter of each tree, the 
entire sample site was generated (left panel). The right panel shows the spatial distribution of leaf area 
index L(x,y) at spatial resolution of 50 cm2, i.e., distribution of the mean leaf area index L(x,y) taken over 
each of 50 by 50 cm ground cells.  
 
 

Figure 2. Global distribution of annual average vegetation green leaf area index L(x,y) at 1 km resolution derived 
from MODIS measurements of surface reflectances [Knyazikhin et al., 1998]. Data from a four year period, July 
2000 to June 2004, were used to produce this image. This MODIS product has been developed from an algorithm 
based on radiative transfer theory developed in this book. 
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Leaf Normal Orientation Distribution: Let  
 

ΩL ≡ (θL, ϕ L) ≡ (µL, ϕ L), µL ∈ (0,1), ϕ L ∈ (0,2π), 
 
be the normal to the upper face of a leaf element. If this normal is in the lower 
hemisphere, the lower face may be treated as the upper face, i.e., the definition of the 
upper face of a leaf element is the face the normal to which is in the upper hemisphere. 
Hence, the space of leaf normal orientation is always 2π steradians. Further, let (1/2π) 

(ΩLg L) be the probability density function of leaf normal orientation, 
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If and Lµ Lϕ  are assumed independent, then  
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where )(µg LL and (1/2π) )(h LL ϕ  are the probability density functions of leaf normal 
inclination and azimuth, respectively, and 
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The functions (ΩLg L), )(µg LL  and )(h LL ϕ  will depend on the location r in the 
vegetation canopy but this has been suppressed for clarity.  
 
The simplest model of leaf normal orientation distribution is constant leaf normal 
inclination and uniform distribution of azimuths, 
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The following example model distribution functions for leaf normal inclination are 
widely used [Bunnik, 1978]: (1) planophile – mostly horizontal leaves, (2) erectophile – 
mostly erect leaves, (3) plagiophile – mostly leaves at 45 degrees, (4) extremophile – 
mostly horizontal and vertical leaves and, (5) uniform – all possible inclinations. These 
distributions can be expressed as, 
 

Planophile: ,)cos2θ(1
π
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Erectophile: ),cos2θ(1
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Plagiophile:  ),cos4θ(1
π
2θsin  )(θg LLLL −=        (2.5c) 

Extremophile: ),cos4θ(1
π
2θsin  )(θg LLLL +=        (2.5d) 

Uniform:          )(θg LL  = 2/π ,                                 (2.5e) 
 
Spherical:         )(θg LL  = sin Lθ ,                                  (2.5f) 
 
and are plotted in Fig. 3.  
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Figure 3. The )( Lg θ  for (a) planophile (mostly horizontall leaves), (b) erectrophile (mostly vertical 
leaves), (c) plagiophile (leaves inclined mostly at about 45 degrees), (d) extremophile (mostly horizontal 
and vertical leaves) and (5) uniform (all inclinations equally probable) distributions. 
 
Certain plants, such as soybeans and sunflowers, exhibit heliotropism, where the leaf 
azimuths have a preferred orientation with respect to the solar azimuth. A simple model 
for  in such canopies is [Verstraete, 1987], Lh
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where η is the difference between the azimuth of the maximum of the distribution 
function  and the azimuth of the incident photon Lh ϕ . In the case of diaheliotropic 
distributions, which tend to maximize the projected leaf area to the incident stream η = 0. 



On the other hand, paraheliotropic distributions tens to minimize the leaf area projected 
to the incident stream, η=0.5π. A more general model for the leaf normal orientations is 
the beta distribution, the parameters of which can be obtained from fits to field 
measurements of the leaf normal orientation [Goel and Strebel, 1984]. 
 
Needle and shoot orientation: The orientation of three-dimensional and non-cylindrical 
conifer needles however cannot be defined by one vector alone (as the leaf normal in case 
of flat leaves) but an additional vector is needed. These two vectors can be defined, for 
example, as the main axis of a needle and a normal to this axis (Oker-Blom and 
Kellomäki 1982). The needle axis defines the needle inclination for which the same 
characterizations as for planar leaves (e.g. a planophile or an erectophile needle 
inclination distribution) can be used.  Whenever the needles are not cylindrical, the 
rotation angle, defined by the normal to the needle axis, must in addition be specified. We 
define the spherical needle orientation so that the needle main axis has no preferred 
direction in space and, for any fixed direction of the needle axis, the rotation angle is 
uniformly distributed.  
 
Conifer needles are typically tightly grouped into annual shoots, which (for reasons that 
will become clear later) are often used as the basic foliage elements in modeling radiative 
transfer in coniferous canopies. To define shoot orientation, the same approach as defined 
above can be used (Stenberg 1996). For example, the main shoot axis has equal 
probability of pointing in any direction in the case of spherical shoot orientation 
distribution. 
 
The shoot inclination in many conifer species changes with depth in the canopy so that it 
becomes more horizontal deeper down in the canopy. In shade-tolerant species, 
especially, this change is accompanied by changes in the shoot structure so that, for 
example, shade shoots are flatter than ‘sun shoots’ (Fig. 4). 
 

 
Figure 4. Determination of shoot orientation and illustration of ‘sun shoot’ and ‘shade shoot’ geometry. 
 
 
 



II.2. Vegetation Canopy Optics 
 
A photon incident on a leaf element can either be absorbed or scattered depending on its 
frequency.  If the scattered photon emerges from the same side of the leaf as the incident 
photon, the event is termed reflection.  Likewise, if the scattered photon exits the leaf 
from the opposite side, the event is termed transmission. Scattering of solar radiation by 
green leaves does not involve frequency shifting interactions, but is dependent on the 
wavelength.  
 
