# # # WARNING !!! # DO NOT MODIFY THIS FILE. # THIS FILE IS ONLY PROVIDING INFORMATION ABOUT DEFAULT PARAMETER SETTINGS IN ORCHIDEE. # #******************************************************************************************* # Namelist for ORCHIDEE #******************************************************************************************* # # For more details, see : http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters # # Note : [m] : meters; [K] : Kelvin degrees; [C] : Celsius degrees # #******************************************************************************************* # ORCHIDEE driver parameters (read in Off-line mode only) #******************************************************************************************* # LWDOWN_CONS ([FLAG]) : Conserve longwave downwelling radiation in the forcing {} LWDOWN_CONS = n # SWDOWN_CONS ([FLAG]) : Conserve shortwave downwelling radiation in the forcing {} SWDOWN_CONS = LWDOWN_CONS # FORCING_FILE ([FILE] ) : Name of file containing the forcing data {[-]} FORCING_FILE = forcing_file.nc # DT_SECHIBA ([seconds]) : Time-step of the SECHIBA component {NOT(WEATHERGEN)} DT_SECHIBA = 1800. # RESTART_FILEIN ([FILE]) : Name of restart to READ for initial conditions {[-]} RESTART_FILEIN = NONE # RESTART_FILEOUT ([FILE]) : Name of restart files to be created by the driver {[-]} RESTART_FILEOUT = driver_rest_out.nc # DRIVER_reset_time ([FLAG]) : Overwrite time values from the driver restart file {[-]} DRIVER_reset_time = n # TIME_SKIP ([seconds, days, months, years]) : Time in the forcing file at which the model is started. {[-]} TIME_SKIP = 0 # TIME_LENGTH ([seconds, days, months, years]) : Length of the integration in time. {[-]} TIME_LENGTH = Full length of the forcing file # RELAXATION ([FLAG]) : method of forcing {[-]} RELAXATION = n # RELAX_A ([days?]) : Time constant of the relaxation layer {RELAXATION} RELAX_A = 1.0 # SPREAD_PREC ([-]) : On how long we spread the precipitation, value in nb of dt_sechiba {orchidee_ol} SPREAD_PREC = Half of the forcing time step or uniform, depending on dt_force and dt_sechiba # ATM_CO2 ([ppm]) : Value to precribe atmosoheric CO2 {[FORCE_CO2_VEG=y or Offline mode]} ATM_CO2 = 350. # CO2_varying ([y/n]) : A flag to specify if CO2 level will vary within the simulation {[FORCE_CO2_VEG=y or Offline mode]} CO2_varying = .FALSE. # CO2_inc ([-]) : Relative yearly increase of the CO2 level {[FORCE_CO2_VEG=y or Offline mode]} CO2_inc = 1. # START_DATE ([yyyy-mm-dd hh:0:0]) : Date at which the simulation starts {orchideedriver} START_DATE = NONE # CYCLIC_STARTDATE ([yyyy-mm-dd hh:0:0]) : Date at which the cyclic year is started {orchideedriver} CYCLIC_STARTDATE = NONE # CYCLIC_ENDDATE ([yyyy-mm-dd hh:0:0]) : Date at which the cyclic year is ended {orchideedriver} CYCLIC_ENDDATE = NONE # END_DATE ([yyyy-mm-dd hh:0:0]) : Date at which the simulation ends {orchideedriver} END_DATE = NONE # DT_SECHIBA ([seconds]) : Time step length in seconds for sechiba component {orchideedriver} DT_SECHIBA = 1800 # LWDOWN_CONS ([y/n]) : Conserve the longwave downward radiation of the forcing {orchideedriver} LWDOWN_CONS = n # FORCING_MEMORY ([-]) : Number of time steps of the forcing we will store in memory. {orchideedriver} FORCING_MEMORY = 80 # SPREAD_PREC ([-]) : On how long we spread the precipitation, value in number of DT_SECHIBA {orchideedriver} SPREAD_PREC = Half of the forcing time step or uniform, depending on dt_force and dt_sechiba # SPREAD_PREC_SEC ([seconds]) : On how long we spread the precipitation, value in seconds {orchideedriver, only read if SPREAD_PREC is not set} SPREAD_PREC_SEC = Half of the forcing time step # SPREAD_PREC_CONT ([TRUE/FALSE]) : Makes the spreading uniform if it still rains at following forcing time step {orchideedriver} SPREAD_PREC_CONT = FALSE # ALLOW_WEATHERGEN ([FLAG]) : Allow weather generator to create data {[-]} ALLOW_WEATHERGEN = n # DT_WEATHGEN ([seconds]) : Calling frequency of weather generator {ALLOW_WEATHERGEN} DT_WEATHGEN = 1800. # LIMIT_WEST ([Degrees] ) : Western limit of region {[-]} LIMIT_WEST = -180. # LIMIT_EAST ([Degrees] ) : Eastern limit of region {[-]} LIMIT_EAST = 180. # LIMIT_NORTH ([Degrees]) : Northern limit of region {[-]} LIMIT_NORTH = 90. # LIMIT_SOUTH ([Degrees]) : Southern limit of region {[-]} LIMIT_SOUTH = -90. # MERID_RES ([Degrees]) : North-South Resolution {ALLOW_WEATHERGEN} MERID_RES = 2. # ZONAL_RES ([Degrees] ) : East-West Resolution {ALLOW_WEATHERGEN} ZONAL_RES = 2. # HEIGHT_LEV1 ([m]) : Height at which T and Q are given {offline mode} HEIGHT_LEV1 = 2.0 # HEIGHT_LEVW ([m]) : Height at which the wind is given {offline mode} HEIGHT_LEVW = 10.0 # NBUFF (-) : Number of time steps of data to buffer between each reading of the forcing file {OFF_LINE} NBUFF = 1 # IPPREC ([-] ) : Use prescribed values {ALLOW_WEATHERGEN} IPPREC = 0 # WEATHGEN_PRECIP_EXACT ([FLAG]) : Exact monthly precipitation {ALLOW_WEATHERGEN} WEATHGEN_PRECIP_EXACT = n # DUMP_WEATHER ([FLAG]) : Write weather from generator into a forcing file {ALLOW_WEATHERGEN } DUMP_WEATHER = n # DUMP_WEATHER_FILE ([FILE]) : Name of the file that contains the weather from generator {DUMP_WEATHER} DUMP_WEATHER_FILE = weather_dump.nc # DUMP_WEATHER_GATHERED ([FLAG]) : Dump weather data on gathered grid {DUMP_WEATHER} DUMP_WEATHER_GATHERED = y # HEIGHT_LEV1_DUMP ([m]) : {DUMP_WEATHER} HEIGHT_LEV1_DUMP = 10. #******************************************************************************************* # ORCHIDEE parameters #******************************************************************************************* # NC_RESTART_COMPRESSION ([FLAG]) : Restart netcdf outputs file are written in compression mode {} NC_RESTART_COMPRESSION = n # SOILTYPE_CLASSIF ([-]) : Type of classification used for the map of soil types {!IMPOSE_VEG} SOILTYPE_CLASSIF = zobler # ENERGY_CONTROL ([FLAG]) : {OK_SECHIBA} ENERGY_CONTROL = 1 # OK_HYDROL_ARCH ([FLAG]) : Activates the hydraulic architecture {OK_SECHIBA} OK_HYDROL_ARCH = y # OK_GS_FEEDBACK ([FLAG]) : Debug option for OK_HYDROL_ARCH {OK_SECHIBA, OK_HYDROL_ARCH} OK_GS_FEEDBACK = y # OK_MLEB ([FLAG]) : Activate multi-layer energy budget {OK_SECHIBA} OK_MLEB = y # OK_IMPOSE_CAN_STRUCTURE ([FLAG]) : Debug option for OK_MLEB {OK_SECHIBA, OK_MLEB} OK_IMPOSE_CAN_STRUCTURE = n # MLEB_NETCDF_FLAG ([FLAG]) : Debug option for OK_MLEB {OK_SECHIBA, OK_MLEB} MLEB_NETCDF_FLAG = n # OK_BARE_SOIL_NEW ([FLAG]) : Flag that controls the view on and calculation of bare soil {OK_SECHIBA or OK_STOMATE } OK_BARE_SOIL_NEW = FALSE # RIVER_ROUTING ([FLAG]) : Decides if we route the water or not {OK_SECHIBA} RIVER_ROUTING = y # DO_IRRIGATION ([FLAG]) : Should we compute an irrigation flux {RIVER_ROUTING } DO_IRRIGATION = n # DO_FLOODPLAINS ([FLAG] ) : Should we include floodplains {RIVER_ROUTING } DO_FLOODPLAINS = n # OK_SOIL_CARBON_DISCRETIZATION ([FLAG]) : Activate soil carbon vertical discretization {OK_STOMATE} OK_SOIL_CARBON_DISCRETIZATION = FALSE # OK_VESSEL_MORTALITY ([FLAG]) : Activate death and recovery of vegetation following hydraulic failure. {OK_STOMATE} OK_VESSEL_MORTALITY = FALSE # STOMATE_OK_STOMATE ([FLAG]) : Activate STOMATE? {OK_SECHIBA} STOMATE_OK_STOMATE = y # DO_WOOD_HARVEST ([FLAG]) : Activate Wood Harvest ? {OK_STOMATE} DO_WOOD_HARVEST = n # STOMATE_OK_NCYCLE ([FLAG] ) : Activate dynamic N cycle {OK_STOMATE } STOMATE_OK_NCYCLE = y # STOMATE_IMPOSE_CN ([FLAG] ) : Impose the CN ratio of leaves {OK_STOMATE } STOMATE_IMPOSE_CN = n # RESET_IMPOSE_CN ([FLAG] ) : Reset the CN ratio of leaves {OK_STOMATE } RESET_IMPOSE_CN = n # STOMATE_READ_CN ([FLAG] ) : Read the CN ratio of leaves {OK_STOMATE } STOMATE_READ_CN = n # STOMATE_OK_DGVM ([FLAG]) : Activate DGVM? {OK_STOMATE} STOMATE_OK_DGVM = n # CHEMISTRY_BVOC ([FLAG]) : Activate calculations for BVOC {OK_SECHIBA} CHEMISTRY_BVOC = n # CHEMISTRY_LEAFAGE ([FLAG]) : Activate LEAFAGE? {CHEMISTRY_BVOC} CHEMISTRY_LEAFAGE = n # CANOPY_EXTINCTION ([FLAG]) : Use canopy radiative transfer model? {CHEMISTRY_BVOC } CANOPY_EXTINCTION = n # CANOPY_MULTILAYER ([FLAG]) : Use canopy radiative transfer model with multi-layers {CANOPY_EXTINCTION } CANOPY_MULTILAYER = n # NOx_RAIN_PULSE ([FLAG]) : Calculate NOx emissions with pulse? {CHEMISTRY_BVOC } NOx_RAIN_PULSE = n # NOx_BBG_FERTIL ([FLAG]) : Calculate NOx emissions with bbg fertilizing effect? {CHEMISTRY_BVOC } NOx_BBG_FERTIL = n # NOx_FERTILIZERS_USE ([FLAG] ) : Calculate NOx emissions with fertilizers use? {CHEMISTRY_BVOC } NOx_FERTILIZERS_USE = n # OK_READ_FM_MAP ([FLAG]) : Read the forest management strategy from a map {OK_STOMATE} OK_READ_FM_MAP = FALSE # OK_READ_SP_CLEARCUT_MAP ([FLAG]) : Read a map prescribing whether a pxiel and PFT gets {OK_STOMATE} OK_READ_SP_CLEARCUT_MAP = FALSE # OK_SPECIES_CHANGE ([FLAG]) : Change species after a stand replacing disturbance {OK_STOMATE} OK_SPECIES_CHANGE = FALSE # READ_SPECIES_CHANGE_MAP ([FLAG]) : Read the new tree species from a species map {OK_STOMATE} READ_SPECIES_CHANGE_MAP = FALSE # OK_READ_DESIRED_FM_MAP ([FLAG]) : Read the new FM strategu from a map {OK_STOMATE, OK_CHANGE_SPECIES} OK_READ_DESIRED_FM_MAP = FALSE # OK_LITTER_RAKING ([FLAG]) : Activite litter raking {OK_STOMATE} OK_LITTER_RAKING = FALSE # OK_DIMENSIONAL_PRODUCT_USE ([FLAG]) : Product pools are based on the dimensions of the harvest {OK_STOMATE} OK_DIMENSIONAL_PRODUCT_USE = TRUE # FORCED_CLEAR_CUT (year) : Use to force a clear cut at a specific year during a simulation. {OK_STOMATE} FORCED_CLEAR_CUT = FALSE # OK_C13 ([FLAG]) : Calculate C13 fractionation {OK_SECHIBA } OK_C13 = FALSE # OK_WINDTHROW ([FLAG] ) : Activate windthrow {OK_STOMATE} OK_WINDTHROW = FALSE # OK_PEST ([FLAG] ) : Calculate pest outbreaks. {OK_STOMATE} OK_PEST = FALSE # OK_PHENO ([FLAG]) : Calculate lai and phenology. {OK_STOMATE} OK_PHENO = TRUE # NVM ([-]) : number of PFTs {OK_SECHIBA or OK_STOMATE} NVM = 13 # IMPOSE_PARAM ([FLAG]) : Do you impose the values of the parameters? {OK_SECHIBA or OK_STOMATE} IMPOSE_PARAM = y # DEPTH_MAX_T (m) : Maximum depth of the soil thermodynamics {} DEPTH_MAX_T = 90.0 # DEPTH_MAX_H (m) : Maximum depth of soil moisture {} DEPTH_MAX_H = 2.0 # DEPTH_TOPTHICK (m) : Thickness of upper most Layer {} DEPTH_TOPTHICK = 9.77517107e-04 # DEPTH_CSTTHICK (m) : Depth at which constant layer thickness start {} DEPTH_CSTTHICK = DEPTH_MAX_H # REFINEBOTTOM (-) : Depth at which the hydrology layers will be refined towards the bottom. {} REFINEBOTTOM = .FALSE. # DEPTH_GEOM (m) : Depth at which we resume geometrical increases for temperature {} DEPTH_GEOM = DEPTH_MAX_H # RATIO_GEOM_BELOW (-) : Ratio of the geometrical series defining the thickness below DEPTH_GEOM {} RATIO_GEOM_BELOW = 2 # ALMA_OUTPUT ([FLAG]) : Should the output follow the ALMA convention {OK_SECHIBA} ALMA_OUTPUT = n # OUTPUT_FILE ([FILE]) : Name of file in which the output is going to be written {OK_SECHIBA} OUTPUT_FILE = sechiba_history.nc # WRITE_STEP ([seconds]) : Frequency in seconds for sechiba_history.nc file with IOIPSL {OK_SECHIBA, NOT XIOS_ORCHIDEE_OK} WRITE_STEP = 86400. # SECHIBA_HISTLEVEL ([-]) : SECHIBA history output level (0..10) {OK_SECHIBA and HF} SECHIBA_HISTLEVEL = 5 # SECHIBA_HISTFILE2 ([FLAG]) : Flag to switch on histfile 2 for SECHIBA (hi-frequency ?) {OK_SECHIBA} SECHIBA_HISTFILE2 = n # WRITE_STEP2 ([seconds]) : Frequency in seconds at which to WRITE output {SECHIBA_HISTFILE2} WRITE_STEP2 = 1800.0 # SECHIBA_OUTPUT_FILE2 ([FILE]) : Name of file in which the output number 2 is going to be written {SECHIBA_HISTFILE2} SECHIBA_OUTPUT_FILE2 = sechiba_out_2.nc # SECHIBA_HISTLEVEL2 ([-] ) : SECHIBA history 2 output level (0..10) {SECHIBA_HISTFILE2} SECHIBA_HISTLEVEL2 = 1 # STOMATE_OUTPUT_FILE ([FILE]) : Name of file in which STOMATE's output is going to be written {OK_STOMATE} STOMATE_OUTPUT_FILE = stomate_history.nc # STOMATE_HIST_DT ([days]) : STOMATE history time step {OK_STOMATE} STOMATE_HIST_DT = 10. # STOMATE_IPCC_OUTPUT_FILE ([FILE]) : Name of file in which STOMATE's output is going to be written {OK_STOMATE} STOMATE_IPCC_OUTPUT_FILE = stomate_ipcc_history.nc # STOMATE_IPCC_HIST_DT ([days]) : STOMATE IPCC history time step {OK_STOMATE} STOMATE_IPCC_HIST_DT = 0. # OK_HISTSYNC ([FLAG]) : Syncronize and write IOIPSL output files at each time step {} OK_HISTSYNC = FALSE # STOMATE_HISTLEVEL ([-]) : STOMATE history output level (0..10) {OK_STOMATE} STOMATE_HISTLEVEL = 10 # SECHIBA_restart_in ([FILE]) : Name of restart to READ for initial conditions {OK_SECHIBA } SECHIBA_restart_in = NONE # SECHIBA_rest_out ([FILE]) : Name of restart files to be created by SECHIBA {OK_SECHIBA} SECHIBA_rest_out = sechiba_rest_out.nc # STOMATE_RESTART_FILEIN ([FILE]) : Name of restart to READ for initial conditions of STOMATE {STOMATE_OK_STOMATE} STOMATE_RESTART_FILEIN = NONE # STOMATE_RESTART_FILEOUT ([FILE]) : Name of restart files to be created by STOMATE {STOMATE_OK_STOMATE} STOMATE_RESTART_FILEOUT = stomate_rest_out.nc # FORCE_CO2_VEG ([FLAG]) : Flag to force the value of atmospheric CO2 for vegetation. {Only in coupled mode} FORCE_CO2_VEG = FALSE # TAU_OUTFLOW ([days]) : Number of days over which the coastal- and riverflow will be distributed {Only in coupled mode} TAU_OUTFLOW = 0 # ECCENTRICITY ([-]) : Use prescribed values {ALLOW_WEATHERGEN} ECCENTRICITY = 0.016724 # PERIHELIE ([-]) : Use prescribed values {ALLOW_WEATHERGEN} PERIHELIE = 102.04 # OBLIQUITY ([Degrees]) : Use prescribed values {ALLOW_WEATHERGEN} OBLIQUITY = 23.446 # PFT_TO_MTC ([-]) : correspondance array linking a PFT to MTC {OK_SECHIBA or OK_STOMATE} PFT_TO_MTC = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 # PFT_NAME ([-]) : Name of a PFT {OK_SECHIBA or OK_STOMATE} PFT_NAME = bare ground, tropical broad-leaved evergreen, tropical broad-leaved raingreen, temperate needleleaf evergreen, temperate broad-leaved evergreen, temperate broad-leaved summergreen, boreal needleleaf evergreen, boreal broad-leaved summergreen, boreal needleleaf summergreen, C3 grass, C4 grass, C3 agriculture, C4 agriculture # LEAF_TAB ([-] ) : leaf type : 1 {OK_STOMATE} LEAF_TAB = 4, 1, 1, 2, 1, 1, 2, 1, 2, 3, 3, 3, 3 # PHENO_MODEL ([-] ) : which phenology model is used? (tabulated) {OK_STOMATE} PHENO_MODEL = none, none, moi, none, none, ncdgdd, none, ncdgdd, ngd, moigdd, moigdd, moigdd, moigdd # SECHIBA_LAI ([m^2/m^2]) : laimax for maximum lai(see also type of lai interpolation) {OK_SECHIBA or IMPOSE_VEG} SECHIBA_LAI = 0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2. # LLAIMIN ([m^2/m^2]) : laimin for minimum lai(see also type of lai interpolation) {OK_SECHIBA or IMPOSE_VEG} LLAIMIN = 0., 8., 0., 4., 4.5, 0., 4., 0., 0., 0., 0., 0., 0. # SLOWPROC_HEIGHT ([m] ) : prescribed height of vegetation {OK_SECHIBA} SLOWPROC_HEIGHT = 0., 30., 30., 20., 20., 20., 15., 15., 15., .5, .6, 1., 1. # Z0_OVER_HEIGHT ([-] ) : factor to calculate roughness height from height of canopy {OK_SECHIBA} Z0_OVER_HEIGHT = 0., 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625 # RATIO_Z0M_Z0H ([-]) : Ratio between z0m and z0h {OK_SECHIBA} RATIO_Z0M_Z0H = 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 # TYPE_OF_LAI ([-]) : Type of behaviour of the LAI evolution algorithm {OK_SECHIBA} TYPE_OF_LAI = inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter # NATURAL ([BOOLEAN]) : natural? {OK_SECHIBA, OK_STOMATE} NATURAL = y, y, y, y, y, y, y, y, y, y, y, n, n # IS_TROPICAL ([-]) : PFT IS TROPICAL {OK_STOMATE} IS_TROPICAL = FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE # IS_TEMPERATE ([-]) : PFT IS TEMPERATE {OK_STOMATE} IS_TEMPERATE = FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE # IS_BOREAL ([-]) : PFT IS BOREAL {OK_STOMATE} IS_BOREAL = FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE # IS_C4 ([BOOLEAN]) : flag for C4 vegetation types {OK_SECHIBA or OK_STOMATE} IS_C4 = n, n, n, n, n, n, n, n, n, n, n, y, n, y # VCMAX_FIX ([micromol/m^2/s] ) : values used for vcmax when STOMATE is not activated {OK_SECHIBA and NOT(OK_STOMATE)} VCMAX_FIX = 0., 40., 50., 30., 35., 40.,30., 40., 35., 60., 60., 70., 70. # DOWNREG_CO2 ([-]) : coefficient for CO2 downregulation (unitless) {} DOWNREG_CO2 = 0., 0.38, 0.38, 0.28, 0.28, 0.28, 0.22, 0.22, 0.22, 0.26, 0.26, 0.26, 0.26 # E_KmC ([J mol-1]) : Energy of activation for KmC {} E_KmC = -9999., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430. # E_KmO ([J mol-1]) : Energy of activation for KmO {} E_KmO = -9999., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380. # E_Sco ([J mol-1]) : Energy of activation for Sco {} E_Sco = -9999., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460. # E_gamma_star ([J mol-1]) : Energy of activation for gamma_star {} E_gamma_star = -9999., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830. # E_Vcmax ([J mol-1]) : Energy of activation for Vcmax {} E_Vcmax = -9999., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 67300., 71513., 67300. # E_Jmax ([J mol-1]) : Energy of activation for Jmax {} E_Jmax = -9999., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 77900., 49884., 77900. # aSV ([J K-1 mol-1]) : a coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax {} aSV = -9999., 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 641.64, 668.39, 641.64 # bSV ([J K-1 mol-1 °C-1]) : b coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax {} bSV = -9999., -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, 0., -1.07, 0. # TPHOTO_MIN ([-]) : minimum photosynthesis temperature (deg C) {OK_STOMATE} TPHOTO_MIN = -9999., -4., -4., -4., -4.,-4.,-4., -4., -4., -4., -4., -4., -4. # TPHOTO_MAX ([-]) : maximum photosynthesis temperature (deg C) {OK_STOMATE} TPHOTO_MAX = -9999., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55. # aSJ ([J K-1 mol-1]) : a coefficient of the linear regression (a+bT) defining the Entropy term for Jmax {} aSJ = -9999., 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 630., 659.70, 630. # bSJ ([J K-1 mol-1 °C-1]) : b coefficient of the linear regression (a+bT) defining the Entropy term for Jmax {} bSJ = -9999., -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, 0., -0.75, 0. # D_Vcmax ([J mol-1]) : Energy of deactivation for Vcmax {} D_Vcmax = -9999., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 192000., 200000., 192000. # D_Jmax ([J mol-1]) : Energy of deactivation for Jmax {} D_Jmax = -9999., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 192000., 200000., 192000. # E_gm ([J mol-1] ) : Energy of activation for gm { } E_gm = -9999., 49600., 49600., 49600., 49600., 49600., 49600., 49600., 49600., 49600., -9999., 49600., -9999. # S_gm ([J K-1 mol-1] ) : Entropy term for gm { } S_gm = -9999., 1400., 1400., 1400., 1400., 1400., 1400., 1400., 1400., 1400., -9999., 1400., -9999. # D_gm ([J mol-1] ) : Energy of deactivation for gm { } D_gm = -9999., 437400., 437400., 437400., 437400., 437400., 437400., 437400., 437400., 437400., -9999., 437400., -9999. # E_Rd ([J mol-1]) : Energy of activation for Rd {} E_Rd = -9999., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390. # VCMAX25 ([micromol/m^2/s]) : Maximum rate of Rubisco activity-limited carboxylation at 25°C {OK_STOMATE} VCMAX25 = -9999., 45.0, 45.0, 35.0, 40.0, 50.0, 45.0, 35.0, 35.0, 50.0, 50.0, 60.0, 60.0 # ARJV ([mu mol e- (mu mol CO2)-1]) : a coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio {OK_STOMATE} ARJV = -9999., 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 1.715, 2.59, 1.715 # BRJV ([(mu mol e- (mu mol CO2)-1) (°C)-1]) : b coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio {OK_STOMATE} BRJV = -9999., -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, 0., -0.035, 0. # KmC25 ([ubar]) : Michaelis–Menten constant of Rubisco for CO2 at 25°C {} KmC25 = -9999., 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 650., 404.9, 650. # KmO25 ([ubar]) : Michaelis–Menten constant of Rubisco for O2 at 25°C {} KmO25 = -9999., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 450000., 278400., 450000. # Sco25 ([bar bar-1]) : Relative CO2 /O2 specificity factor for Rubisco at 25°C {} Sco25 = -9999., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2590., 2800., 2590. # gm25 ([mol m-2 s-1 bar-1] ) : Mesophyll diffusion conductance at 25°C { } gm25 = -9999., 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, -9999., 0.4, -9999. # gamma_star25 ([ubar]) : Ci-based CO2 compensation point in the absence of Rd at 25°C (ubar) {} gamma_star25 = -9999., 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75 # a1 ([-]) : Empirical factor involved in the calculation of fvpd {} a1 = -9999., 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.72, 0.85, 0.72 # b1 ([-]) : Empirical factor involved in the calculation of fvpd {} b1 = -9999., 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.20, 0.14, 0.20 # g0 ([mol m−2 s−1 bar−1]) : Residual stomatal conductance when irradiance approaches zero {} g0 = -9999., 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.01875, 0.00625, 0.01875 # h_protons ([mol mol-1]) : Number of protons required to produce one ATP {} h_protons = -9999., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4. # fpsir ([-]) : Fraction of PSII e− transport rate partitioned to the C4 cycle {} fpsir = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.4, -9999., 0.4 # fQ ([-]) : Fraction of electrons at reduced plastoquinone that follow the Q-cycle {} fQ = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 1., -9999., 1. # fpseudo ([-]) : Fraction of electrons at PSI that follow pseudocyclic transport {} fpseudo = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.1, -9999., 0.1 # kp ([mol m−2 s−1 bar−1]) : Initial carboxylation efficiency of the PEP carboxylase {} kp = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.7, -9999., 0.7 # alpha ([-]) : Fraction of PSII activity in the bundle sheath {} alpha = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.1, -9999., 0.1 # gbs ([mol m−2 s−1 bar−1]) : Bundle-sheath conductance {} gbs = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.003, -9999., 0.003 # theta ([−]) : Convexity factor for response of J to irradiance {} theta = -9999., 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7 # alpha_LL ([mol e− (mol photon)−1]) : Conversion efficiency of absorbed light into J at strictly limiting light {} alpha_LL = -9999., 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372 # STRESS_VCMAX ([-]) : Stress on vcmax {OK_SECHIBA or OK_STOMATE} STRESS_VCMAX = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # STRESS_GS ([-]) : Stress on gs {OK_SECHIBA or OK_STOMATE} STRESS_GS = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # STRESS_GM ([-]) : Stress on gm {OK_SECHIBA or OK_STOMATE} STRESS_GM = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # EXT_COEFF ([-]) : extinction coefficient of the Monsi&Seaki relationship (1953) {OK_SECHIBA or OK_STOMATE} EXT_COEFF = .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5 # EXT_COEFF_VEGETFRAC ([-]) : extinction coefficient used for the calculation of the bare soil fraction {OK_SECHIBA or OK_STOMATE} EXT_COEFF_VEGETFRAC = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # HYDROL_HUMCSTE ([-]) : Parameter to describe the shape of the structural root profile {OK_SECHIBA} HYDROL_HUMCSTE = humcste_ref2m or humcste_ref4m depending on zmaxh # MAX_ROOT_DEPTH ([m]) : Maximum depth of the root profile {OK_SECHIBA} MAX_ROOT_DEPTH = Maximum depth of the root profile irrespective of the active layer thickness # PREF_SOIL_VEG ([-] ) : The soil tile number for each vegetation {OK_SECHIBA or OK_STOMATE} PREF_SOIL_VEG = 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 # MAINT_RESP_SLOPE_C ([-] ) : slope of maintenance respiration coefficient (1/K), constant c of aT^2+bT+c , tabulated {OK_STOMATE } MAINT_RESP_SLOPE_C = -9999., 0.12, 0.12, 0.16, 0.16, 0.16, 0.25, 0.25, 0.25, 0.16, 0.12, 0.16, 0.12 # MAINT_RESP_SLOPE_B ([-] ) : slope of maintenance respiration coefficient (1/K), constant b of aT^2+bT+c , tabulated {OK_STOMATE } MAINT_RESP_SLOPE_B = -9999., .0, .0, .0, .0, .0, .0, .0, .0, -.00133, .0, -.00133, .0 # MAINT_RESP_SLOPE_A ([-] ) : slope of maintenance respiration coefficient (1/K), constant a of aT^2+bT+c , tabulated {OK_STOMATE } MAINT_RESP_SLOPE_A = -9999., .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0 # NVMAP ([-] ) : The number of PFTs if we ignore age classes. {OK_SECHIBA or OK_STOMATE} NVMAP = nvm # AGEC_GROUP ([-] ) : The species group that each PFT belongs to. {OK_SECHIBA or OK_STOMATE} AGEC_GROUP = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 # RSTRUCT_CONST ([s/m]) : Structural resistance {OK_SECHIBA} RSTRUCT_CONST = 0.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 2.5, 2.0, 2.0, 2.0 # KZERO ([kg/m^2/s]) : A vegetation dependent constant used in the calculation of the surface resistance. {OK_SECHIBA} KZERO = 0.0, 12.E-5, 12.E-5, 12.e-5, 12.e-5, 25.e-5, 12.e-5,25.e-5, 25.e-5, 30.e-5, 30.e-5, 30.e-5, 30.e-5 # RVEG_PFT ([-]) : Artificial parameter to increase or decrease canopy resistance. {OK_SECHIBA} RVEG_PFT = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # WMAX_VEG ([kg/m^3]) : Maximum field capacity for each of the vegetations (Temporary): max quantity of water {OK_SECHIBA} WMAX_VEG = 150., 150., 150., 150., 150., 150., 150.,150., 150., 150., 150., 150., 150. # PERCENT_THROUGHFALL_PFT ([%]) : Percent by PFT of precip that is not intercepted by the canopy. Default value depend on run mode. {OK_SECHIBA} PERCENT_THROUGHFALL_PFT = Case offline [0. 0. 0....] else [30. 30. 