A photon incident on a leaf element can either be specularly reflected from the surface 
depending on its roughness or emerge diffused from interactions in the leaf interior. 
Some leaves can be quite smooth from a coat of wax-like material, while other leaves can 
have hairs making the surface rough. Light reflected from the leaf surface can be 
polarized as well. Specularly reflected photons contain no information about the 
constitution of the leaf material as this is a surface phenomenon. Photons that do not 
suffer surface reflection enter the interior of the leaf, where they are either absorbed or 
refracted because of the many refractive index discontinuities between the cell walls and 
intervening air cavities. Photons that are not absorbed in the interior of the leaf emerge on 
both sides, generally diffused in all directions. 
 
Leaf Scattering Phase Function: The angular distribution of radiant energy scattered by 
a leaf element is specified by the leaf element scattering phase function. Consider an 
elemental leaf area dσL on which monochromatic radiation of intensity I is incident along 
Ω′. The amount of radiant energy flowing through the leaf area dσL along Ω′ confined to 
the solid angle dΩ′ in a time interval dt is 
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The wavelength dependence is assumed and will not be explicitly denoted in what 
follows. One part of dE′ is absorbed and the rest is scattered in all directions. Consider 
the direction Ω about the solid angle dΩ into which some part of the incident energy is 
scattered dE upon interaction with the leaf element. The leaf scattering phase function γL 
which introduces the appropriate stream is 
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The leaf albedo, ωL(Ω′,ΩL), is the fraction of incident energy scattered by the leaf, i.e.,  
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Radiant energy may be incident on the upper or the lower faces of the leaf element (−or 
+) and the scattering event may be either reflection or transmission. Integration of the leaf 



scattering phase function over the appropriate solid angles gives the leaf hemispherical 
reflectance  and transmittance coefficients: m
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The leaf albedo ωL(Ω′,ΩL) is simply the sum of ρL and τL; for example, 
 

⎪⎩

⎪
⎨
⎧

>•′+′

<•′+′
=′

++ 0;)Ω(Ω  if   ),Ω,Ω(τ)Ω,Ω(ρ

0;)Ω(Ω  if   ),Ω,Ω(τ)Ω,Ω(ρ
)Ω,Ω(ω

LLLLL

LL
-
LL

-
L

LL  (2.8) 

 
and in general depends on the incident photon direction Ω′ and the leaf normal 
orientation ΩL. Typical spectra of a green leaf reflectance and transmittance are 
shown in Fig. 5. The diffuse and specular leaf scattering phase functions are discussed 
below. 

Lρ Lτ

 

 
Figure 5. Typical reflectance (left axis) and transmittance (left axis) spectra of an individual plant leaf 
from 400 to 2000 nm for normal incidence. Note the following features – strong absorption at blue and 
red, moderate scattering at green, very strong scattering at near-infrared wavelengths and water absorption 
peaks in the mid-infra red. The dramatic increase in scattering from red (about 700 nm) to near-infrared 
(800-1100 nm) is often the basis for remote sensing of green vegetation. 
 



Diffuse Leaf Scattering Phase Function: A simple but realistic model for diffuse leaf 
scattering phase function was proposed by Ross [1981] and others, and is extensively 
used in remote sensing works. In this model, a fraction ρL,d of incident energy is assumed 
reflected in a cosine distribution (i.e., Lambertian) about the leaf normal. Similarly, 
another fraction τL,d is assumed transmitted in a cosine distribution on the opposite side 
of the leaf. In this model, transmission and reflection do not depend on whether radiant 
energy is incident on the upper or the lower side of the leaf element. This bi-Lambertian 
model can be written as  
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Problem 2.1. Show that the leaf albedo for the bi-Lambertian model is  
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Specular Leaf Scattering Phase Function: Specular reflection from the leaf surface 
depends on the angle of incidence α′ (the angle between the leaf normal ΩL and the 
incident photon direction Ω, the wax coat refractive index n and the roughness of the leaf 
surface κ. The index of refraction n is a weak function of wavelength and a standard 
value of about 0.9 is used in most studies (which is why specularly reflected light from 
smooth leaves looks white). A simple model for specular leaf scattering phase function 
γL,s is 
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Here, Fr is the Fresnel reflectance averaged over the polarization states, 
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where sin θs = (sin α′)/n. The function K defines the correction factor for Fresnel 
reflection (0 < K < 1), and the argument κ ≈ 0.1 to 0.3 characterizes the roughness of the 
surface. A simple model for leaf surface roughness is 
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The function δ2 is a surface delta function, 
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The vector  defines the direction of specular reflection. The leaf albedo 
for specular reflection is therefore, 
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II.3. Total Interaction Coefficient 
 
The probability that a photon while traveling a distance  in the medium will interact 
with the elements of the host medium is given by  where is the total 
interaction coefficient (

dξ
Ω)dξσ(r, )σ(r,Ω

1m− ). This probability can be derived as follows. 
 
Consider an elementary volume dSd  at r in the medium and which contains a sufficient 
number of small planar leaf elements of negligible thickness. The probability that 
photons in the incident radiation will collide with leaf elements in this volume is given by 
the ratio of the total shadow area of leaves on a plane perpendicular to the direction of 
photon travel  to the area , 
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where  is the area of leaf element of orientation . If the leaf elements are sufficiently 
small and numerous, their shadows do not overlap and, the ratio of the area of all leaf 
elements 

is LiΩ

is of orientation  to the total leaf area in the elementary volume is 
equivalent to the number or the probability of leaf elements of orientation , that is, 
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Therefore, 
 

σ(r,Ω) = uL(r)G(r,Ω) ,                            (2.13) 



 
because ) is the leaf area per unit volume or the leaf area density . The 
function G(r,Ω) is the geometry factor, first proposed by Ross [1981], and may be 
defined as the projection of unit leaf area at r onto a plane perpendicular to the direction 
of photon travel Ω. The geometry factor G satisfies the following condition: 
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Example G−functions for model leaf normal orientations are shown in Fig. 6. It is 
important to note that the geometry factor is an explicit function of the direction of 
photon travel Ω in the general case of non-uniformly distributed leaf normals. This 
imbues directional dependence to the interaction coefficients in the case of vegetation 
canopies, that is, the vegetation canopy radiation transport is non-rotationally invariant. 
The transport problem reduce to the classical rotationally invariant form only in the case 
of spherically distributed leaf normals (G = 0.5). Another noteworthy point is the 
frequency independence of σ, that is, the extinction probabilities for photons in 
vegetation media are determined by the structure of the canopy rather than photon 
frequency or the optics of the canopy. 
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Figure 6. The G-function with projection zenith angle θ for (a) planophile, (b) erectophile, (c) plagiophile, 
(d) extremophile and (e) spherical leaf normal distribution functions. A distribution with mostly horizontal 
leaves (planophile) has a higher probability of intcercepting photons incident from directions close to the 
vertical and vice-versa. The G-function for uniform orientation is equal to one-half. Variations seen in the 
figure are due to numerical errors. 
 



The total interaction coefficient σ(r,Ω) can be estimated from transmission measurements 
made below the vegetation canopy at wavelengths where leaves strongly absorb the 
incident radiation. Such measurements can be inverted to solve for the leaf area density 
distribution uL(r) and the leaf normal orientation distribution function (1/2π) gL(r,ΩL). 
 
The G-function for needles and shoots: The geometry factor G for needles varies with 
the cross-sectional needle shape, including forms close to a half circle (Scots pine) or a 
rhomb (Norway spruce), and cannot be calculated using the simple expressions given by 
Eq. (2.16). For vertical needles with uniform rotation angle, however, the same value 
G = (2/π)sin θ as for vertical leaves is obtained (Oker-Blom and Kellomäki 1982). More 
importantly, the condition given by Eq. (2.14) that the mean of G over all possible 
directions equals 0.5 holds true also for needles, irrespective of their shape as long as 
they are convex (Lang 1991). Also, the G value of spherically oriented needles equals 0.5 
for all directions of the incoming beam. 
 
When using the coniferous shoot as the basic foliage element, the geometry factor G 
corresponds to the ratio of the shoot’s silhouette area on a plane perpendicular to the 
direction of photon travel to the hemi-surface needle area. Oker-Blom and Smolander 
(1988) defined it as the silhouette to total area ratio (STAR), where the total (all-sided) 
needle area was used in the denominator. Because here we use the hemi-surface leaf area 
as the common basis for both flat leaves and needles, the shoot geometry factor G equals 
2xSTAR.   
 
The G value of spherically oriented shoots ( STAR2 ) no longer equals 0.5 but is 
essentially smaller due to needle overlapping in the shoot (i.e. the shoot is not a convex 
object). Empirical data for Scots pine and Norway spruce shoots show a range of 
approximately 0.2 to 0.4 (smaller values in the upper canopy and higher values in lower 
canopy) and a mean around 0.3 for STAR2 .  This corresponds to a 40 % reduction in the 
G value of shoots as compared to that of single leaves or needles (for which G=0.5)  
 
Problem 2.2. Let f(γ), −1 ≤ γ  ≤ 1, be a function of one variable; Ω ≡ (θ, φ) and ΩL ≡ (θ L, φ L) are two unit 
vectors. Show that  
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Here Ω•ΩL is the scalar product of two vectors, and q(x), 0 ≤ x  ≤ 1, is a function of one variable defined as 
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Problem 2.3. Letting f(γ) = |γ |, show that .  π
π
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Problem 2.4. Prove (2.14).  
 
Problem 2.5. Show that the geometry factor G(r,Ω) for spherically distributed leaf normals depends neither 
r nor Ω and is equal to ½.  
 
Problem 2.6. Show that G = µ for horizontal leaves, and G = (2/π)sin θ for vertical leaves.  
 
Problem 2.7. Let the polar angle, θ L, and azimuth, φ L, of leaf normals are independent (see Eq. 2.3). Show 
that  
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where µL = cos θL, µ  = cos θ, and  
 

∫ •=
2π

0
LLLL dφ|)Ω(Ω|)h(φ

2
1)µψ(µ,
π

. 

 
Problem 2.8. Show that in canopies where leaf normals are distributed uniformly along the azimuthal 
coordinate [i.e., h(φ L)=1], ψ(µ, µL) can be reduced to 
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where the branch angle φt is arccos(−cot θ × cot θL). 
 
Problem 2.9. Show that in canopies with constant leaf normal inclination but uniform orientation along the 
azimuth [cf. Eq. (2.4)], G(µ) = ψ(µ, µL). 
 
Problem 2.10. Using Eq. (2.6), derive the in the case of heliotropic orientations.  )µψ(µ, L

 
II.4. Differential Scattering Coefficient 
 
The probability that a photon while traveling a distance  in the medium will scatter 
from direction  to direction 

dξ
'Ω Ω  is given by  where is the 

differential scattering coefficient (
dξ)dΩ(r,σ '
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1m− 1sr − ). This probability can be derived as follows. 

 
Consider an elementary volume dSd  at r in the medium and which contains a sufficient 
number of small planar leaf elements of negligible thickness. The probability that 
photons incident along  will scatter into a differential solid angle about  is given by 
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where  is the area of leaf element of orientation  and  is the scattering phase 
function. The point interactions are assumed to be independent and uncorrelated.  Implicit 
in the formulation of the above is the assumption that the leaf elements are sufficiently 
small and numerous. The ratio of the area of all leaf elements 

is LiΩ Lγ

is of orientation  to the 
total leaf area in the elementary volume is therefore equivalent to the number or the 
probability of leaf elements of orientation , that is, 

LiΩ

oS

LiΩ
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and,  
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L
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, 

 

                                               ).Ω(r,1d
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S 'o Ω→ΓΩ=

π
          

 
Thus the differential scattering coefficient may be written as, 
 

),(1)(u  Ω)Ω(r,σ '
L

'
s Ω→ΩΓ=→ rr

π
                                    (2.17) 

 
because ) is the leaf area per unit volume or the leaf area density . Here 

 is the area scattering phase function first proposed by Ross [1981]. It is important 
to note that the differential scattering coefficient is non-rotationally invariant, that is, it is 
an explicit function of the polar coordinates of Ω′ and Ω. It can be reduced to the 
rotationally invariant form, σ

/dSdξ(So (r)u L

Γπ)/1(

s(r,Ω′→Ω) ≡ σs(r,Ω′•Ω) in a few limited cases. This 
property precludes the use of Legendre polynomial expansion and the addition theorem 
typically used in transport theory for handling the scattering integral. 
 
The scattering phase function combines diffuse scattering from the interior of a leaf and 
specular reflection from the leaf surface, 



 
Ω).Ω(r,ΓΩ)Ω(r,Γ)ΩΩΓ(r, sd →′+→′=→′  

 
The functions Γd and Γs are discussed below. 
 
Area Scattering Phase Function for Diffuse Scattering: With the bi-Lambertian leaf 
scattering phase function introduced earlier [Eq. (2.9)], the diffuse area scattering phase 
function Γd(r,Ω′→Ω) ≡ Γd(r,Ω→Ω′) may be written as,  
 

,Ω)Ω(r,ΓτΩ)Ω(r,Γρ)ΩΩ(r,Γ ddL,ddL,d →′+→′=→′ +−          (2.18) 
 
where, 
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2π
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0
L
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0
Ld •′•±=→′ ∫∫±   (2.19) 

 
The (+) in the above definition indicates that the φL integration is over that portion of the 
interval [0, 2π] for which the integrand is either positive (+) or negative (−). The 
dependence on spatial point r is suppressed for clarity. The bi-Lambertian phase function 
imbues the area scattering phase function with a useful symmetry property, 
 

Ω).Ω(Γ)Ω(ΩΓΩ)Ω(Γ ddd −→′−=′→=→′  
 
For the special case of ρL,d = τL,d, an additional symmetry holds, 
 

).()( Ω→Ω′−Γ=Ω→Ω′Γ dd  
 
An expression for the diffuse area scattering phase function can be derived from Eqs. 
(2.18) and (2.19) in canopies with horizontal, vertical and uniformly distributed leaf 
normals. For horizontal leaves µL = 1, one obtains,  
 

⎩
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For vertical leaf orientations )0(µ L =  
 

,'11)()( 22
1 µµβ −−Γ=Ω→Ω′Γd    (2.21) 

 
where β = φ − φ′; 0 ≤ β ≤ 2π,  and,  
 

.cosβ
2
τ

βcosβ)(sinβ
2π
ω

)(Γ dL,dL,
1 +−=β  



 
In the case of uniformly distributed leaf normals, the rotationally invariant scattering 
phase function is 
 

,cosβ
π
τβcosβ)(sinβ

3π
ωΩ)Ω(Γ LL

d +−=→′               (2.22) 

 
where β  = arccos(Ω′•Ω). This form of Γd  is illustrated in Fig. 7. 
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Figure 7. The area scattering phase function Γ(Ω′→Ω) for uniformly distributed leaf normals. Each leaf is 
assumed to scatter according to the bi-Lambertian model. This function is rotationally invariant and in such 
cases the radiative transfer equation can be solved using standard methods developed in astrophysics and 
atmospheric physics. 
 
In the general case of distributed leaf normals, the non-rotationally invariant form of the 
scattering kernel must be solved numerically [Eq. (2.19)]. Some simplifications are 
possible in the case of uniform distribution of leaf normal azimuths hL= 1 and the bi-
Lambertian leaf scattering phase function. This is achieved by azimuthal averaging of the 
scattering kernel, 
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'
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 (2.23) 
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where 
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4π
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0
L

2π

0
2L ••′±= ∫∫± µµ    (2.24) 

 
The double integration over φ and φL for bi-Lambertian scattering distributions also 
eliminates φ′. Evaluation of the double integral in Eq. (2.24) gives [cf. Shultis and 
Myneni, 1988], 
 

,)µ,µ'H()µµ,H()µ,µ'H(),H()µ,',(Ψ LLLLL m−+±=± µµµµ   (2.25) 
 
where the H function is, 
 
                         ,1)cot(cot   if  ,),( LLL >= θθµµµµH  
                         ,1)cot(cot   if       ,0),( LL <= θθµµH  
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L

2
LL µφµµµφµµ

π
µµ ttH −−+= , 

 
and, 
 

µ).(φπ)cotθ(cotθ)(cosφ tLt −−==µ  
 
The H function is shown in Fig. 8.  
 

 
Figure 8. A contour plot of H(µ,µL) function. 
 
The azimuthally averaged area scattering phase function also possesses symmetry 
properties, namely, 
 

µ).µ'(Γ)µ'(µΓµ)'(Γ ddd −→−=→=→µ  
 
For the special case of ρL,d = τL,d, Eqs. (2.23) reduces to,  
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               ∫=
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ω

gd ,    (2.26) 

and an additional symmetry occurs, µ).µ'(Γµ)'(Γ dd −→−=→µ  The function ψ in Eq. 
(2.26) is given by Eq. (2.16). In the case of horizontal leaf orientation, the area scattering 
phase function is independent of exit azimuth [Eq. (2.20)]. However, in the case of 
vertical leaves, this is not so [Eq. (2.21)], and integration over φ from 0 to 2π or 
alternately over β from 0 to π results in, 
 

.'11
2

)'( 22
2

dL, µµ
π
ω

µµ −−=→Γd      (2.27) 

 
The scattering coefficient for diffuse bi-Lambertian scattering from the leaf interior σ′s 
has the explicit form [cf. Eq. (2.17), (2.10)], 
 

                                                   Ω),Ω(ΓdΩ
π
1(r)u)'Ω(r,σ d

4π
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                                                                  .)'G((r)ωu dL,L Ω=                                       (2.28) 
 

The normalized scattering phase function (1/4π) Pd is therefore,  
 

,
)ΩG(ω
Ω)Ω(4Γ

Ω)Ω(P
dL,

d
d ′
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such that, 

1.Ω)Ω(PdΩ
4π
1

4π
d =→′∫  

 
The normalized scattering phase function Pd(Ω′→Ω) for planophile leaf normal 
inclination distribution and bi-Lambertian leaf scattering distribution is shown in Fig. 9. 
It is clear that the scattering phase functions in leaf canopies are non-rotationally 
invariant, that is, they are not unique functions of (Ω′•Ω). 
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Figure 9. The normalized azimuthally dependent phase function P(Ω′→Ω) for a planophile canopy 
[predominantly horizontal leaves]. The leaf transmittance and reflectance are both equal to 0.5, and Ω′ is 
fixed at θ′ = 170o and φ = 0o. Each dot is the value of the phase function for a discrete value of Ωij = (µi, φj) 
[the nearly horizontal row of dots is for a fixed µi and φj varies]. These results illustrate that the phase 
function is non rotationally invariant, i.e., it depends on the coordinates 'Ω  and and not just on the 
scattering angle [cos

Ω
−1(Ω•Ω′)]. 

 
Area Scattering Phase Function for Specular Reflection:  Using the model described 
earlier [Eq. (2.10)] for specular reflection from leaf surfaces, the area scattering phase 
function for specular reflection can be evaluated as (cf. )ΩΩ'/4dΩdΩ L

*
L •= , 
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where  defines leaf normals condusive for specular reflection given the 
incident and exit photon directions. 
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Problem 2.11. Show that the leaf normals appropriate for specular reflection are given by 
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The scattering coefficient for specular reflection from the leaf surface s'σ  has the form, 
 

                 ,Ω)'(ΩΓΩd
π
1(r)u)Ω'(r,σ s

4π
Ls →=′ ∫  

      ∫
+

′′•=
2π

rLLLLL )α(n,F)αK(κ(ΩΩ')(ΩgdΩ
2π
1(r)u ,   (2.31) 

 
                        ).'(Γ(r)u sL Ω=
 
The normalized scattering phase function is therefore, 
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II.6. Solutions to Problems 
 
Problem 2.1. Show that the leaf albedo for the bi-lambertian model is 
 

, ,
4

( , )L d L L d L dd
π

,γ ρ τ′Ω Ω → Ω Ω = +∫
 

 
Solution 2.1.  The diffuse bi-lambertian model can be written as 
 

,

,
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For any fixed angle ,  is a hemisphere and LΩ ( ) 0L′Ω • Ω > ( ) 0L′Ω • Ω <  is another. 
Consider the relationship between incident angle ′Ω  and destination angle , if they are 
in the same hemisphere of (

Ω
) 0L′Ω • Ω > , then ( )( ) 0L L′Ω • Ω Ω • Ω < , and the 

hemispherical diffuse light ( ) 0LΩ • Ω >  is reflected light, otherwise, 
, and the hemispherical diffuse light ( )( )L L′Ω • Ω Ω • Ω > 0 ( ) 0LΩ • Ω <  is transmitted 

light. In other case, let’s consider the hemisphere ( ) 0L′Ω • Ω < , the hemispherical diffuse 
light (  is reflected light, and () 0LΩ • Ω > ) 0LΩ • Ω < is transmitted light.  

 
Any combination of  and ′Ω Ω  would fall into the category ( )( ) 0L L′Ω • Ω Ω • Ω <  

or ( , regardless of  )( ) 0L L′Ω • Ω Ω • Ω > LΩ , so we can rewrite (1) to 
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From the result of problem 2.3 and the symmetry of two hemispheres, we have 
 

2
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2
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Ω Ω • Ω∫ =π , 

 
so the former equation goes on as 
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and this is the final result. 



Problem 2.2. Let f(γ), -1 ≤ γ ≤ 1, be a function of one variable; Ω ≡ (θ, φ) and ΩL ≡ (θL, 
φL) are two unit vectors. Show that  
 

L L
2

f( )d 4πq(sinθ )
π +

Ω •Ω Ω =∫ . 

 
Here Ω• ΩL is the scalar product of two vectors, and q(x), 0≤ x ≤1, is a function of one 
variable defined as  
 
 

1 x

x 0

1 1q(x) = f(γ)dγ + [α(γ, x) f(γ) + β(γ, x) f(-γ)]dγ
2 2∫ ∫ , 

 
where α(γ, x) + β(γ, x) = 1, and  
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Solution 2.2. Let 
 

L L
2

g( ) = f( )d
π +

Ω Ω •Ω Ω∫ . 

 
To show that g(ΩL) is a function of only θL, we want to choose a coordinate system in 
which g(ΩL) is more convenient to calculate. For simplicity, let’s assumed φL = 0. This 
assumption put no more restriction on the problem because we can always substitute φ 
with (φ - φL) without changing the domain of the integration (i.e., the upper hemisphere).  
 
If φL = 0, the following rotation transform 
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projects a vector x’ into a new system in which ΩL is the z-direction. Note that  
 

T=A A•I , 
 

where AT is the transpose of the A transform. Therefore, the inverse of the A transform is 
AT. 
 



To determine the integration domain in the new coordinate system, let x be a unit vector 
in the new system, and 
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 = sinθ sin
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From the AT transform, x falls in the upper hemisphere in the original system if it satisfy 
that  
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Note θL∈[0, π/2], θ∈[0, π], sin θL·sin θ > 0, then the above inequality gives 
 

L

L

cosθ cosθcos
sin θ sinθ

⋅
ϕ ≤

⋅
. 

 
Note that 
 

L
L

L

L
L L

L

L L

L L

L
L

L

cosθ cosθ π1, θ [0, -θ ) { 0, 2π
sinθ sinθ 2

cosθ cosθ π π1 1, θ [ -θ , +θ ]
sinθ sin θ 2 2

cosθ cosθ cosθ cosθ{ arccos , 2π-arccos
sinθ sinθ sinθ sinθ

cosθ cosθ π1, θ ( +θ ,π] {
sinθ sinθ 2

⋅⎧ > ∈ ⇒ ϕ} = [ ]⎪ ⋅⎪
⋅⎪

− ≤ ≤ ∈⎪ ⋅⎪
⎨ ⋅ ⋅

⇒ ϕ} = [
⋅ ⋅

⋅
< − ∈ ⇒ ϕ} = ∅

⋅

⎪
⎪
⎪
⎪
⎪⎩

]
. 

 
 
Because ΩL is the z-direction in the new coordinate system, it indicates that 
 

Lcosθ = Ω • Ω . 
Then  
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Substitute variable θ with (π/2- θ), and because π πcosθ = sin( -θ), sinθ = cos( -θ)
2 2

, and 

use the equality that 
 

arccos(- ) = π-arccos( )φ φ , 
 
the above equation can be rewritten as   
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Note in the last step above we have used the equality that 

 
arccos(- ) = π-arccos( )φ φ . 

 
 
Finally, let x = sinθL, γ = sinθ, and  
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Plug them into the above equation and change the limits of integration according the 
variable γ, we have  
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Problem 2.3.  Let f(γ) = | γ |, show that L
2

f( ) d π
π +

Ω •Ω Ω =∫ . 

 
Solution 2.3. Using the results of Problem 2.2,  
 
 

L L
2

f( )d 4πq(sinθ )
π +

Ω •Ω Ω =∫  

1 x

x 0

= 2π{ γdγ + [α(γ, x) + β(γ, x)] γdγ}⋅∫ ∫  

1 x

x 0

= 2π{ γdγ + γdγ}∫ ∫  

1

0

= 2π γdγ⋅ ∫  

= π  . 
 
 



Problem 2.4. Prove (2.14). 
 
Solution 2.4. Equation (2.14) states that  
 

2

1 1( , ) .
2 2

d G r
ππ +

Ω Ω =∫  

From the definition of  
 

2

1( , ) ( ) ( )
2 L L L LG r d g

ππ +

Ω = Ω Ω Ω • Ω∫ , 

 
we get 
    

2

1 ( , )
2

d G r
ππ +

Ω Ω∫  

2 2

2
2 2

2
2 2

2
2

2

1 1 ( ) ( )
2 2

1 ( ) ( )
4

1 ( ) ( )
4

1 ( )
4

1 2
4
1
2

L L L L

L L L L

L L L L

L L L

d d g

d d g

d g d

d g

π π

π π

π π

π

π π

π

π

π
π

π π
π

+ +

+ +

+ +

+

= Ω Ω Ω Ω •

= Ω Ω Ω Ω • Ω

= Ω Ω Ω Ω • Ω

= Ω Ω •

= • •

=

∫ ∫

∫ ∫

∫ ∫

∫

Ω

 

 



Problem 2.5. Show that the geometry factor ( , )G r Ω  for uniformly distributed leaf 

normals depend neither  nor  and is equal to r Ω 1
2 . 

 
Solution 2.5. From the definition, 
 

2

1( , ) ( ) ( )
2 L L L LG r d g

ππ +

Ω = Ω Ω Ω • Ω∫ , 

and the uniform assumption that  ( ) 1L Lg Ω = , we get  
 

2

1( , ) ( )
2 L LG r d

ππ +

Ω = Ω Ω •∫ Ω  

 
The right side form is exactly the result of Problem 2.3, so 
 

1 1( , )
2 2

G r π
π

Ω = • =  

 
Also, from the uniform assumption, we see that leaf normals distribute evenly in space, 
which does not depend on . From following derivation, we see for any angle Ω , the 
integral of 

r
( LΩ • Ω)  over upper hemisphere LΩ  would always equal to π , so the result 

dose not depend on Ω . 



Problem 2.6. Show that G µ=  for horizontal leaves, and ( )2 / sinG π θ=  for vertical 
leaves. 
 
Solution 2.6. For horizontal leaves, we have  
 

( ) ( )0
( ) 1

sin
L

L L L
L

g
δ θ

δ µ
θ
−

Ω = − = . 

 
thus, 
 

( )

( )

2

1 2

0 0
1 2

2

0 0
2

0

1  ( , ) (r, )
2

1 1
2

1 1 1 sin cos( ) c
2

1 cos cos
2

L L L L

L L L L

L L L L L L

L

G r d g

d d

d d

d

π

π

π

π

θ
π

µ δ µ ϕ
π

osµ δ µ ϕ µ θ ϕ ϕ µ θ
π

ϕ θ θ
π

+
= Ω Ω Ω • Ω

= − Ω • Ω

= − − − +

= =

∫

∫ ∫

∫ ∫

∫

 

 
 
Similarly, for vertical leaves,  
 

( ) ( )/ 2
( ) 0

sin
L

L L L
L

g
δ θ π

δ µ
θ

−
Ω = − = . 

 
Therefore, 
 

( )

( )

2

1 2

0 0
1 2

2

0 0
2 2

0 0

1  ( , ) (r, )
2

1 0
2

1 0 1 sin cos( ) c
2

1 sinsin cos( ) cos( )
2 2
2 sin

L L L L

L L L L

L L L L L L

L L L L

G r d g

d d

d d

d d

π

π

π

π π

θ
π

µ δ µ ϕ
π

osµ δ µ ϕ µ θ ϕ ϕ µ θ
π

θϕ θ ϕ ϕ ϕ ϕ ϕ
π π

θ
π

+
= Ω Ω Ω • Ω

= − Ω • Ω

= − − − +

= − = −

=

∫

∫ ∫

∫ ∫

∫ ∫

 



Problem 2.7. Let the polar angle, Lθ , and azimuth angle, Lφ , of leaf normals are 
independent (see Eq. 2.3). Show that  
 

1

0

2

0

                            ( , ) ( , ) ( , ),

where cos , cos ,and

1                           ( , ) ( )
2

L L L L

L L

L L L

G r d g r

d h
π

L

L

µ µ µ ψ µ µ

µ θ µ θ

ψ µ µ ϕ ϕ
π

=

= =

= Ω • Ω

∫

∫

 

 
 
Solution 2.7. Since polar angle, Lθ , and azimuth angle, Lφ , of leaf normals are 
independent, we have (Eq. 2.3) 
 

( )                            ( ) ( )L L L L L Lg g hµ ϕΩ =  
 
where ( )L Lg µ  and ( ) / 2L Lh ϕ π  are the probability density functions of leaf normal 
inclination and azimuth, respectively. Therefore,  
 
 

2

1 2

0 0
1 2

0 0
1

0

1  ( , ) (r, )
2

1 (r, ) ( )
2

1(r, ) ( )
2

( , ) ( , )

L L L L

L L L L L L L

L L L L L L L

L L L L

G r d g

d d g h

d g d h

d g r

π

π

π

µ
π

µ ϕ µ ϕ
π

µ µ ϕ ϕ
π

µ µ ψ µ µ

+ L= Ω Ω Ω • Ω

= Ω

= Ω

=

∫

∫ ∫

∫ ∫

∫

• Ω

• Ω



Problem 2.8. Show that in canopies where leaf normals are distributed uniformly along the 
azimuthal coordinate [i.e., h(φ L)=1], ψ(µ, µL) can be reduced to 
 
 

⎪⎩

⎪
⎨
⎧

−−+−

≥
=

else,sinφµ1µ1(2/π21)/π(2φµµ

),sinθ(sinθ)(µµ   if,µµ
)µψ(µ,

     ,t
2
L

2
tL

LLL

L  (1) 

 
 
where the branch angle φt is arccos(−cot θ × cot θL). 
 
Solution 2.8. First we need to derive the expression for LΩ•Ω : 
 

)cos()cos()sin()sin()sin()sin()cos()sin()cos()sin( LLLLLL θ•θ+ϕθ•ϕθ+ϕθ•ϕθ=Ω•Ω   
    

              { } )cos()cos()sin()sin()cos()cos()sin()sin( LLLL θθ+ϕϕ+ϕϕθθ=  
            

{ } )cos()cos()cos()cos()cos()cos(
2
1)sin()sin( LLLLLL θθ+ϕ+ϕ−ϕ−ϕ+ϕ+ϕ+ϕ−ϕθθ=  

 

             )cos()cos()cos()sin()sin( LLL θθ+ϕ−ϕθθ=                                                                   (2) 
 

Using this expression, we can rewrite Eq. (1) 
 

[ ]LLLL

2

0
LL

2

0
LL

~)cos()cos()cos()sin()sin(d
2
1)(hd

2
1

ϕ−ϕ=ϕ=θθ+ϕ−ϕθθϕ
π

=Ω•Ωϕϕ
π ∫∫

ππ

     

                        

              )cos()cos()~cos()sin()sin(~d
2
1

LL

2

θθ+ϕθθϕ
π

= ∫
π−ϕ

ϕ
 

 

             )cos()cos()~cos()sin()sin(~d
2
2

LL
0

θθ+ϕθθϕ
π

= ∫
π

 

The following manipulation with the integrand is true: 
 

{ })(ctg)(ctg)~cos()sin()sin()cos()cos()~cos()sin()sin( LLLL θθ+ϕθθ=θθ+ϕθθ        (3) 
 

It follows from Eq. (3) that the integrand will definitely have the same sign over interval [ ]π,0  if  
:1)(ctg)(ctg L >θθ  (because 1)~cos( <ϕ  ). But if the integrand is always positive or negative we 

can transfer taking modulus from integrand to taking modulus from the total integral : 
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)cos()cos()~cos()sin()sin(~d1
LL

0

θθ+ϕθθϕ
π ∫

π

 

 

∫
π

θθ+ϕθθϕ
π

=
0

LL )cos()cos()~cos()sin()sin(~d1
 

 

                      { } )cos()cos()cos()cos(0)sin()sin(1
LLL θθ=π•θθ+•θθ

π
=  

 
In the other case, 1)(ctg)(ctg L <θθ , the integrand can change sign over the interval [  and we 
perform the following analysis. First, because 

]π,0
)~cos(ϕ  is monotonically decreasing in the interval 

 and if the integrand =0 at point  it means that at this point the integrand changes sign. 
Point  can be found as follows: 
[ π,0 ] *ϕ

*ϕ
 

0)cos()cos()~cos()sin()sin( LL =θθ+ϕθθ                                        (4) 
 

We have: 
⇒θθ−=ϕ

ϕ=ϕ
)(ctg)(ctg)~cos( L~ *  

 
( ))(ctg)(ctgarccos L

* θθ−=ϕ  
 

So we will split the integration over [ ]π,0  into 2 subintervals where integrand have opposite 
signs, and move the modulus sign as we did earlier: 
 

)cos()cos()~cos()sin()sin(~d1
LL

0

θθ+ϕθθϕ
π ∫

π

 

∫∫
π

ϕ

ϕ

θθ+ϕθθϕ−θθ+ϕθθϕ
π

=
*

*

)cos()cos()~cos()sin()sin(~d)cos()cos()~cos()sin()sin(~d1
LL

0
LL  

*
L

*
L )cos()cos()0)(sin()sin()sin(1

ϕ•θθ+−ϕ•θθ
π

=  
 

 [ ] [ ]*
LL

* )cos()cos()sin()sin()sin(0 ϕ−πθθ−θθ•ϕ−−−  
 

    ( )π−ϕ⋅•θθ+ϕ•θθ
π

= *
L

*
L 2)cos()cos()sin()sin()sin(21  

 
Thus, we have 
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( )
( ) ( ) ( ) ( )

( ) ( )⎪
⎩

⎪
⎨

⎧

<θθ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π−

π
ϕ⋅

•θθ+ϕ•θθ
π

>θθθ⋅θ

=θθψ
.1ctgctgif,2)cos()cos()sin()sin()sin(2

,1ctgctgif,coscos
,

L

*

L
*

L

LL

L  
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Problem 2.9. Show that in canopies with constant leaf normal inclination but uniform 
orientation along azimuth [cf. Eq. (2.4)], ( ) ( ), .LG µ µ µ= Ψ  
 
Solution 2.9. For canopies with constant leaf normal inclination but uniform orientation along 
azimuth, we have 
 

( )*( )L L L Lg µ δ µ µ= −  and ( ) 1L Lh ϕ = . 
 
Therefore,  
 

( )

( )

2

1 2

0 0
1 2

*

0 0
1

* *

0

1 ( , ) (r, )
2

1 (r, ) ( )
2

1 ( )
2

( , ) ( , ) ( , )

L L L L

L L L L L L L

L L L L L L L
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d d g h

d d h

d

π

π

π

µ
π

µ ϕ µ ϕ
π

µ δ µ µ ϕ ϕ
π

µ δ µ µ ψ µ µ ψ µ µ ψ µ µ

+
= Ω Ω Ω • Ω

= Ω

= − Ω • Ω

= − = =

∫

∫ ∫

∫ ∫

∫

• Ω
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Problem 2.10. Using Eq. (2.6), derive the  in the case of heliotropic orientations.  )µψ(µ, L

 
Solution 2.10. The integral is: 

( ) ( )

( )∫

∫
π

π

αθθ+θθη+αα
π

=

φ−φθθ+θθη−φ−φφ
π

2

0

2

2

0

2

cossinsincoscoscos1
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LL

LLLLL

d

d

 
  
Where 

φ−φ=α L . 
 
If 1cotcot >θθ L  : 
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L

LL
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dd

d

d

µµ=

αη+αα
π

θθ
++η+αα

π
µµ

=
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=
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∫

∫

ππ

π

π
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2
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2

0

22
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Else: 
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π
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∫∫
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The integral from 0 to 2π can be divided into three integrals: 0--αt, αt--2π-αt, 2π-αt--2π, noted as 
I1, I2, I3, where ( )Lt θθ−=α cotcotarccos . Thus, 
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⎤
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( ) ( )

( ) ( ) ( ) ( ⎥⎦
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As the total integral I=I1-I2+I3, we have 
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3
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2
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For dia-heliotropic distribution, η=0, and 
 

( )[ ] ( )⎥⎦
⎤
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⎡ α+α

π
θθ

+α+π−α
π

µµ
= tt

L
tt
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3
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For para-heliotropic distribution, η=π/2, and 
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π
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3
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Problem 2.11. Show that the leaf normals appropriate for specular reflection are given by 
 

                                                  ,
)1(2
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µ  
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n

Ω
Ω’ 

 
 
 
 
 
 
 
 
 
 
Solution 2.11. The leaf normal (vector) can be written as, 'ΩΩn −= . Let ΩΩα cos ′•= and 
after normalization, . Considering that 2)))/(2sin(α/Ω(Ωn '−=

 

,ẑcosθŷcossinθx̂sinsinθn
,ẑθcosŷcosθsinx̂sinθsinΩ
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Dividing Eqs. (1) by (2), we obtain, 
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and from, 2/)cos1()2/sin( αα −= ,  
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