30.....] # SNOWA_AGED_VIS ([-]) : Minimum snow albedo value for each vegetation type after aging (dirty old snow), visible albedo {OK_SECHIBA} SNOWA_AGED_VIS = 0.74, 0.0, 0.0, 0.08, 0.24, 0.07, 0.18, 0.18, 0.33, 0.57, 0.57, 0.57, 0.57 # SNOWA_AGED_NIR ([-]) : Minimum snow albedo value for each vegetation type after aging (dirty old snow), near infrared albedo {OK_SECHIBA} SNOWA_AGED_NIR = 0.50, 0.0, 0.0, 0.10, 0.37, 0.08, 0.16, 0.17, 0.27, 0.44, 0.44, 0.44, 0.44 # SNOWA_DEC_VIS ([-]) : Decay rate of snow albedo value for each vegetation type as it will be used in condveg_snow, visible albedo {OK_SECHIBA} SNOWA_DEC_VIS = 0.21, 0.0, 0.0, 0.14, 0.08, 0.17, 0.05, 0.06, 0.09, 0.15, 0.15, 0.15, 0.15 # SNOWA_DEC_NIR ([-]) : Decay rate of snow albedo value for each vegetation type as it will be used in condveg_snow, near infrared albedo {OK_SECHIBA} SNOWA_DEC_NIR = 0.13, 0.0, 0.0, 0.10, 0.10, 0.16, 0.04, 0.07, 0.08, 0.12, 0.12, 0.12, 0.12 # ALB_LEAF_VIS ([-]) : leaf albedo of vegetation type, visible albedo {OK_SECHIBA} ALB_LEAF_VIS = 0.00, 0.04, 0.04, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.06, 0.06, 0.06, 0.06 # ALB_LEAF_NIR ([-]) : leaf albedo of vegetation type, near infrared albedo {OK_SECHIBA} ALB_LEAF_NIR = 0.00, 0.23, 0.18, 0.18, 0.20, 0.24, 0.15, 0.26, 0.20, 0.24, 0.27, 0.28, 0.26 # LEAF_SSA_VIS ([-]) : Leaf_single_scattering_albedo_vis values {ALBEDO_TYPE is Pinty} LEAF_SSA_VIS = 0.17192, 0.12560, 0.16230, 0.13838, 0.13202, 0.14720, 0.14680, 0.14415, 0.15485, 0.17544, 0.17384, 0.17302, 0.17116 # LEAF_SSA_NIR ([-]) : Leaf_single_scattering_albedo_nir values {ALBEDO_TYPE is Pinty} LEAF_SSA_NIR = 0.70253, 0.68189, 0.69684, 0.68778, 0.68356, 0.69533, 0.69520, 0.69195, 0.69180, 0.71236, 0.71904, 0.71220, 0.71190 # LEAF_PSD_VIS ([-]) : Preferred scattering direction values in the visibile spectra {ALBEDO_TYPE is Pinty} LEAF_PSD_VIS = 1.00170, 0.96776, 0.99250, 0.97170, 0.97119, 0.98077, 0.97672, 0.97810, 0.98605, 1.00490, 1.00360, 1.00320, 1.00130 # LEAF_PSD_NIR ([-]) : Preferred scattering direction values in the near infrared spectra {ALBEDO_TYPE is Pinty} LEAF_PSD_NIR = 2.00520, 1.95120, 1.98990, 1.97020, 1.95900, 1.98190, 1.98890, 1.97400, 1.97780, 2.02430, 2.03350, 2.02070, 2.02150 # BGRD_REF_VIS ([-]) : Background reflectance values in the visibile spectra {ALBEDO_TYPE is Pinty} BGRD_REF_VIS = 0.2300000, 0.0866667, 0.0800000, 0.0533333, 0.0700000, 0.0933333, 0.0533333, 0.0833333, 0.0633333, 0.1033330, 0.1566670, 0.1166670, 0.1200000 # BGRD_REF_NIR ([-]) : Background reflectance values in the near infrared spectra {ALBEDO_TYPE is Pinty} BGRD_REF_NIR = 0.4200000, 0.1500000, 0.1300000, 0.0916667, 0.1066670, 0.1650000, 0.0900000, 0.1483330, 0.1066670, 0.1900000, 0.3183330, 0.2200000, 0.2183330 # LEAF_TO_SHOOT_CLUMPING ([-]) : The leaf-to-shoot clumping factor {ALBEDO_TYPE is Pinty} LEAF_TO_SHOOT_CLUMPING = un, un, un, un, un, un, un, un, un, un, un, un, un # LAI_CORRECTION_FACTOR ([-] ) : The correction factor for the LAI for grasslands {ALBEDO_TYPE is Pinty} LAI_CORRECTION_FACTOR = un, un, un, un, un, un, un, un, un, un, un, un, un # MIN_LEVEL_SEP ([m]) : The minimum level thickness we use for photosynthesis {ALBEDO_TYPE is Pinty} MIN_LEVEL_SEP = un, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 # LAI_TOP ([m2 m2]) : Definition, in terms of LAI of the top layer {OK_SECHIBA} LAI_TOP = un, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 # K_ROOT ([m^{3} kg^{-1} s^{-1} MPa^{-1}] ) : Fine root specific conductivity {OK_STOMATE} K_ROOT = (-9999., 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02, 7.02)*1.e-4 # K_BELOWGROUND ([m^{3} kg^{-1} s^{-1} MPa^{-1}] ) : Belowground (roots + soil) specific conductivity used in allocation {OK_STOMATE} K_BELOWGROUND = (-9999., 7., 7., 7., 7., 7., 7., 7., 7., 42., 42., 42., 42.)*1.e-7 # K_SAP ([m^{2} s^{-1} MPa^{-1}] ) : Sapwood specific conductivity {OK_STOMATE} K_SAP = (-9999., 50., 10., 8., 5., 30., 8., 20., 8., -9999., -9999., -9999., -9999.)*1.e-4 # K_LEAF ([m s^{-1} MPa^{-1})] ) : Leaf conductivity {OK_STOMATE} K_LEAF = (-9999., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5)*1.e-7 # PSI_LEAF ([MPa] ) : Minimal leaf potential {OK_STOMATE, 11-LAYERS, FUNCTIONAL ALLOCATION} PSI_LEAF = -9999., -2.2, -2.2, -2.2, -3.5, -2.2, -2.2, -2.2, -2.2, -2.2, -2.2, -2.2, -2.2 # PSI_50 ([m s^{-1} MPa^{-1})] ) : Sapwood leaf water potential that causes 50% loss of xylem conductivity through cavitation {OK_STOMATE, 11-LAYERS, FUNCTIONAL ALLOCATION} PSI_50 = -9999., -0.3, -1.3, -2.0, -1.7, -1.0, -2.0, -1.0, -2.0, -9999., -9999., -9999., -9999. # C_CAVITATION ([-] ) : Shape parameter for loss of conductance {OK_STOMATE, 11-LAYERS, FUNCTIONAL ALLOCATION} C_CAVITATION = -9999., 5., 3., 3., 3., 3., 3., 3., 3., -9999., -9999., -9999., -9999. # SRL ([m g^(-1)] ) : Specific root length {} SRL = -9999., 10, 10, 9.2, 9.2, 14, 18.3, 18.3, 18.3, -9999., -9999., -9999., -9999. # R_FROOT ([m] ) : Fine root radius {} R_FROOT = -9999., 0.29E-3, 0.29E-3, 0.29E-3, 0.29E-3, 0.29E-3, 0.24E-3, 0.21E-3, 0.21E-3, -9999., -9999., -9999., -9999. # PSI_ROOT ([MPa] ) : Minimum root water potential {} PSI_ROOT = -9999., -4, -4, -4, -4, -4, -4, -4, -4, -9999., -9999., -9999., -9999. # CROWN_TO_HEIGHT ([-] ) : Ratio between tree height and the vertical crown diameter. {OK_STOMATE } CROWN_TO_HEIGHT = -9999., 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0., 0., 0., # CROWN_VERTOHOR_DIA ([-] ) : Ratio between the vertical and horizontal crown diameter height. {OK_STOMATE } CROWN_VERTOHOR_DIA = -9999., 1.0, 1.0, 0.66, 1.0, 1.0, 0.66, 1.0, 1.0, 1.0, 1.0, 1.0, # PIPE_DENSITY () : {} PIPE_DENSITY = -9999., 3.e5, 3.e5, 2.e5, 3.e5, 3.e5, 2.e5, 3.e5, 2.e5, 2.e5, 2.e5, 2.e5, 2.e5 # TREE_FF ([-] ) : Tree form factor reducing the volume of a cylinder {OK_STOMATE } TREE_FF = -9999., 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0., 0., 0., 0. # PIPE_TUNE2 ([-] ) : height {OK_STOMATE } PIPE_TUNE2 = -9999., 40., 40., 40., 40., 40., 40., 40., 40., 0., 0., 0., 0. # PIPE_TUNE3 ([-] ) : height {OK_STOMATE } PIPE_TUNE3 = -9999., 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0., 0., 0., 0. # PIPE_TUNE4 ([-] ) : needed for stem diameter {OK_STOMATE } PIPE_TUNE4 = -9999., 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0., 0., 0., 0. # PIPE_K1 ([-] ) : {OK_STOMATE } PIPE_K1 = -9999., 8.e3, 8.e3, 8.e3, 8.e3, 8.e3, 8.e3, 8.e3, 8.e3, 0., 0., 0., 0. # SLA ([m^2/gC]) : specif leaf area {OK_STOMATE} SLA = 1.5E-2, 1.53E-2, 2.6E-2, 9.26E-3, 2E-2, 2.6E-2, 9.26E-3, 2.6E-2, 1.9E-2, 2.6E-2, 2.6E-2, 2.6E-2, 2.6E-2 # SLAINIT ([m^2/gC]) : initial specif leaf area at (ie at bottom of canopy eq. lai {OK_STOMATE} SLAINIT = 2.6E-2, 2.6E-2, 4.4E-2, 1.4E-2, 3.0E-2, 3.9E-2, 1.3E-2, 3.7E-2, 2.4E-2, 3.1E-2, 3.1E-2, 3.9E-2, 3.9E-2 # LAI_TO_HEIGHT ([m m2 m-2] ) : Convertion factor from lai to vegetation height for grasses and crops {OK_STOMATE} LAI_TO_HEIGHT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.2, 0.5, 0.2, 0.5 # ISO_ACTIVITY ([-]) : Biogenic activity for each age class : isoprene {CHEMISTRY_BVOC} ISO_ACTIVITY = 0.5, 1.5, 1.5, 0.5 # METHANOL_ACTIVITY ([-]) : Isoprene emission factor for each age class : methanol {CHEMISTRY_BVOC} METHANOL_ACTIVITY = 1., 1., 0.5, 0.5 # EM_FACTOR_ISOPRENE ([ugC/g/h] ) : Isoprene emission factor {CHEMISTRY_BVOC} EM_FACTOR_ISOPRENE = 0., 24., 24., 8., 16., 45., 8., 18., 0.5, 12., 18., 5., 5. # EM_FACTOR_MONOTERPENE ([ugC/g/h] ) : Monoterpene emission factor {CHEMISTRY_BVOC } EM_FACTOR_MONOTERPENE = 0., 2.0, 2.0, 1.8, 1.4, 1.6, 1.8, 1.4, 1.8, 0.8, 0.8, 0.22, 0.22 # C_LDF_MONO ([]) : Monoterpenes fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_MONO = 0.6 # C_LDF_SESQ ([]) : Sesquiterpenes fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_SESQ = 0.5 # C_LDF_METH ([]) : Methanol fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_METH = 0.8 # C_LDF_ACET ([]) : Acetone fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_ACET = 0.2 # EM_FACTOR_APINENE ([ugC/g/h] ) : Alfa pinene emission factor {CHEMISTRY_BVOC } EM_FACTOR_APINENE = 0., 1.35, 1.35, 0.85, 0.95, 0.75, 0.85, 0.60, 1.98, 0.30, 0.30, 0.09, 0.09 # EM_FACTOR_BPINENE ([ugC/g/h] ) : Beta pinene emission factor {CHEMISTRY_BVOC } EM_FACTOR_BPINENE = 0., 0.30, 0.30, 0.35, 0.25, 0.20, 0.35, 0.12, 0.45, 0.16, 0.12, 0.05, 0.05 # EM_FACTOR_LIMONENE ([ugC/g/h] ) : Limonene emission factor {CHEMISTRY_BVOC} EM_FACTOR_LIMONENE = 0., 0.25, 0.25, 0.20, 0.25, 0.14, 0.20, 0.135, 0.11, 0.19, 0.42, 0.03, 0.03 # EM_FACTOR_MYRCENE ([ugC/g/h] ) : Myrcene emission factor {CHEMISTRY_BVOC} EM_FACTOR_MYRCENE = 0., 0.20, 0.20, 0.12, 0.11, 0.065, 0.12, 0.036, 0.075, 0.08, 0.085, 0.015, 0.015 # EM_FACTOR_SABINENE ([ugC/g/h] ) : Sabinene emission factor {CHEMISTRY_BVOC} EM_FACTOR_SABINENE = 0., 0.20, 0.20, 0.12, 0.17, 0.70, 0.12, 0.50, 0.09, 0.085, 0.075, 0.02, 0.02 # EM_FACTOR_CAMPHENE ([ugC/g/h] ) : Camphene emission factor {CHEMISTRY_BVOC} EM_FACTOR_CAMPHENE = 0., 0.15, 0.15, 0.10, 0.10, 0.01, 0.10, 0.01, 0.07, 0.07, 0.08, 0.01, 0.01 # EM_FACTOR_3CARENE ([ugC/g/h] ) : 3-Carene emission factor {CHEMISTRY_BVOC} EM_FACTOR_3CARENE = 0., 0.13, 0.13, 0.42, 0.02, 0.055, 0.42,0.025, 0.125, 0.085, 0.085, 0.065, 0.065 # EM_FACTOR_TBOCIMENE ([ugC/g/h] ) : T-beta-ocimene emission factor {CHEMISTRY_BVOC} EM_FACTOR_TBOCIMENE = 0., 0.25, 0.25, 0.13, 0.09, 0.26, 0.13, 0.20, 0.085, 0.18, 0.18, 0.01, 0.01 # EM_FACTOR_OTHERMONOT ([ugC/g/h] ) : Other monoterpenes emission factor {CHEMISTRY_BVOC} EM_FACTOR_OTHERMONOT = 0., 0.17, 0.17, 0.11, 0.11, 0.125, 0.11, 0.274, 0.01, 0.15, 0.155, 0.035, 0.035 # EM_FACTOR_SESQUITERP ([ugC/g/h] ) : Sesquiterpenes emission factor {CHEMISTRY_BVOC} EM_FACTOR_SESQUITERP = 0., 0.45, 0.45, 0.13, 0.3, 0.36, 0.15, 0.3, 0.25, 0.6, 0.6, 0.08, 0.08 # C_BETA_MONO ([]) : Monoterpenes temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_MONO = 0.1 # C_BETA_SESQ ([]) : Sesquiterpenes temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_SESQ = 0.17 # C_BETA_METH ([]) : Methanol temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_METH = 0.08 # C_BETA_ACET ([]) : Acetone temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_ACET = 0.1 # C_BETA_OXYVOC ([]) : Other oxygenated BVOC temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_OXYVOC = 0.13 # EM_FACTOR_ORVOC ([ugC/g/h] ) : ORVOC emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ORVOC = 0., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 # EM_FACTOR_OVOC ([ugC/g/h] ) : OVOC emissions factor {CHEMISTRY_BVOC} EM_FACTOR_OVOC = 0., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 # EM_FACTOR_MBO ([ugC/g/h] ) : MBO emissions factor {CHEMISTRY_BVOC } EM_FACTOR_MBO = 0., 2.e-5, 2.e-5, 1.4, 2.e-5, 2.e-5, 0.14, 2.e-5, 2.e-5, 2.e-5, 2.e-5, 2.e-5, 2.e-5 # EM_FACTOR_METHANOL ([ugC/g/h] ) : Methanol emissions factor {CHEMISTRY_BVOC } EM_FACTOR_METHANOL = 0., 0.8, 0.8, 1.8, 0.9, 1.9, 1.8, 1.8, 1.8, 0.7, 0.9, 2., 2. # EM_FACTOR_ACETONE ([ugC/g/h] ) : Acetone emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ACETONE = 0., 0.25, 0.25, 0.3, 0.2, 0.33, 0.3, 0.25, 0.25, 0.2, 0.2, 0.08, 0.08 # EM_FACTOR_ACETAL ([ugC/g/h] ) : Acetaldehyde emissions factor {CHEMISTRY_BVOC} EM_FACTOR_ACETAL = 0., 0.2, 0.2, 0.2, 0.2, 0.25, 0.25, 0.16, 0.16, 0.12, 0.12, 0.035, 0.02 # EM_FACTOR_FORMAL ([ugC/g/h] ) : Formaldehyde emissions factor {CHEMISTRY_BVOC } EM_FACTOR_FORMAL = 0., 0.04, 0.04, 0.08, 0.04, 0.04, 0.04, 0.04, 0.04, 0.025, 0.025, 0.013, 0.013 # EM_FACTOR_ACETIC ([ugC/g/h] ) : Acetic Acid emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ACETIC = 0., 0.025, 0.025,0.025,0.022,0.08,0.025,0.022,0.013,0.012,0.012,0.008,0.008 # EM_FACTOR_FORMIC ([ugC/g/h] ) : Formic Acid emissions factor {CHEMISTRY_BVOC} EM_FACTOR_FORMIC = 0., 0.015, 0.015, 0.02, 0.02, 0.025, 0.025, 0.015, 0.015,0.010,0.010,0.008,0.008 # EM_FACTOR_NO_WET ([ngN/m^2/s]) : NOx emissions factor wet soil emissions and exponential dependancy factor {CHEMISTRY_BVOC} EM_FACTOR_NO_WET = 0., 2.6, 0.06, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.36, 0.36, 0.36, 0.36 # EM_FACTOR_NO_DRY ([ngN/m^2/s] ) : NOx emissions factor dry soil emissions and exponential dependancy factor {CHEMISTRY_BVOC} EM_FACTOR_NO_DRY = 0., 8.60, 0.40, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 2.65, 2.65, 2.65, 2.65 # LARCH ([-] ) : Larcher 1991 SAI/LAI ratio {CHEMISTRY_BVOC } LARCH = 0., 0.015, 0.015, 0.003, 0.005, 0.005, 0.003, 0.005, 0.003, 0.005, 0.005, 0.008, 0.008 # NUE_OPT ([(mumol[CO2] s-1) (gN[leaf])-1]) : Nitrogen use efficiency of Vcmax {OK_STOMATE} NUE_OPT = -9999., 14., 30., 20., 33., 38., 15., 38., 22., 45., 45., 60., 60. # VMAX_UPTAKE_NH4 (umol (g DryWeight_root)-1 h-1) : Vmax of ammonium uptake by plant roots {OK_STOMATE} VMAX_UPTAKE_NH4 = -9999., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9. # VMAX_UPTAKE_NO3 (umol (g DryWeight_root)-1 h-1) : Vmax of nitrate uptake by plant roots {OK_STOMATE} VMAX_UPTAKE_NO3 = -9999., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9. # CN_LEAF_MIN ([gC/gN] ) : minimum CN ratio of leaves {OK_STOMATE} CN_LEAF_MIN = -9999., 16., 16., 28., 16., 16., 28., 16., 16., 16., 16., 16., 16. # CN_LEAF_MAX ([gC/gN] ) : maximum CN ratio of leaves {OK_STOMATE} CN_LEAF_MAX = -9999., 45., 45., 75., 45., 45., 75., 45., 45., 45., 45., 45., 45. # CN_LEAF_INIT () : {} CN_LEAF_INIT = -9999., 25., 25., 41.7, 25., 25., 43., 25., 25., 25., 25., 25., 25. # EXT_COEFF_N ([(m2[ground]) (m-2[leaf])]) : Extinction coefficient of the leaf N content profile within the canopy {OK_STOMATE} EXT_COEFF_N = 0.15, 0.15, 0.15,0.15,0.15, 0.15,0.15,0.15,0.15, 0.15, 0.15, 0.15, 0.15 # AVAILABILITY_FACT ([-] ) : Calculate dynamic mortality in lpj_gap, pft dependent parameter {OK_STOMATE } AVAILABILITY_FACT = -9999., 0.14, 0.14, 0.10, 0.10, 0.10, 0.05, 0.05, 0.05, -9999., -9999., -9999., -9999. # FRAC_GROWTHRESP ([-]) : fraction of GPP which is lost as growth respiration {OK_STOMATE} FRAC_GROWTHRESP = -9999., 0.35, 0.35, 0.28, 0.28, 0.28, 0.35, 0.35, 0.35, 0.28, 0.28, 0.28, 0.28 # COEFF_MAINT_INIT ([gC/gN/day]) : maintenance respiration coefficient at 10 deg C {OK_STOMATE} COEFF_MAINT_INIT = -9999., 3.06E-2, 3.06E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2, 6.46E-2 # TREF_MAINT_RESP ([degC]) : maintenance respiration Temperature coefficient {OK_STOMATE} TREF_MAINT_RESP = & -9999., 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02, 56.02 # TMIN_MAINT_RESP ([degC]) : maintenance respiration Temperature coefficient {OK_STOMATE} TMIN_MAINT_RESP = -9999., 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02, 46.02 # E0_MAINT_RESP ([-]) : maintenance respiration Temperature coefficient {OK_STOMATE} E0_MAINT_RESP = -9999., 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56, 308.56 # TREF_LABILE ([degC]) : Growth from labile pool - temperature at which all labile Cmaintenance respiration Temperature coefficient {OK_STOMATE} TREF_LABILE = -9999., 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 # TMIN_LABILE ([degC]) : Growth from labile pool - temperature above which labile will be allocated to growth {OK_STOMATE} TMIN_LABILE = -9999., -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2 # E0_LABILE ([-]) : Growth temperature coefficient - tuned see stomate_growth_fun_all.f90 {OK_STOMATE} E0_LABILE = -9999., 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 # ALWAYS_LABILE ([-]) : share of the labile pool that will remain in the labile pool {OK_STOMATE} ALWAYS_LABILE = -9999., 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 # FLAM ([-]) : flamability: critical fraction of water holding capacity {OK_STOMATE} FLAM = -9999., .15, .25, .25, .25, .25, .25, .25, .25, .25, .25, .35, .35 # RESIST ([-]) : fire resistance {OK_STOMATE} RESIST = -9999., .95, .90, .12, .50, .12, .12, .12, .12, .0, .0, .0, .0 # COEFF_LCCHANGE_s ([-]) : Coeff of biomass export for the year {OK_STOMATE} COEFF_LCCHANGE_s = -9999., 0.897, 0.897, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597 # COEFF_LCCHANGE_m ([-]) : Coeff of biomass export for the decade {OK_STOMATE} COEFF_LCCHANGE_m = -9999., 0.103, 0.103, 0.299, 0.299, 0.299, 0.299, 0.299, 0.299, 0.299, 0.403, 0.299, 0.403 # COEFF_LCCHANGE_l ([-]) : Coeff of biomass export for the century {OK_STOMATE} COEFF_LCCHANGE_l = -9999., 0., 0., 0.104, 0.104, 0.104, 0.104, 0.104, 0.104, 0.104, 0., 0.104, 0. # LAI_MAX_TO_HAPPY ([-]) : threshold of LAI below which plant uses carbohydrate reserves {OK_STOMATE} LAI_MAX_TO_HAPPY = -9999., .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5 # LAI_MAX ([m^2/m^2]) : maximum LAI, PFT-specific {OK_STOMATE} LAI_MAX = -9999., 7.0, 5.0, 5.0, 4.0, 5.0, 3.5, 4.0, 3.0, 2.5, 2.0, 5.0, 5.0 # PHENO_TYPE ([-]) : type of phenology, 0 {OK_STOMATE} PHENO_TYPE = 0, 1, 3, 1, 1, 2, 1, 2, 2, 4, 4, 2, 3 # FORCE_PHENO ([days]) : Offset from mean doy at which phenology will be forced {OK_STOMATE} FORCE_PHENO = -9999., -9999., 42, -9999., -9999., 42, -9999., 28, 28, 35, 35, 28, 28 # PHENO_GDD_CRIT_C ([-]) : critical gdd, tabulated (C), constant c of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_C = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 270., 400., 125., 400. # PHENO_GDD_CRIT_B ([-]) : critical gdd, tabulated (C), constant b of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_B = -9999., -9999., -9999., -9999., -9999., -9999., -9999.,-9999., -9999., 6.25, 0., 0., 0. # PHENO_GDD_CRIT_A ([-]) : critical gdd, tabulated (C), constant a of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_A = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.03125, 0., 0., 0. # PHENO_MOIGDD_T_CRIT ([C]) : Average temperature threashold for C4 grass used in pheno_moigdd {OK_STOMATE} PHENO_MOIGDD_T_CRIT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 22.0, -9999., -9999. # NGD_CRIT ([days]) : critical ngd, tabulated. Threshold -5 degrees {OK_STOMATE} NGD_CRIT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0., -9999., -9999., -9999., -9999., -9999. # NCDGDD_TEMP ([C] ) : critical temperature for the ncd vs. gdd function in phenology {OK_STOMATE} NCDGDD_TEMP = -9999., -9999., -9999., -9999., -9999., 5., -9999., 0., -9999., -9999., -9999., -9999., -9999. # HUM_FRAC ([%]) : critical humidity (relative to min/max) for phenology {OK_STOMATE} HUM_FRAC = -9999., -9999., .5, -9999., -9999., -9999., -9999., -9999., -9999., .5, .5, .5,.5 # HUM_MIN_TIME ([days]) : minimum time elapsed since moisture minimum {OK_STOMATE} HUM_MIN_TIME = -9999., -9999., 50., -9999., -9999., -9999., -9999., -9999., -9999., 35., 35., 75., 75. # LONGEVITY_SAP ([days]) : sapwood -> heartwood conversion time {OK_STOMATE} LONGEVITY_SAP = -9999., 730., 730., 730., 730., 730., 730., 730., 730., -9999., -9999., -9999., -9999. # LONGEVITY_LEAF ([days]) : leaf longivety {OK_STOMATE} LONGEVITY_LEAF = -9999., 730., 180., 910., 730., 180., 910., 180., 180., 120., 120., 90., 90. # LEAF_AGE_CRIT_TREF ([degrees C]) : Reference temperature {OK_STOMATE} LEAF_AGE_CRIT_TREF = -9999., 25., 25., 15., 20., 15., 5., 5., 5., 15., 20., 15., 20. # LEAF_AGE_CRIT_COEFF1 ([-]) : Coeff1 (unitless) to link leaf_age_crit to leaf_age_crit_tref {OK_STOMATE} LEAF_AGE_CRIT_COEFF1 = -9999., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 # LEAF_AGE_CRIT_COEFF2 ([-]) : Coeff1 (unitless) to link leaf_age_crit to leaf_age_crit_tref {OK_STOMATE} LEAF_AGE_CRIT_COEFF2 = -9999., 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75 # LEAF_AGE_CRIT_COEFF3 ([-]) : Coeff1 (unitless) to link leaf_age_crit to leaf_age_crit_tref {OK_STOMATE} LEAF_AGE_CRIT_COEFF3 = -9999., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10. # LONGEVITY_FRUIT ([days]) : fruit lifetime {OK_STOMATE} LONGEVITY_FRUIT = -9999., 90., 90., 90., 90., 90., 90., 90., 90., -9999., -9999., -9999., -9999. # LONGEVITY_ROOT ([days]) : root longivety {OK_STOMATE} LONGEVITY_ROOT = -9999., 256., 256., 256., 256., 256., 256., 256., 256., 256., 256., 256., 256. # ECUREUIL ([-]) : fraction of primary leaf and root allocation put into reserve {OK_STOMATE} ECUREUIL = -9999., .0, 1., .0, .0, 1., .0, 1., 1., 1., 1., 1., 1. # ALLOC_MIN ([-]) : minimum allocation above/below {OK_STOMATE} ALLOC_MIN = -9999., 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, -9999., -9999., -9999., -9999. # ALLOC_MAX ([-]) : maximum allocation above/below {OK_STOMATE} ALLOC_MAX = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, -9999., -9999., -9999., -9999. # DEMI_ALLOC ([-]) : mean allocation above/below {OK_STOMATE} DEMI_ALLOC = -9999., 5., 5., 5., 5., 5., 5., 5., 5., -9999., -9999., -9999., -9999. # K_LATOSA_MAX ([-] ) : Maximum leaf-to-sapwood area ratio {OK_STOMATE} K_LATOSA_MAX = (-9999., 5., 5., 5., 3., 5., 5., 5., 5., -9999., -9999., -9999., -9999.)*1.e3 # K_LATOSA_MIN ([-] ) : Minimum leaf-to-sapwood area ratio {OK_STOMATE} K_LATOSA_MIN = (-9999., 5., 5., 5., 3., 5., 5., 5., 5., -9999., -9999., -9999., -9999.)*1.e3 # LC_leaf ([-] ) : Lignine/C ratio of leaf pool {OK_STOMATE } LC_leaf = -9999., 0.18, 0.18, 0.24, 0.18, 0.18, 0.24, 0.18, 0.24, 0.09, 0.09, 0.09, 0.09 # LC_sapabove ([-] ) : Lignine/C ratio of sapabove pool {OK_STOMATE } LC_sapabove = -9999., 0.23, 0.23, 0.29, 0.23, 0.23, 0.29, 0.23, 0.29, 0.09, 0.09, 0.09, 0.09 # LC_sapbelow ([-] ) : Lignine/C ratio of sapbelow pool {OK_STOMATE } LC_sapbelow = -9999., 0.23, 0.23, 0.29, 0.23, 0.23, 0.29, 0.23, 0.29, 0.09, 0.09, 0.09, 0.09 # LC_heartabove ([-] ) : Lignine/C ratio of heartabove pool {OK_STOMATE } LC_heartabove = -9999., 0.23, 0.23, 0.29, 0.23, 0.23, 0.29, 0.23, 0.29, 0.09, 0.09, 0.09, 0.09 # LC_heartbelow ([-] ) : Lignine/C ratio of heartbelow pool {OK_STOMATE } LC_heartbelow = -9999., 0.23, 0.23, 0.29, 0.23, 0.23, 0.29, 0.23, 0.29, 0.09, 0.09, 0.09, 0.09 # LC_fruit ([-] ) : Lignine/C ratio of fruit pool {OK_STOMATE } LC_fruit = -9999., 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09 # LC_root ([-] ) : Lignine/C ratio of fruit pool {OK_STOMATE } LC_root = -9999., 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22 # LC_carbres ([-] ) : Lignine/C ratio of carbres pool {OK_STOMATE } LC_carbres = -9999., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # LC_labile ([-] ) : Lignine/C ratio of labile pool {OK_STOMATE } LC_labile = -9999., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # DECOMP_FACTOR () : Multpliactive factor modifying the standard decomposition factor for each SOM pool {} DECOMP_FACTOR = -9999., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.4 # MASS_RATIO_HEART_SAP ([-] ) : mass ratio (heartwood+sapwood)/heartwood {OK_STOMATE } MASS_RATIO_HEART_SAP = -9999., 3., 3., 3., 3., 3., 3., 3., 3., 0., 0., 0., 0. # CANOPY_COVER ([-] ) : Test values for canopy cover {OK_STOMATE} CANOPY_COVER = -9999., 0.9, 0.9, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5, 0.9, 0.9, 0.9, 0.9 # NMAXTREES ([trees ha-1]) : number of seedlings planted at the start of a rotation {OK_STOMATE } NMAXTREES = (-9999., 10., 10., 10., 10., 10., 2., 2., 2., 10., 10., 10., 10.)*1.e3 # GRAD_THIN ([tree/ha/cm]) : Gradient for linearly decreasing circ_class_n {OK_STOMATE} GRAD_THIN = -9999.,-400,-400,-400,-400,-400,-400,-400,-400,-9999.,-9999.,-9999.,-9999. # N_SELF_THIN ([tree/m-2]) : Density below which the fitted self-thinning is considered trustworthy {OK_STOMATE} N_SELF_THIN = -9999.,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,-9999.,-9999.,-9999.,-9999. # P_USE_RESERVE ([-]) : Maximum ratio to use reserve to fill labile N in case of N limitation {OK_STOMATE} P_USE_RESERVE = # HEIGHT_INIT ([m]) : height of a newly established vegetation {OK_STOMATE} HEIGHT_INIT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.3, 0.3, 0.3, 0.3 # DIA_INIT_MIN ([m]) : minimum diameter of a newly established forest stand {OK_STOMATE} DIA_INIT_MIN = -9999., 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, -9999., -9999., -9999., -9999. # DIA_INIT_MAX ([m]) : maximum diameter of a newly established forest stand {OK_STOMATE} DIA_INIT_MAX = -9999., 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, -9999., -9999., -9999.,-9999. # ALPHA_SELF_THINNING ([-]) : alpha coefficient of the self thinning relationship {OK_STOMATE } ALPHA_SELF_THINNING = -9999., 3000, 3000, 1462, 2262, 1900, 960, 939, 1046, -9999., -9999., -9999., -9999. # BETA_SELF_THINNING ([-]) : beta coefficient of the self thinning relationship {OK_STOMATE } BETA_SELF_THINNING = -9999., -0.57, -0.57, -0.55, -0.61, -0.58, -0.55, -0.56, -0.56, -9999., -9999., -9999., -9999. # FUELWOOD_DIAMETER ([m]) : Diameter below which harvest will be used as fuelwood {OK_STOMATE, DIMENSIONAL WOOD PRODUCTS} FUELWOOD_DIAMETER = -9999., 0.3, 0.3, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, -9999., -9999., -9999., -9999. # COPPICE_KILL_BE_WOOD ([m]) : The fraction of belowground wood killed during coppicing {FOREST_MANAGED equals to 3 (Coppice)} COPPICE_KILL_BE_WOOD = -9999., 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -9999., -9999., -9999., -9999. # DELEUZE_A ([-]) : intercept of the intra-tree competition within a stand {OK_STOMATE, NCIRC>6} DELEUZE_A = -9999., 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, -9999., -9999., -9999., -9999. # DELEUZE_B ([-]) : slope of the intra-tree competition within a stand {OK_STOMATE, NCIRC>6} DELEUZE_B = -9999., 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, -9999., -9999., -9999., -9999. # DELEUZE_P_ALL ([0-1]) : Percentile of the circumferences that receives photosynthates {OK_STOMATE, NCIRC>1 AND NCIRC<6} DELEUZE_P_ALL = -9999., 0.5, 0.5, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, -9999., -9999., -9999., -9999. # DELEUZE_P_COPPICE ([0-1]) : Percentile of the circumferences that receives photosynthates {OK_STOMATE, functional allocation } DELEUZE_P_COPPICE = -9999., 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -9999., -9999., -9999., -9999. # DELEUZE_POWER_A ([-]) : Slope parameter for intra-specific competition {OK_STOMATE} DELEUZE_POWER_A = -9999., 0, 0, 0, 0, 0, 0, 0, 0, 0, -9999., -9999., -9999., -9999. # M_DV ([-]) : Relaxation factor of deleuze relationship {OK_STOMATE, NCIRC>1 } M_DV = -9999., 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, -9999., -9999., -9999., -9999. # DENS_TARGET ([tree ha-1]) : Maximum tree density of a stand {OK_STOMATE} DENS_TARGET = 0.0, 100, 100, 200, 100, 100, 200, 100, 200, 0.0, 0.0, 0.0, 0.0 # LARGEST_TREE_DIA ([m]) : Maximum tree diameter of a stand {OK_STOMATE} LARGEST_TREE_DIA = 0.0, .45, .45, .45, .45, .45, .45, .45, .45, 0.0, 0.0, 0.0, 0.0 # TAUMIN ([-]) : Minimum probability that a tree get thinned {FOREST_MANAGEMENT } TAUMIN = 0.0, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0, 0.0, 0.0, 0.0 # TAUMAX ([-]) : Maximum probability that a tree get thinned {FOREST_MANAGEMENT } TAUMAX = 0.0, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0, 0.0, 0.0, 0.0 # ALPHA_RDI_UPPER ([trees.m-2.m-1]) : Coefficient of the yield-table derived thinning relationship D {FOREST_MANAGEMENT } ALPHA_RDI_UPPER = -9999., 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, -9999., -9999., -9999., -9999. # BETA_RDI_UPPER ([-]) : Coefficient of the yield-table derived thinning relationship D {FOREST_MANAGEMENT } BETA_RDI_UPPER = -9999., 0.0255, 0.0255, 0.0255, 0.0255, 0.0255, 0.0255, 0.0255, 0.0255, -9999., -9999., -9999., -9999. # ALPHA_RDI_LOWER ([trees.m-2.m-1]) : Coefficient of the yield-table derived thinning relationship D {FOREST_MANAGEMENT } ALPHA_RDI_LOWER = -9999., 0.051, 0.051, 0.051, 0.051, 0.051, 0.051, 0.051, 0.051, -9999., -9999., -9999., -9999. # BETA_RDI_LOWER ([-]) : Coefficient of the yield-table derived thinning relationship D {FOREST_MANAGEMENT } BETA_RDI_LOWER = -9999., 0.0264, 0.0264, 0.0264, 0.0264, 0.0264, 0.0264, 0.0264, 0.0264, -9999., -9999., -9999., -9999. # BRANCH_HARVEST ([-]) : The fraction of branches which are harvested during FM2 (the rest are left onsite) {FOREST_MANAGEMENT } BRANCH_HARVEST = 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 # COPPICE_DIAMETER ([m]) : The trunk diameter at which a coppice will be cut {FOREST_MANAGEMENT } COPPICE_DIAMETER = -9999., 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.2, -9999., -9999., -9999., -9999. # SHOOTS_PER_STOOL ([shoots.stool-1]) : The number of shoots that will regrow per stool after the first coppice cut {FOREST_MANAGEMENT } SHOOTS_PER_STOOL = -9999., 6, 6, 6, 6, 6, 6, 6, 6, -9999., -9999., -9999., -9999. # SRC_ROT_LENGTH ([years]) : The number of years between cuttings for short rotation coppices {FOREST_MANAGEMENT } SRC_ROT_LENGTH = -9999., 3, 3, 3, 3, 3, 3, 3, 3, -9999., -9999., -9999., -9999. # SRC_NROTS ([-]) : Number of rotations before afinal cut {FOREST_MANAGEMENT } SRC_NROTS = -9999., 10, 10, 10, 10, 10, 10, 10, 10, -9999., -9999., -9999., -9999. # FRUIT_ALLOC ([-] ) : Fraction of allocatable carbon that will go to fruit production {OK_STOMATE} FRUIT_ALLOC = (-9999., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0., 0., 0., 0.) # LABILE_RESERVE ([-]) : Depends on the allocation scheme {OK_STOMATE} LABILE_RESERVE = -9999., 60, 30, 60, 60, 30, 60, 10, 10, 2, 2, 2, 2 # EVERGREEN_RESERVE ([-] ) : Fraction of sapwood mass stored in the reserve pool of evergreen trees {OK_STOMATE} EVERGREEN_RESERVE = -9999., 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05 # DECIDUOUS_RESERVE ([-] ) : Fraction of sapwood mass stored in the reserve pool {OK_STOMATE} DECIDUOUS_RESERVE = -9999., 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12 # SENESCENSE_RESERVE ([-] ) : Fraction of sapwood mass stored in the reserve pool of {OK_STOMATE} SENESCENSE_RESERVE = -9999., 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 # ROOT_RESERVE ([-] ) : Fraction of max root biomass which are covered by the carbon reserve {OK_STOMATE} ROOT_RESERVE = -9999., 0.3, 1., 0.3, 0.3, 1., 0.3, 1., 1., 1., 1., 1., 1. # FCN_WOOD ([-] ) : CN of wood for allocation, relative to leaf CN {OK_STOMATE} FCN_WOOD = -9999., .087, .087, .087, .087, .087, .087, .087, .087, .087, .087, .087 # FCN_ROOT ([-] ) : CN roots for allocation, relative to leaf CN {OK_STOMATE} FCN_ROOT = -9999., 0.86, 0.86, 0.86, 0.86, 0.86, 0.86, 0.86, 0.86, 0.86, 0.86, 0.86 # BRANCH_RATIO ([-]) : Share of the sapwood and heartwood that is used for branches {FOREST_MANAGEMENT } BRANCH_RATIO = 0.0, 0.38, 0.38, 0.25, 0.38, 0.38, 0.25, 0.38, 0.25, 0.0, 0.0, 0.0, 0.0 # RECRUITMENT_PFT ([FLAG] ) : Logical recruitment flag for each pft {OK_STOMATE } RECRUITMENT_PFT = FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE # RECRUITMENT_HEIGHT ([m] ) : Prescribed height for tree recruits (m) {OK_STOMATE } RECRUITMENT_HEIGHT = -9999., 1, 1, 1, 1, 1, 1, 1, 1, 1, -9999., -9999., -9999. # RECRUITMENT_ALPHA ([-] ) : Intercept of power model relating light and recruitment numbers {OK_STOMATE } RECRUITMENT_ALPHA = -9999., -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -9999., -9999., -9999., -9999. # RECRUITMENT_BETA ([-] ) : Slope of power model relating light and recruitment numbers {OK_STOMATE } RECRUITMENT_BETA = -9999., 0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -9999., -9999., -9999., -9999. # DEATH_DISTRIBUTION_FACTOR ([-] ) : Shape parameter for tree mortality {OK_STOMATE, FUNCTIONAL ALLOCATION} DEATH_DISTRIBUTION_FACTOR = -9999., 100., 100., 100., 100., 100., 100., 100., 100., -9999., -9999., -9999., -9999. # NPP_RESET_VALUE ([gC m-2 y-1] ) : The value longterm NPP is reset to npp_reset_value after a non-tree stand dies. {OK_STOMATE, FUNCTIONAL ALLOCATION} NPP_RESET_VALUE = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 500., 500., 500., 500. # NDYING_YEAR ([year] ) : Number of year for a forest to die {OK_STOMATE} NDYING_YEAR = -9999., 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, # BEETLE_PFT ([FLAG] ) : Logical bark beetle mortality flag for each pft {OK_STOMATE } BEETLE_PFT = FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, # AGE_SUSCEPTIBILITY_A ([-] ) : a parameter for the relationship between stand age and beetle susceptibility {OK_STOMATE, OK_PEST} AGE_SUSCEPTIBILITY_A = -9999., -9999., -9999., 0.2, -9999., -9999., 0.2, -9999., -9999., -9999., -9999., -9999., -9999. # AGE_SUSCEPTIBILITY_B ([-]) : b parameter for the relationship between stand age and beetle susceptibility {OK_STOMATE, OK_PEST} AGE_SUSCEPTIBILITY_B = -9999., -9999., -9999., 0.01094542, -9999., -9999., 0.01094542, -9999., -9999., -9999., -9999., -9999., -9999. # AGE_SUSCEPTIBILITY_C ([-]) : c parameter for the relationship between stand age and beetle susceptibility {OK_STOMATE, OK_PEST} AGE_SUSCEPTIBILITY_C = -9999., -9999., -9999., 70.0, -9999., -9999., 70.0, -9999., -9999., -9999., -9999., -9999., -9999. # RDI_SUSCEPTIBILITY_A ([-] ) : a parameter for the relationship between rdi and {OK_STOMATE, OK_PEST} RDI_SUSCEPTIBILITY_A = -9999., -9999., -9999., 15.5, -9999., -9999., 15.5, -9999., # RDI_SUSCEPTIBILITY_B ([-]) : b parameter for the relationship between rdi and {OK_STOMATE, OK_PEST} RDI_SUSCEPTIBILITY_B = -9999., -9999., -9999., 0.6, -9999., -9999., # SHARE_SUSCEPTIBILITY_A ([-] ) : a parameter for the relationship between share and {OK_STOMATE, OK_PEST} SHARE_SUSCEPTIBILITY_A = -9999., -9999., -9999., 1.5, -9999., -9999., 15.5, -9999., # SHARE_SUSCEPTIBILITY_B ([-]) : b parameter for the relationship between share and {OK_STOMATE, OK_PEST} SHARE_SUSCEPTIBILITY_B = -9999., -9999., -9999., 0.6, -9999., -9999., # DROUGHT_SUSCEPTIBILITY_A ([-]) : a parameter for the relationship between drought and beetle susceptibility {OK_STOMATE, OK_PEST} DROUGHT_SUSCEPTIBILITY_A = -9999., -9999., -9999., -9.5, -9999., -9999., -9.5, -9999., -9999., -9999., -9999., -9999., -9999. # DROUGHT_SUSCEPTIBILITY_B ([-]) : b parameter for the relationship between drought and beetle susceptibility {OK_STOMATE, OK_PEST} DROUGHT_SUSCEPTIBILITY_B = -9999., -9999., -9999., 0.4, -9999., -9999., 0.4, -9999., -9999., -9999., -9999., -9999., -9999. # WINDTHROW_SUSCEPTIBILITY_TUNE ([-]) : tune parameter for the relationship between woodleftover and beetle susceptibility {OK_STOMATE, OK_PEST} WINDTHROW_SUSCEPTIBILITY_TUNE = -9999., -9999., -9999., 1.0, -9999., -9999., 0.5, -9999., -9999., -9999., -9999., -9999., -9999. # BEETLE_GENERATION_A ([-] ) : a parameter for the calculation of the number of beetle generation per year {OK_STOMATE} BEETLE_GENERATION_A = -9999., -9999., -9999., 3.307963, -9999., -9999., 3.307963, -9999., -9999., -9999., -9999., -9999., -9999. # BEETLE_GENERATION_B ([degrees day] ) : b parameter for the calculation of the number of beetle generation per year {OK_STOMATE} BEETLE_GENERATION_B = -9999., -9999., -9999., 557.0, -9999., -9999., 557.0, -9999., -9999., -9999., -9999., -9999., -9999. # BEETLE_GENERATION_C ([-] ) : c parameter for the calculation of the number of beetle generation per year {OK_STOMATE} BEETLE_GENERATION_C = -9999., -9999., -9999., 1.980938, -9999., -9999., 1.980938, -9999., -9999., -9999., -9999., -9999., -9999. # MIN_TEMP_BEETLE ([degree celcius] ) : temperature threshold below which Teff is not calculated {OK_STOMATE} MIN_TEMP_BEETLE = -9999., -9999., -9999., 38.4, -9999., -9999., 38.4, -9999., -9999., -9999., -9999., -9999., -9999. # MAX_TEMP_BEETLE ([ degree celcius] ) : temperature threshold above which Teff is not calculated {OK_STOMATE} MAX_TEMP_BEETLE = -9999., -9999., -9999., 38.4, -9999., -9999., 38.4, -9999., -9999., -9999., -9999., -9999., -9999. # OPT_TEMP_BEETLE ([-] ) : a parameter for the calculation of the effective temperature used in beetle phenology {OK_STOMATE} OPT_TEMP_BEETLE = -9999., -9999., -9999., 30.3, -9999., -9999., 30.3, -9999., -9999., -9999., -9999., -9999., -9999. # EFF_TEMP_BEETLE_A ([-] ) : a parameter for the calculation of the effective temperature used in beetle phenology {OK_STOMATE} EFF_TEMP_BEETLE_A = -9999., -9999., -9999., 0.02876507, -9999., -9999., 0.02876507, -9999., -9999., -9999., -9999., -9999., -9999. # EFF_TEMP_BEETLE_B ([-] ) : b parameter for the calculation of the effective temperature used in beetle phenology {OK_STOMATE} EFF_TEMP_BEETLE_B = -9999., -9999., -9999., 40.9958913, -9999., -9999., 40.9958913, -9999., -9999., -9999., -9999., -9999., -9999. # EFF_TEMP_BEETLE_C ([-] ) : c parameter for the calculation of the effective temperature used in beetle phenology {OK_STOMATE} EFF_TEMP_BEETLE_C = -9999., -9999., -9999., 3.5922336, -9999., -9999., 3.5922336, -9999., -9999., -9999., -9999., -9999., -9999. # EFF_TEMP_BEETLE_D ([-] ) : d parameter for the calculation of the effective temperature used in beetle phenology {OK_STOMATE} EFF_TEMP_BEETLE_D = -9999., -9999., -9999., 1.24657367, -9999., -9999., 1.24657367, -9999., -9999., -9999., -9999., -9999., -9999. # DIAPAUSE_THRES_DAYLENGTH ([hour] ) : daylength in hour above which bark beetle start diapause {OK_STOMATE} DIAPAUSE_THRES_DAYLENGTH = -9999., -9999., -9999., 14.5, -9999., -9999., 14.5, -9999., -9999., -9999., -9999., -9999., -9999. # WGHT_SIRDI_A ([hour] ) : "" {OK_STOMATE} WGHT_SIRDI_A = -9999., -9999., -9999., 15.5, -9999., -9999., 15.5, -9999., # WGHT_SIRDI_B ([hour] ) : "" {OK_STOMATE} WGHT_SIRDI_B = -9999., -9999., -9999., 0.5, -9999., -9999., 0.5, -9999., # WGHT_SID ([hour] ) : "" {OK_STOMATE} WGHT_SID = -9999., -9999., -9999., 0.1, -9999., -9999., 0.1, -9999., # WGHT_SIS ([hour] ) : "" {OK_STOMATE} WGHT_SIS = -9999., -9999., -9999., 0.1, -9999., -9999., 0.1, -9999., # STREAMLINING_C_LEAF ([-] ) : streamlining parameter for crown with leaves {OK_STOMATE, OK_WINDTHROW} STREAMLINING_C_LEAF = -9999., 2.34, 2.34, 2.70, 2.66, 2.34, 2.71, 2.15, 3.07, -9999., -9999., -9999., -9999. # STREAMLINING_C_LEAFLESS ([-]) : streamlining parameter for crown without leaves {OK_STOMATE, OK_WINDTHROW} STREAMLINING_C_LEAFLESS = -9999., 2.34, 2.34, 2.70, 2.66, 2.34, 2.71, 2.15, 3.07, -9999., -9999., -9999., -9999. # STREAMLINING_N_LEAF ([-]) : streamlining parameter for crown with leaves {OK_STOMATE, OK_WINDTHROW} STREAMLINING_N_LEAF = -9999., 0.88, 0.88, 0.64, 0.85, 0.88, 0.63, 0.88, 0.75, -9999., -9999., -9999., -9999. # STREAMLINING_N_LEAFLESS ([-]) : streamlining parameter for crown without leaves {OK_STOMATE, OK_WINDTHROW} STREAMLINING_N_LEAFLESS = -9999., 0.88, 0.88, 0.64, 0.85, 0.88, 0.63, 0.88, 0.75, -9999., -9999., -9999., -9999. # MODULUS_RUPTURE ([Pa]) : Modulus of rupture {OK_STOMATE, OK_WINDTHROW} MODULUS_RUPTURE = -9999., 6.23E7, 6.23E7, 4.13E7, 5.90E7, 6.23E7, 4.10E7, 6.27E7, 5.30E7, -9999., -9999., -9999., -9999. # F_KNOT ([unitless]) : Knot factor {OK_STOMATE, OK_WINDTHROW} F_KNOT = -9999., 1.0, 1.0, 0.87, 1.0, 1.0, 0.88, 1.0, 0.85, -9999., -9999., -9999., -9999. # GREEN_DENSITY ([kg.m-3]) : Green density of the tree {OK_STOMATE, OK_WINDTHROW} GREEN_DENSITY = -9999., 1007, 1007, 985, 1060, 1007, 990, 968, 900, -9999., -9999., -9999., -9999. # OV_FD_SHALLOW ([Nm/kg]) : Regression coefficient for overturning in free draining and shallow soil type {OK_STOMATE, OK_WINDTHROW} OV_FD_SHALLOW = -9999., 175.3, 175.3, 134.7, 198.5, 175.3, 132.6, 152.0, 145.2, -9999., -9999., -9999., -9999. # OV_FD_SHALLOW_LESS ([Nm/Kg]) : Regression coefficient for overturning in free draining and shallow soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_FD_SHALLOW_LESS = -9999., 175.3, 175.3, 134.7, 198.5, 175.3, 132.6, 152.0, 145.2, -9999., -9999., -9999., -9999. # OV_FD_DEEP ([Nm/Kg]) : Regression coefficient for overturning in free draining and deep soil type {OK_STOMATE, OK_WINDTHROW} OV_FD_DEEP = -9999., 203.8, 203.8, 157.2, 230.8, 230.8, 154.8, 176.7, 169.4, -9999., -9999., -9999., -9999. # OV_FD_DEEP_LESS ([Nm/Kg]) : Regression coefficient for overturning in free draining and deep soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_FD_DEEP_LESS = -9999., 203.8, 203.8, 157.2, 230.8, 230.8, 154.8, 176.7, 169.4, -9999., -9999., -9999., -9999. # OV_FD_AVERAGE ([Nm/Kg]) : Regression coefficient for overturning in free draining and medium soil type {OK_STOMATE, OK_WINDTHROW} OV_FD_AVERAGE = -9999., 178.7, 178.7, 137.8, 202.4, 178.7, 135.7, 155.0, 148.6, -9999., -9999., -9999., -9999. # OV_FD_AVERAGE_LESS ([Nm/Kg]) : Regression coefficient for overturning in free draining and medium soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_FD_AVERAGE_LESS = -9999., 178.7, 178.7, 137.8, 202.4, 178.7, 135.7, 155.0, 148.6, -9999., -9999., -9999., -9999. # OV_GLEYED_SHALLOW ([Nm/Kg]) : Regression coefficient for overturning in gleyed and shallow soil type {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_SHALLOW = -9999., 155.4, 155.4, 119.4, 176.0, 155.4, 117.6, 134.8, 128.7, -9999., -9999., -9999., -9999. # OV_GLEYED_SHALLOW_LESS ([Nm/Kg]) : Regression coefficient for overturning in gleyed and shallow soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_SHALLOW_LESS = -9999., 155.4, 155.4, 119.4, 176.0, 155.4, 117.6, 134.8, 128.7, -9999., -9999., -9999., -9999. # OV_GLEYED_DEEP ([Nm/Kg) : Regression coefficient for overturning in gleyed and deep soil type {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_DEEP = -9999., 180.6, 180.6, 139.3, 204.6, 180.6, 137.2, 156.7, 150.2, -9999., -9999., -9999., -9999. # OV_GLEYED_DEEP_LESS ([Nm/Kg]) : Regression coefficient for overturning in gleyed and deep soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_DEEP_LESS = -9999., 180.6, 180.6, 139.3, 204.6, 180.6, 137.2, 156.7, 150.2, -9999., -9999., -9999., -9999. # OV_GLEYED_AVERAGE ([Nm/Kg]) : Regression coefficient for overturning in gleyed and medium soil type {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_AVERAGE = -9999., 158.5, 158.5, 122.2, 179.5, 158.5, 120.3, 137.4, 131.7, -9999., -9999., -9999., -9999. # OV_GLEYED_AVERAGE_LESS ([Nm/Kg]) : Regression coefficient for overturning in gleyed and medium soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_GLEYED_AVERAGE_LESS = -9999., 158.5, 158.5, 122.2, 179.5, 158.5, 120.3, 137.4, 131.7, -9999., -9999., -9999., -9999. # OV_PEATY_SHALLOW ([Nm/Kg]) : Regression coefficient for overturning in peaty and shallow soil type {OK_STOMATE, OK_WINDTHROW} OV_PEATY_SHALLOW = -9999., 169.7, 169.7, 130.4, 192.2, 169.7, 128.4, 147.2, 140.6, -9999., -9999., -9999., -9999. # OV_PEATY_SHALLOW_LESS ([Nm/Kg]) : Regression coefficient for overturning in peaty and shallow soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_PEATY_SHALLOW_LESS = -9999., 169.7, 169.7, 130.4, 192.2, 169.7, 128.4, 147.2, 140.6, -9999., -9999., -9999., -9999. # OV_PEATY_DEEP ([Nm/Kg]) : Regression coefficient for overturning in peaty and deep soil type {OK_STOMATE, OK_WINDTHROW} OV_PEATY_DEEP = -9999., 191.4, 191.4, 152.1, 223.5, 191.4, 141.9, 159.2, 164.0, -9999., -9999., -9999., -9999. # OV_PEATY_DEEP_LESS ([Nm/Kg]) : Regression coefficient for overturning in peaty and deep soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_PEATY_DEEP_LESS = -9999., 191.4, 191.4, 152.1, 223.5, 191.4, 141.9, 159.2, 164.0, -9999., -9999., -9999., -9999. # OV_PEATY_AVERAGE ([Nm/Kg]) : Regression coefficient for overturning in peaty and medium soil type {OK_STOMATE, OK_WINDTHROW} OV_PEATY_AVERAGE = -9999., 178.9, 178.9, 133.4, 195.9, 178.9, 131.4, 162.0, 143.8, -9999., -9999., -9999., -9999. # OV_PEATY_AVERAGE_LESS ([Nm/Kg]) : Regression coefficient for overturning in peaty and medium soil type leafless {OK_STOMATE, OK_WINDTHROW} OV_PEATY_AVERAGE_LESS = -9999., 178.9, 178.9, 133.4, 195.9, 178.9, 131.4, 162.0, 143.8, -9999., -9999., -9999., -9999. # OV_PEAT_SHALLOW ([Nm/Kg]) : Regression coefficient for overturning in shallow peat soil type {OK_STOMATE, OK_WINDTHROW} OV_PEAT_SHALLOW = -9999., 193.0, 193.0, 148.3, 218.6, 193.0, 146.0, 167.4, 159.9, -9999., -9999., -9999., -9999. # OV_PEAT_SHALLOW_LESS ([Nm/Kg]) : Regression coefficient for overturning in shallow peat soil leafless {OK_STOMATE, OK_WINDTHROW} OV_PEAT_SHALLOW_LESS = -9999., 193.0, 193.0, 148.3, 218.6, 193.0, 146.0, 167.4, 159.9, -9999., -9999., -9999., -9999. # OV_PEAT_DEEP ([Nm/Kg]) : Regression coefficient for overturning in deep peat soil {OK_STOMATE, OK_WINDTHROW} OV_PEAT_DEEP = -9999., 224.4, 224.4, 173.1, 254.2, 224.4, 170.4, 194.7, 186.6, -9999., -9999., -9999., -9999. # OV_PEAT_DEEP_LESS ([Nm/Kg]) : Regression coefficient for overturning in deep peat soil leafless {OK_STOMATE, OK_WINDTHROW} OV_PEAT_DEEP_LESS = -9999., 224.4, 224.4, 173.1, 254.2, 224.4, 170.4, 194.7, 186.6, -9999., -9999., -9999., -9999. # OV_PEAT_AVERAGE ([Nm/Kg]) : Regression coefficient for overturning in medium peat soil {OK_STOMATE, OK_WINDTHROW} OV_PEAT_AVERAGE = -9999., 196.9, 196.9, 151.8, 223.0, 196.9, 149.4, 170.8, 163.6, -9999., -9999., -9999., -9999. # OV_PEAT_AVERAGE_LESS ([Nm/Kg]) : Regression coefficient for overturning in medium peat soil leafless {OK_STOMATE, OK_WINDTHROW} OV_PEAT_AVERAGE_LESS = -9999., 196.9, 196.9, 151.8, 223.0, 196.9, 149.4, 170.8, 163.6, -9999., -9999., -9999., -9999. # MDF ([unitless]) : Maximum damage rate away from the forest edge {OK_STOMATE, OK_WINDTHROW} MDF = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 # MDC ([unitless]) : Maximum damage rate nearby the forest edge {OK_STOMATE, OK_WINDTHROW} MDC = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 # SFF ([unitless]) : Scaling factor for maximum damage rate away from the forest edge {OK_STOMATE, OK_WINDTHROW} SFF = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 # SFC ([unitless]) : Scaling factor for maximum damage rate nearby the forest edge {OK_STOMATE, OK_WINDTHROW} SFC = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 # LEAFFALL ([days]) : length of death of leaves, tabulated {OK_STOMATE} LEAFFALL = -9999., -9999., 10., -9999., -9999., 10., -9999., 10., 10., 10., 10., 10., 10. # PRESENESCENCE_RATIO ([0-1, unitless]) : The ratio of maintenance respiration to gpp beyond which presenescence {OK_STOMATE} PRESENESCENCE_RATIO = # SENESCENCE_TYPE ([-]) : type of senescence, tabulated {OK_STOMATE} SENESCENCE_TYPE = none, none, dry, none, none, cold, none, cold, cold, mixed, mixed, mixed, mixed # SENESCENCE_HUM ([-] ) : critical relative moisture availability for senescence {OK_STOMATE} SENESCENCE_HUM = -9999., -9999., .3, -9999., -9999., -9999., -9999., -9999., -9999., .2, .2, .3, .2 # NOSENESCENCE_HUM ([-]) : relative moisture availability above which there is no humidity-related senescence {OK_STOMATE} NOSENESCENCE_HUM = -9999., -9999., .8, -9999., -9999., -9999., -9999., -9999., -9999., .3, .3, .3, .3 # MAX_TURNOVER_TIME ([days]) : maximum turnover time for grasse {OK_STOMATE} MAX_TURNOVER_TIME = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 80., 80., 80., 80. # MIN_TURNOVER_TIME ([days]) : minimum turnover time for grasse {OK_STOMATE} MIN_TURNOVER_TIME = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 10., 10., 10., 10. # RECYCLE_LEAF ([-]) : Fraction of N leaf that is recycled when leaves are senescent {OK_STOMATE} RECYCLE_LEAF = -9999., 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 # RECYCLE_ROOT ([-]) : Fraction of N root that is recycled when roots are senescent {OK_STOMATE} RECYCLE_ROOT = -9999., 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 # MIN_LEAF_AGE_FOR_SENESCENCE ([days] ) : minimum leaf age to allow senescence g {OK_STOMATE} MIN_LEAF_AGE_FOR_SENESCENCE = -9999., -9999., 90., -9999., -9999., 90., -9999., 60., 60., 30., 30., 30., 30. # SENESCENCE_TEMP_C ([-]) : critical temperature for senescence (C), constant c of aT^2+bT+c, tabulated {OK_STOMATE} SENESCENCE_TEMP_C = -9999., -9999., -9999., -9999., -9999., 12., -9999., 7., 2., -1.375, 5., 5., 10. # SENESCENCE_TEMP_B ([-]) : critical temperature for senescence (C), constant b of aT^2+bT+c ,tabulated {OK_STOMATE } SENESCENCE_TEMP_B = -9999., -9999., -9999., -9999., -9999., 0., -9999., 0., 0., .1, 0., 0., 0. # SENESCENCE_TEMP_A ([-] ) : critical temperature for senescence (C), constant a of aT^2+bT+c , tabulated {OK_STOMATE} SENESCENCE_TEMP_A = -9999., -9999., -9999., -9999., -9999., 0., -9999., 0., 0.,.00375, 0., 0., 0. # GDD_SENESCENCE ([days] ) : minimum gdd to allow senescence of crops {OK_STOMATE} GDD_SENESCENCE = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 950., 4000. # ALWAYS_INIT ([BOOLEAN]) : Take carbon from atmosphere if carbohydrate reserve too small {OK_STOMATE} ALWAYS_INIT = y, y, y, y, y, y, y, y, y, y, n, y, y # MAX_SOIL_N_BNF ([gN/m**2] ) : Value of total N (NH4+NO3) above which we stop adding N via BNF (gN/m**2) {OK_STOMATE} MAX_SOIL_N_BNF = 0.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2., 2., 2., 2. # MANURE_PFTWEIGHT ([gC/gN] ) : Weight of the distribution of manure over the PFT surface {OK_STOMATE} MANURE_PFTWEIGHT = 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1. # HARVEST_RATIO ([unitless] ) : Share of biomass that is harvested {OK_STOMATE} HARVEST_RATIO = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.5, 0.5 # RESIDENCE_TIME ([years]) : residence time of trees {OK_DGVM and NOT(LPJ_GAP_CONST_MORT)} RESIDENCE_TIME = -9999., 30.0, 30.0, 40.0, 40.0, 40.0, 80.0, 80.0, 80.0, 0.0, 0.0, 0.0, 0.0 # TMIN_CRIT ([C]) : critical tmin, tabulated {OK_STOMATE} TMIN_CRIT = -9999., 0.0, 0.0, -30.0, -14.0, -30.0, -45.0, -45.0, -9999., -9999., -9999., -9999., -9999. # TCM_CRIT ([C]) : critical tcm, tabulated {OK_STOMATE} TCM_CRIT = -9999., -9999., -9999., 5.0, 15.5, 15.5, -8.0, -8.0, -8.0, -9999., -9999., -9999., -9999. # HERBIVORES ([FLAG]) : herbivores allowed? {OK_STOMATE } HERBIVORES = n # TREAT_EXPANSION ([FLAG]) : treat expansion of PFTs across a grid cell? {OK_STOMATE } TREAT_EXPANSION = n # SLA_DYN ([FLAG]) : Account for a dynamic SLA {OK_STOMATE} SLA_DYN = n # LPJ_GAP_CONST_MORT ([FLAG]) : Constant mortality {OK_STOMATE AND NOT OK_DGVM} LPJ_GAP_CONST_MORT = y/n depending on OK_DGVM # HARVEST_AGRI ([FLAG]) : Harvest model for agricultural PFTs. {OK_STOMATE } HARVEST_AGRI = y # FIRE_DISABLE ([FLAG]) : no fire allowed {OK_STOMATE } FIRE_DISABLE = y # SPINUP_ANALYTIC (BOOLEAN ) : Activation of the analytic resolution of the spinup. {OK_STOMATE} SPINUP_ANALYTIC = n # HACK_ENERBIL_HYDROL ([FLAG]) : Flag to skip a particular block of code in mleb.f90 {-} HACK_ENERBIL_HYDROL = n # HACK_E_FRAC ([FLAG]) : Bypass root length in the calculation of psi_soilroot {OK_HYDROL_ARCH} HACK_E_FRAC = n # HACK_PGAP ([FLAG]) : Flag to use Lambert Beer instead of Pgap {-} HACK_PGAP = n # HACK_VESSEL_LOSS (unitless) : constant vessel_loss in hydraulic_rachitecture {OK_VESSEL_MORTALITY} HACK_VESSEL_LOSS = -9999 # AGRICULTURE ([FLAG]) : agriculture allowed? {OK_SECHIBA or OK_STOMATE} AGRICULTURE = y # IMPOSE_VEG ([FLAG]) : Should the vegetation be prescribed ? {OK_SECHIBA or OK_STOMATE} IMPOSE_VEG = n # IMPOSE_SOILT ([FLAG]) : Should the soil type be prescribed ? IMPOSE_SOILT = n # IMPOSE_NINPUT_DEP ([FLAG]) : Should the N inputs from atmospheric deposition be prescribed ? {NOT IMPOSE_CN} IMPOSE_NINPUT_DEP = n # IMPOSE_NINPUT_FERT ([FLAG]) : Should the N inputs from fertilizer be prescribed ? {-} IMPOSE_NINPUT_FERT = n # IMPOSE_NINPUT_MANURE ([FLAG]) : Should the N inputs from manure be prescribed ? {-} IMPOSE_NINPUT_MANURE = n # IMPOSE_NINPUT_BNF ([FLAG]) : Should the N inputs from biological nitrogen fixation (BNF) be prescribed ? {-} IMPOSE_NINPUT_BNF = n # LAI_MAP ([FLAG]) : Read the LAI map {OK_SECHIBA or OK_STOMATE} LAI_MAP = n # VEGET_UPDATE ([years]) : Update vegetation frequency: 0Y or 1Y {} VEGET_UPDATE = 0Y # VEGETMAP_RESET ([FLAG] ) : Flag to change vegetation map without activating LAND USE change for carbon fluxes. At the same time carbon related variables are reset to zero. {} VEGETMAP_RESET = n # NINPUT_REINIT ([FLAG] ) : booleen to indicate that a new N INPUT file will be used. {-} NINPUT_REINIT = y # NINPUT_YEAR ([FLAG] ) : Year of the N input map to be read {-} NINPUT_YEAR = 1 # NINPUT_SUFFIX_YEAR ([FLAG] ) : Do the Ninput dataset have a 'year' suffix {-} NINPUT_SUFFIX_YEAR = false # MAXMASS_SNOW ([kg/m^2] ) : The maximum mass of a snow {OK_SECHIBA} MAXMASS_SNOW = 3000. # SNOWCRI ([kg/m^2] ) : Sets the amount above which only sublimation occures {OK_SECHIBA} SNOWCRI = 1.5 # MIN_WIND ([m/s]) : Minimum wind speed {OK_SECHIBA} MIN_WIND = 0.1 # MAX_SNOW_AGE ([days?]) : Maximum period of snow aging {OK_SECHIBA} MAX_SNOW_AGE = 50. # SNOW_TRANS ([m] ) : Transformation time constant for snow {OK_SECHIBA} SNOW_TRANS = 0.2 # OK_NUDGE_MC ([FLAG]) : Activate nudging of soil moisture {} OK_NUDGE_MC = n # NUDGE_TAU_MC ([-]) : Relaxation time for nudging of soil moisture expressed in fraction of the day {OK_NUDGE_MC} NUDGE_TAU_MC = 1 # OK_NUDGE_SNOW ([FLAG]) : Activate nudging of snow variables {} OK_NUDGE_SNOW = n # NUDGE_TAU_SNOW ([-]) : Relaxation time for nudging of snow variables {OK_NUDGE_SNOW} NUDGE_TAU_SNOW = 1 # NUDGE_INTERPOL_WITH_XIOS ([FLAG]) : Activate reading and interpolation with XIOS for nudging fields {OK_NUDGE_MC or OK_NUDGE_SNOW} NUDGE_INTERPOL_WITH_XIOS = n # HEIGHT_DISPLACEMENT ([m] ) : Magic number which relates the height to the displacement height. {OK_SECHIBA } HEIGHT_DISPLACEMENT = 0.75 # Z0_BARE ([m] ) : bare soil roughness length {OK_SECHIBA } Z0_BARE = 0.01 # Z0_ICE ([m] ) : ice roughness length {OK_SECHIBA } Z0_ICE = 0.001 # OK_SNOW_ALBEDO_CLM3 ([FLAG]) : Calculate the snow albedo according to CLM3 {OK_SECHIBA } OK_SNOW_ALBEDO_CLM3 = TRUE # ALB_SNOW_0_VIS ([-]) : Albedo for VIS of fresh snow {OK_SECHIBA } ALB_SNOW_0_VIS = 0.95 # ALB_SNOW_0_NIR ([-]) : Albedo for NIR of fresh snow {OK_SECHIBA } ALB_SNOW_0_NIR = 0.65 # C_ALBEDO_VIS ([-]) : constant in albedo calculation {OK_SECHIBA } C_ALBEDO_VIS = 0.2 # C_ALBEDO_NIR ([-] ) : constant in albedo calculation {OK_SECHIBA } C_ALBEDO_NIR = 0.65 # TCST_SNOWA ([days]) : Time constant of the albedo decay of snow {OK_SECHIBA } TCST_SNOWA = 10.0 # SNOWCRI_ALB ([cm] ) : Critical value for computation of snow albedo {OK_SECHIBA} SNOWCRI_ALB = 10. # VIS_DRY ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } VIS_DRY = 0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.27 # NIR_DRY ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } NIR_DRY = 0.48, 0.44, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.55 # VIS_WET ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } VIS_WET = 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.15 # NIR_WET ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } NIR_WET = 0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.31 # ALBSOIL_VIS ([-] ) : {OK_SECHIBA } ALBSOIL_VIS = 0.18, 0.16, 0.16, 0.15, 0.12, 0.105, 0.09, 0.075, 0.25 # ALBSOIL_NIR ([-] ) : {OK_SECHIBA } ALBSOIL_NIR = 0.36, 0.34, 0.34, 0.33, 0.30, 0.25, 0.20, 0.15, 0.45 # ALB_DEADLEAF ([-] ) : albedo of dead leaves, VIS+NIR {OK_SECHIBA } ALB_DEADLEAF = 0.12, 0.35 # ALB_ICE ([-] ) : albedo of ice, VIS+NIR {OK_SECHIBA} ALB_ICE = 0.60, 0.20 # CONDVEG_SNOWA ([-]) : The snow albedo used by SECHIBA {OK_SECHIBA} CONDVEG_SNOWA = 1.E+20 # ALB_BARE_MODEL ([FLAG]) : Switch bare soil albedo dependent (if TRUE) on soil wetness {OK_SECHIBA} ALB_BARE_MODEL = n # ALB_BG_MODIS ([FLAG]) : Read bare soil albedo from file with background MODIS data {OK_SECHIBA} ALB_BG_MODIS = n # IMPOSE_AZE ([FLAG]) : Should the surface parameters be prescribed {OK_SECHIBA} IMPOSE_AZE = n # CONDVEG_Z0 ([m]) : Surface roughness {IMPOSE_AZE} CONDVEG_Z0 = 0.15 # ROUGHHEIGHT ([m] ) : Height to be added to the height of the first level {IMPOSE_AZE} ROUGHHEIGHT = 0.0 # CONDVEG_ALBVIS ([-]) : SW visible albedo for the surface {IMPOSE_AZE} CONDVEG_ALBVIS = 0.25 # CONDVEG_ALBNIR ([-] ) : SW near infrared albedo for the surface {IMPOSE_AZE} CONDVEG_ALBNIR = 0.25 # CONDVEG_EMIS ([-] ) : Emissivity of the surface for LW radiation {IMPOSE_AZE} CONDVEG_EMIS = 1.0 # ROUGH_DYN ([FLAG]) : Account for a dynamic roughness height {OK_SECHIBA} ROUGH_DYN = y # C1 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C1 = 0.32 # C2 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C2 = 0.264 # C3 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C3 = 15.1 # Cdrag_foliage ([-] ) : Drag coefficient of the foliage {ROUGH_DYN} Cdrag_foliage = 0.2 # Ct ([-] ) : Heat transfer coefficient of the leaf {ROUGH_DYN} Ct = 0.01 # Prandtl ([-] ) : Prandtl number used in the calculation of Ct* {ROUGH_DYN} Prandtl = 0.71 # xansmax ([-] ) : maximum snow albedo {OK_SECHIBA} xansmax = 0.85 # xansmin ([-] ) : minimum snow albedo {OK_SECHIBA} xansmin = 0.50 # xans_todry ([S-1] ) : albedo decay rate for the dry snow {OK_SECHIBA} xans_todry = 0.008 # xans_t ([S-1] ) : albedo decay rate for the wet snow {OK_SECHIBA} xans_t = 0.24 # xrhosmax ([-] ) : maximum snow density {OK_SECHIBA} xrhosmax = 750 # xwsnowholdmax1 ([-] ) : snow holding capacity 1 {OK_SECHIBA} xwsnowholdmax1 = 0.03 # xwsnowholdmax2 ([-] ) : snow holding capacity 2 {OK_SECHIBA} xwsnowholdmax2 = 0.10 # xsnowrhohold ([kg/m3] ) : snow density {OK_SECHIBA} xsnowrhohold = 200.0 # ZSNOWTHRMCOND1 ([W/m/K] ) : Thermal conductivity Coef 1 {OK_SECHIBA} ZSNOWTHRMCOND1 = 0.02 # ZSNOWTHRMCOND2 ([W m5/(kg2 K)] ) : Thermal conductivity Coef 2 {OK_SECHIBA} ZSNOWTHRMCOND2 = 2.5E-6 # ZSNOWTHRMCOND_AVAP ([W/m/K] ) : Thermal conductivity Coef 1 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_AVAP = -0.06023 # ZSNOWTHRMCOND_BVAP ([W/m] ) : Thermal conductivity Coef 2 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_BVAP = -2.5425 # ZSNOWTHRMCOND_CVAP ([K] ) : Thermal conductivity Coef 3 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_CVAP = -289.99 # ZSNOWCMPCT_RHOD ([kg/m3]) : Snow compaction coefficent {OK_SECHIBA} ZSNOWCMPCT_RHOD = 150.0 # ZSNOWCMPCT_ACM ([1/s]) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_ACM = 2.8e-6 # ZSNOWCMPCT_BCM ([1/K]) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_BCM = 0.04 # ZSNOWCMPCT_CCM ([m3/kg] ) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_CCM = 460. # ZSNOWCMPCT_V0 ([Pa/s]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_V0 = 3.7e7 # ZSNOWCMPCT_VT ([1/K]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_VT = 0.081 # ZSNOWCMPCT_VR ([m3/kg]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_VR = 0.018 # CB ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CB = 5.0 # CC ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CC = 5.0 # CD ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CD = 5.0 # RAYT_CSTE ([W.m^{-2}] ) : Constant in the computation of surface resistance {OK_SECHIBA} RAYT_CSTE = 125 # DEFC_PLUS ([K.W^{-1}] ) : Constant in the computation of surface resistance {OK_SECHIBA} DEFC_PLUS = 23.E-3 # DEFC_MULT ([K.W^{-1}] ) : Constant in the computation of surface resistance {OK_SECHIBA} DEFC_MULT = 1.5 # NLAI ([-]) : Number of photosyntheis canopy levels {OK_SECHIBA} NLAI = 10 # JNLVLS ([-]) : number of photosyntheis canopy levels {OK_SECHIBA} JNLVLS = 29 # JNLVLS_UNDER ([-]) : number of energy layers under the canopy {OK_SECHIBA} JNLVLS_UNDER = 10 # JNLVLS_CANOPY ([-]) : number of energy layers in the canopy {OK_SECHIBA} JNLVLS_CANOPY = 10 # JNLVLS_OVER ([-]) : number of energy layers over the canopy {OK_SECHIBA} JNLVLS_OVER = 10 # NLEV_TOP ([-]) : Maximum number of canopy levels that are {OK_SECHIBA} NLEV_TOP = 10 # LAIMAX ([m^2/m^2] ) : Maximum LAI {OK_SECHIBA} LAIMAX = # DEW_VEG_POLY_COEFF ([-] ) : coefficients of the polynome of degree 5 for the dew {OK_SECHIBA} DEW_VEG_POLY_COEFF = 0.887773, 0.205673, 0.110112, 0.014843, 0.000824, 0.000017 # DOWNREGULATION_CO2 ([FLAG] ) : Activation of CO2 downregulation {OK_SECHIBA} DOWNREGULATION_CO2 = y # DOWNREGULATION_CO2_BASELEVEL ([ppm] ) : CO2 base level {OK_SECHIBA } DOWNREGULATION_CO2_BASELEVEL = 380. # GB_REF ([s m-1] ) : Leaf bulk boundary layer resistance {} GB_REF = 1./25. # CLAYFRACTION_DEFAULT ([-] ) : default fraction of clay {OK_SECHIBA } CLAYFRACTION_DEFAULT = 0.2 # SILTFRACTION_DEFAULT ([-] ) : default fraction of silt {OK_SECHIBA } SILTFRACTION_DEFAULT = 0.4 # BULK_DEFAULT ([kg/m3] ) : default bulk density {OK_SECHIBA } BULK_DEFAULT = 1000.0 # PH_DEFAULT ([-] ) : default soil pH {OK_SECHIBA } PH_DEFAULT = 5.5 # SANDFRACTION_DEFAULT ([-] ) : default fraction of sand {OK_SECHIBA } SANDFRACTION_DEFAULT = 0.4 # SILTFRACTION_DEFAULT ([-] ) : default fraction of silt {OK_SECHIBA } SILTFRACTION_DEFAULT = 0.4 # nvan ([-]) : nvan parameter from Van genutchen equations {IMPOSE_VEG and IMPOSE_SOIL} nvan = 1.89 # avan ([-]) : avan parameter from Van genutchen equations {IMPOSE_VEG and IMPOSE_SOIL} avan = 0.0075 # mcr ([-]) : residual soil moisture {IMPOSE_VEG and IMPOSE_SOIL} mcr = 0.065 # mcs ([-]) : saturation soil moisture {IMPOSE_VEG and IMPOSE_SOIL} mcs = 0.41 # ks ([-]) : saturation conductivity {IMPOSE_VEG and IMPOSE_SOIL} ks = 1060.8 # mcfc ([-]) : field capacitu soil moisture {IMPOSE_VEG and IMPOSE_SOIL} mcfc = 0.32 # mcw ([-]) : wilting point soil moisture {IMPOSE_VEG and IMPOSE_SOIL} mcw = 0.10 # MIN_VEGFRAC ([-] ) : Minimal fraction of mesh a vegetation type can occupy {OK_SECHIBA } MIN_VEGFRAC = 0.001 # STEMPDIAG_BID ([K]) : only needed for an initial LAI if there is no restart file {OK_SECHIBA } STEMPDIAG_BID = 280. # MIN_N (gNH4-N/m^2/day) : Minimum allowable n_mineralisation in som_dynamics {OK_STOMATE} MIN_N = 0.0001 # MAX_CN ([-]) : Maximum allowable ratio of som_input_total(:,icarbon) {OK_STOMATE} MAX_CN = 250 # SNC ([gN gC-1]) : Structural nitrogen concentration {OK_STOMATE} SNC = 0.004 # SUGAR_LOAD_MIN ([-]) : Lower bound for sugar loading when used to regulate NUE {OK_STOMATE} SUGAR_LOAD_MIN = 0.0 # SUGAR_LOAD_MAX ([-]) : Upper bound for sugar loading when used to regulate NUE {OK_STOMATE} SUGAR_LOAD_MAX = 1.0 # NCIRC ([-]) : Number of basal area classes in allocation scheme {OK_STOMATE, OK_SECHIBA } NCIRC = 2 # SLOPE_RA ([-]) : Reduction factor to make resp_maint less temperature sensitive {OK_STOMATE} SLOPE_RA = 1. # LAIEFF_SOLAR_ANGLE ([degrees]) : The solar zenith angle for effective LAI {OK_SECHIBA} LAIEFF_SOLAR_ANGLE = 60 # LAIEFF_ZERO_CUTOFF ([-]) : Cutoff for effective lai values {OK_SECHIBA} LAIEFF_ZERO_CUTOFF = 0.0000001 # DIRECT_LIGHT_WEIGHT ([degrees]) : The weighting factor to weight different sources of light {OK_SECHIBA} DIRECT_LIGHT_WEIGHT = 0.5 # MAINT_RESP_CONTROL ([-]) : Sets the approach to calculate Rm {OK_SECHIBA} MAINT_RESP_CONTROL = 'cn' # CROWN_PACKING ([-]) : Packing efficiency of the crowns within the canopy space {OK_SECHIBA} CROWN_PACKING = 1. # LAI_LEVEL_DEPTH ([-] ) : {} LAI_LEVEL_DEPTH = 0.15 # Oi ([ubar] ) : Intercellular oxygen partial pressure {} Oi = 210000. # THRESHOLD_C13_ASSIM ([-] ) : If assimilation falls below this threshold the delta_c13 is set to zero {OK_C13} THRESHOLD_C13_ASSIM = 0.01 # C13_A ([-] ) : Coefficient for fractionation occurring due to diffusion in air {OK_C13} C13_A = 0.01 # C13_B ([-] ) : Coefficient for fractionation caused by carboxylation {OK_C13} C13_B = 0.01 # EXP_KF ([-] ) : Exponential of the sensitivity of k_latosa to tree height {OK_STOMATE} EXP_KF = 1.0 # TOO_LONG ([days] ) : longest sustainable time without regeneration (vernalization) {OK_STOMATE} TOO_LONG = 5. # TAU_FIRE ([days] ) : Time scale for memory of the fire index (days). Validated for one year in the DGVM. {OK_STOMATE } TAU_FIRE = 30. # LITTER_CRIT ([gC/m^2] ) : Critical litter quantity for fire {OK_STOMATE } LITTER_CRIT = 200. # FIRE_RESIST_LIGNIN ([-] ) : {OK_STOMATE } FIRE_RESIST_LIGNIN = 0.5 # CO2FRAC ([-] ) : What fraction of a burned plant compartment goes into the atmosphere {OK_STOMATE } CO2FRAC = 0.95, 0.95, 0., 0.3, 0., 0., 0.95, 0.95 # BCFRAC_COEFF ([-] ) : {OK_STOMATE } BCFRAC_COEFF = 0.3, 1.3, 88.2 # FIREFRAC_COEFF ([-] ) : {OK_STOMATE } FIREFRAC_COEFF = 0.45, 0.8, 0.6, 0.13 # REF_GREFF ([1/year] ) : Asymptotic maximum mortality rate {OK_STOMATE } REF_GREFF = 0.035 # RESERVE_TIME_TREE ([days] ) : maximum time during which reserve is used (trees) {OK_STOMATE } RESERVE_TIME_TREE = 30. # RESERVE_TIME_GRASS ([days] ) : maximum time during which reserve is used (grasses) {OK_STOMATE } RESERVE_TIME_GRASS = 20. # PRECIP_CRIT ([mm/year] ) : minimum precip {OK_STOMATE } PRECIP_CRIT = 100. # GDD_CRIT_ESTAB ([-] ) : minimum gdd for establishment of saplings {OK_STOMATE } GDD_CRIT_ESTAB = 150. # FPC_CRIT ([-] ) : critical fpc, needed for light competition and establishment {OK_STOMATE } FPC_CRIT = 0.95 # ALPHA_GRASS ([-] ) : sapling characteristics : alpha's {OK_STOMATE } ALPHA_GRASS = 0.5 # ALPHA_TREE ([-] ) : sapling characteristics : alpha's {OK_STOMATE } ALPHA_TREE = 1. # STRUCT_TO_LEAVES ([-] ) : Fraction of structural carbon in grass and crops as a share of the leaf {OK_STOMATE } STRUCT_TO_LEAVES = 0.05 # LABILE_TO_TOTAL ([-] ) : Fraction of the labile pool in trees, grasses and crops as a share of the {OK_STOMATE } LABILE_TO_TOTAL = 0.01 # TAU_HUM_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_HUM_MONTH = 20. # TAU_HUM_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_HUM_WEEK = 7. # TAU_T2M_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_T2M_MONTH = 20. # TAU_T2M_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_T2M_WEEK = 7. # TAU_TSOIL_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_TSOIL_MONTH = 20. # TAU_GPP_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_GPP_WEEK = 7. # TAU_GDD ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_GDD = 40. # TAU_NGD ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_NGD = 50. # COEFF_TAU_LONGTERM ([days] ) : time scales for phenology and other processes {OK_STOMATE } COEFF_TAU_LONGTERM = 3. # BM_SAPL_CARBRES ([-] ) : {OK_STOMATE } BM_SAPL_CARBRES = 5. # BM_SAPL_SAPABOVE ([-] ) : {OK_STOMATE} BM_SAPL_SAPABOVE = 0.5 # BM_SAPL_HEARTABOVE ([-] ) : {OK_STOMATE } BM_SAPL_HEARTABOVE = 2. # BM_SAPL_HEARTBELOW ([-] ) : {OK_STOMATE } BM_SAPL_HEARTBELOW = 2. # BM_SAPL_LABILE ([-] ) : {OK_STOMATE } BM_SAPL_LABILE = 5. # INIT_SAPL_MASS_LABILE ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_LABILE = 5. # INIT_SAPL_MASS_LEAF_NAT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_LEAF_NAT = 0.1 # INIT_SAPL_MASS_LEAF_AGRI ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_LEAF_AGRI = 1. # INIT_SAPL_MASS_CARBRES ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_CARBRES = 5. # INIT_SAPL_MASS_ROOT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_ROOT = 0.1 # INIT_SAPL_MASS_FRUIT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_FRUIT = 0.3 # CN_SAPL_INIT ([-] ) : {OK_STOMATE } CN_SAPL_INIT = 0.5 # MIGRATE_TREE ([m/year] ) : {OK_STOMATE } MIGRATE_TREE = 10000. # MIGRATE_GRASS ([m/year] ) : {OK_STOMATE } MIGRATE_GRASS = 10000. # LAI_INITMIN_TREE ([m^2/m^2] ) : {OK_STOMATE } LAI_INITMIN_TREE = 0.3 # LAI_INITMIN_GRASS ([m^2/m^2] ) : {OK_STOMATE } LAI_INITMIN_GRASS = 0.1 # DIA_COEFF ([-] ) : {OK_STOMATE } DIA_COEFF = 4., 0.5 # MAXDIA_COEFF ([-] ) : {OK_STOMATE } MAXDIA_COEFF = 100., 0.01 # BM_SAPL_LEAF ([-] ) : {OK_STOMATE } BM_SAPL_LEAF = 4., 4., 0.8, 5. # CN ([-] ) : C/N ratio {OK_STOMATE } CN = 40., 40., 40., 40., 40., 40., 40., 40. # FRAC_SOIL_STRUCT_SUA ([-]) : frac_soil(istructural,isurface,iabove) {OK_STOMATE } FRAC_SOIL_STRUCT_SUA = 0.55 # FRAC_SOIL_METAB_SUA ([-] ) : frac_soil(imetabolic,isurface,iabove) {OK_STOMATE } FRAC_SOIL_METAB_SUA = 0.4 # TURN_METABOLIC ([days] ) : {OK_STOMATE } TURN_METABOLIC = 0.066 # TURN_STRUCT ([days]) : {OK_STOMATE } TURN_STRUCT = 0.245 # TURN_WOODY ([days]) : {OK_STOMATE } TURN_WOODY = 0.75 # METABOLIC_REF_FRAC ([-]) : {OK_STOMATE } METABOLIC_REF_FRAC = 0.85 # Z_DECOMP ([m] ) : scaling depth for soil activity {OK_STOMATE } Z_DECOMP = 0.2 # FRAC_SOIL_STRUCT_A ([-]) : frac_soil(istructural,iactive,ibelow) {OK_STOMATE } FRAC_SOIL_STRUCT_A = 0.45 # FRAC_SOIL_STRUCT_SA ([-] ) : frac_soil(istructural,islow,iabove) {OK_STOMATE} FRAC_SOIL_STRUCT_SA = 0.7 # FRAC_SOIL_STRUCT_SB ([-] ) : frac_soil(istructural,islow,ibelow) {OK_STOMATE } FRAC_SOIL_STRUCT_SB = 0.7 # FRAC_SOIL_METAB_AB ([-] ) : frac_soil(imetabolic,iactive,ibelow) {OK_STOMATE } FRAC_SOIL_METAB_AB = 0.45 # METABOLIC_LN_RATIO ([-] ) : {OK_STOMATE } METABOLIC_LN_RATIO = 0.018 # SOIL_Q10 ([-]) : {OK_STOMATE } SOIL_Q10 = 0.69 ( # SOIL_Q10_UPTAKE ([-]) : {OK_STOMATE } SOIL_Q10_UPTAKE = 0.69 ( # TSOIL_REF ([C] ) : {OK_STOMATE } TSOIL_REF = 30. # LITTER_STRUCT_COEF ([-] ) : {OK_STOMATE } LITTER_STRUCT_COEF = 3. # MOIST_COEFF ([-] ) : {OK_STOMATE } MOIST_COEFF = 1.1, 2.4, 0.29 # MOISTCONT_MIN ([-]) : minimum soil wetness to limit the heterotrophic respiration {OK_STOMATE } MOISTCONT_MIN = 0.25 # FUNGIVORES ([-]) : N released for plant uptake due to fungivore consumption {OK_STOMATE} FUNGIVORES = 0.3 # FRAC_WOODY ([-]) : Coefficient for determining the lignin fraction of woody litter {OK_STOMATE} FRAC_WOODY = 0.65 # FRAC_TURNOVER_DAILY ([-]) : {OK_STOMATE } FRAC_TURNOVER_DAILY = 0.55 # TAX_MAX ([-] ) : maximum fraction of allocatable biomass used for maintenance respiration {OK_STOMATE } TAX_MAX = 0.8 # MIN_GROWTHINIT_TIME ([days] ) : minimum time since last beginning of a growing season {OK_STOMATE } MIN_GROWTHINIT_TIME = 300. # RELSOILMOIST_ALWAYS_TREE ([-] ) : relative soil moisture availability above which moisture tendency doesn't matter {OK_STOMATE } RELSOILMOIST_ALWAYS_TREE = 1.0 # RELSOILMOIST_ALWAYS_GRASS ([-] ) : moisture availability above which moisture tendency doesn't matter {OK_STOMATE } RELSOILMOIST_ALWAYS_GRASS = 0.6 # T_ALWAYS_ADD ([C] ) : monthly temp. above which temp. tendency doesn't matter {OK_STOMATE } T_ALWAYS_ADD = 10. # GDDNCD_REF ([-] ) : {OK_STOMATE } GDDNCD_REF = 603. # GDDNCD_CURVE ([-] ) : {OK_STOMATE } GDDNCD_CURVE = 0.0091 # GDDNCD_OFFSET ([-] ) : {OK_STOMATE } GDDNCD_OFFSET = 64. # MAINT_RESP_MIN_VMAX ([-] ) : {OK_STOMATE } MAINT_RESP_MIN_VMAX = 0.3 # MAINT_RESP_COEFF ([-] ) : {OK_STOMATE } MAINT_RESP_COEFF = 1.4 # ACTIVE_TO_PASS_CLAY_FRAC ([-] ) : {OK_STOMATE } ACTIVE_TO_PASS_CLAY_FRAC = 0.68 # ACTIVE_TO_PASS_REF_FRAC ([-]) : Fixed fraction from Active to Passive pool {OK_STOMATE } ACTIVE_TO_PASS_REF_FRAC = 0.003 # SURF_TO_SLOW_REF_FRAC ([-]) : Fixed fraction from Surface to Slow pool {OK_STOMATE } SURF_TO_SLOW_REF_FRAC = 0.4 # ACTIVE_TO_CO2_REF_FRAC ([-]) : Fixed fraction from Active pool to CO2 emission {OK_STOMATE } ACTIVE_TO_CO2_REF_FRAC = 0.85 # SLOW_TO_PASS_REF_FRAC ([-]) : Fixed fraction from Slow to Passive pool {OK_STOMATE } SLOW_TO_PASS_REF_FRAC = 0.003 # SLOW_TO_CO2_REF_FRAC ([-]) : Fixed fraction from Slow pool to CO2 emission {OK_STOMATE } SLOW_TO_CO2_REF_FRAC = 0.55 # PASS_TO_ACTIVE_REF_FRAC ([-]) : Fixed fraction from Passive to Active pool {OK_STOMATE } PASS_TO_ACTIVE_REF_FRAC = 0.45 # PASS_TO_SLOW_REF_FRAC ([-]) : Fixed fraction from Passive to Slow pool {OK_STOMATE } PASS_TO_SLOW_REF_FRAC = 0. # ACTIVE_TO_CO2_CLAY_SILT_FRAC ([-]) : Clay-Silt-dependant fraction from Active pool to CO2 emission {OK_STOMATE } ACTIVE_TO_CO2_CLAY_SILT_FRAC = 0.68 # SLOW_TO_PASS_CLAY_FRAC ([-]) : Clay-dependant fraction from Slow to Passive pool {OK_STOMATE } SLOW_TO_PASS_CLAY_FRAC = -0.009 # SOM_TURN_IACTIVE ( [year-1] ) : turnover in active pool {OK_STOMATE } SOM_TURN_IACTIVE = 7.3 # SOM_TURN_ISLOW ([year-1]) : turnover in slow pool {OK_STOMATE } SOM_TURN_ISLOW = 0.2 # SOM_TURN_IPASSIVE ([year-1] ) : turnover in passive pool {OK_STOMATE } SOM_TURN_IPASSIVE = 0.0045 # FSLOW ([-] ) : converting factor from active to slow pool turnover {OK_STOMATE and OK_SOIL_CARBON_DISCRETIZATION} FSLOW = 37 # FPASSIVE ([-] ) : converting factor from active to slow pool turnover {OK_STOMATE and OK_SOIL_CARBON_DISCRETIZATION} FPASSIVE = 1617.45 # STOMATE_TAU ([seconds] ) : turnover of the active pool {OK_STOMATE and OK_SOIL_CARBON_DISCRETIZATION} STOMATE_TAU = 4.699E6 # DEPTH_MODIFIER ([-] ) : turnover rate modifier depending on depth {OK_STOMATE and OK_SOIL_CARBON_DISCRETIZATION} DEPTH_MODIFIER = 1.E6 # SOM_TURN_IACTIVE_CLAY_FRAC ([-] ) : clay-dependant parameter impacting on turnover rate of active pool - Tm parameter of Parton et al. 1993 (-) {OK_STOMATE } SOM_TURN_IACTIVE_CLAY_FRAC = 0.75 # SOM_INIT_ACTIVE ([g m-2]) : Initial active SOM carbon {OK_STOMATE} SOM_INIT_ACTIVE = 1000 # SOM_INIT_SLOW ([g m-2]) : Initial slow SOM carbon {OK_STOMATE} SOM_INIT_SLOW = 3000 # SOM_INIT_PASSIVE ([g m-2]) : Initial passive SOM carbon {OK_STOMATE} SOM_INIT_PASSIVE = 3000 # SOM_INIT_SURFACE ([g m-2]) : Initial surface SOM carbon {OK_STOMATE} SOM_INIT_SURFACE = 1000 # CN_TARGET_IACTIVE_REF ([-] ) : CN target ratio of active pool for soil min N {OK_STOMATE } CN_TARGET_IACTIVE_REF = 15. # CN_TARGET_ISLOW_REF ([-] ) : CN target ratio of slow pool for soil min N {OK_STOMATE } CN_TARGET_ISLOW_REF = 20. # CN_TARGET_IPASSIVE_REF ([-] ) : CN target ratio of passive pool for soil min N {OK_STOMATE } CN_TARGET_IPASSIVE_REF = 10. # CN_TARGET_IACTIVE_NMIN ([(g m-2)-1] ) : CN target ratio change per mineral N unit (g m-2) for active pool {OK_STOMATE } CN_TARGET_IACTIVE_NMIN = -6. # CN_TARGET_ISLOW_NMIN ([(g m-2)-1] ) : CN target ratio change per mineral N unit (g m-2) for slow pool {OK_STOMATE } CN_TARGET_ISLOW_NMIN = -4. # CN_TARGET_IPASSIVE_NMIN ([(g m-2)-1] ) : CN target ratio change per mineral N unit (g m-2) for passive pool {OK_STOMATE } CN_TARGET_IPASSIVE_NMIN = -1.5 # H_SAXTON ([m^3/m^3] ) : Coefficient h for computing soil moisture content at saturation {OK_STOMATE } H_SAXTON = 0.332 # J_SAXTON ([m^3/m^3] ) : Coefficient j for computing soil moisture content at saturation {OK_STOMATE } J_SAXTON = -7.251*1e-4 # K_SAXTON ([m^3/m^3] ) : Coefficient k for computing soil moisture content at saturation {OK_STOMATE } K_SAXTON = O.1276 # DIFFUSIONO2_POWER_1 ([-] ) : Power used in the equation defining the diffusion of oxygen in soil {OK_STOMATE } DIFFUSIONO2_POWER_1 = 3.33 # DIFFUSIONO2_POWER_2 ([-] ) : Power used in the equation defining the diffusion of oxygen in soil {OK_STOMATE } DIFFUSIONO2_POWER_2 = 2.0 # F_NOFROST ([-] ) : Temperature-related Factor impacting on Oxygen diffusion rate {OK_STOMATE } F_NOFROST = 1.2 # F_FROST ([-] ) : Temperature-related Factor impacting on Oxygen diffusion rate {OK_STOMATE } F_FROST = 0.8 # A_ANVF ([-] ) : Coefficient used in the calculation of Volumetric fraction of anaerobic microsites {OK_STOMATE } A_ANVF = 0.85 # B_ANVF ([-] ) : Coefficient used in the calculation of Volumetric fraction of anaerobic microsites {OK_STOMATE } B_ANVF = 1. # A_FIXNH4 ([-] ) : Coefficient used in the calculation of the Fraction of adsorbed NH4+ {OK_STOMATE } A_FIXNH4 = 0.41 # B_FIXNH4 ([-] ) : Coefficient used in the calculation of the Fraction of adsorbed NH4+ {OK_STOMATE } B_FIXNH4 = -0.47 # CLAY_MAX ([-] ) : Coefficient used in the calculation of the Fraction of adsorbed NH4+ {OK_STOMATE } CLAY_MAX = 0.63 # FW_NIT_0 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to soil moisture {OK_STOMATE } FW_NIT_0 = -0.0243 # FW_NIT_1 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to soil moisture {OK_STOMATE } FW_NIT_1 = 0.9975 # FW__NIT_2 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to soil moisture {OK_STOMATE } FW__NIT_2 = -5.5368 # FW_NIT_3 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to soil moisture {OK_STOMATE } FW_NIT_3 = 17.651 # FW_NIT_4 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to soil moisture {OK_STOMATE } FW_NIT_4 = -12.904 # FT_NIT_0 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to Temperature {OK_STOMATE } FT_NIT_0 = -0.0233 # FT_NIT_1 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to Temperature {OK_STOMATE } FT_NIT_1 = 0.3094 # FT_NIT_2 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to Temperature {OK_STOMATE } FT_NIT_2 = -0.2234 # FT_NIT_3 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to Temperature {OK_STOMATE } FT_NIT_3 = 0.1566 # FT_NIT_4 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to Temperature {OK_STOMATE } FT_NIT_4 = -0.0272 # FPH_0 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to pH {OK_STOMATE } FPH_0 = -1.2314 # FPH_1 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to pH {OK_STOMATE } FPH_1 = 0.7347 # FPH_2 ([-] ) : Coefficient used in the calculation of the Response of Nitrification to pH {OK_STOMATE } FPH_2 = -0.0604 # FTV_0 ([-] ) : Coefficient used in the calculation of the response of NO2 or NO production during nitrificationof to Temperature {OK_STOMATE } FTV_0 = 2.72 # FTV_1 ([-] ) : Coefficient used in the calculation of the response of NO2 or NO production during nitrificationof to Temperature {OK_STOMATE } FTV_1 = 34.6 # FTV_2 ([-] ) : Coefficient used in the calculation of the response of NO2 or NO production during nitrificationof to Temperature {OK_STOMATE } FTV_2 = 9615. # K_NITRIF ([day**-1] ) : Nitrification rate at 20 ◦C and field capacity {OK_STOMATE } K_NITRIF = 2.0 # N2O_NITRIF_P ([gN-N2O (gN-NO3)-1] ) : Reference n2o production per N-NO3 produced g N-N2O {OK_STOMATE } N2O_NITRIF_P = 0.0006 # NO_NITRIF_P ([gN-NO (gN-NO3)-1] ) : Reference NO production per N-NO3 produced g N-N2O {OK_STOMATE } NO_NITRIF_P = 0.0025 # CHEMO_T0 ([-] ) : Coefficient used in the calculation of the Response of NO production from chemodenitrification to Temperature {OK_STOMATE } CHEMO_T0 = -31494 # CHEMO_PH0 ([-] ) : Coefficient used in the calculation of the Response of NO production from chemodenitrification to pH {OK_STOMATE } CHEMO_PH0 = -1.62 # CHEMO_0 ([-] ) : Coefficient used in the calculation of NO production from chemodenitrification {OK_STOMATE } CHEMO_0 = 30. # CHEMO_1 ([-] ) : Coefficient used in the calculation of NO production from chemodenitrification {OK_STOMATE } CHEMO_1 = 16565 # FT_DENIT_0 ([-] ) : Coefficient used in the response of relative growth rate of total denitrifiers to Temperature {OK_STOMATE } FT_DENIT_0 = 2. # FT_DENIT_1 ([-] ) : Coefficient used in the response of relative growth rate of total denitrifiers to Temperature {OK_STOMATE } FT_DENIT_1 = 22.5 # FT_DENIT_2 ([-] ) : Coefficient used in the response of relative growth rate of total denitrifiers to Temperature {OK_STOMATE } FT_DENIT_2 = 10 # FPH_NO3_0 ([-] ) : Coefficient used in the response of relative growth rate of NO3 denitrifiers to pH {OK_STOMATE } FPH_NO3_0 = 4.25 # FPH_NO3_1 ([-] ) : Coefficient used in the response of relative growth rate of NO3 denitrifiers to pH {OK_STOMATE } FPH_NO3_1 = 0.5 # FPH_NO_0 ([-] ) : Coefficient used in the response of relative growth rate of NO denitrifiers to pH {OK_STOMATE } FPH_NO_0 = 5.25 # FPH_NO_1 ([-] ) : Coefficient used in the response of relative growth rate of NO denitrifiers to pH {OK_STOMATE } FPH_NO_1 = 1. # FPH_N2O_0 ([-] ) : Coefficient used in the response of relative growth rate of N2O denitrifiers to pH {OK_STOMATE } FPH_N2O_0 = 6.25 # FPH_N2O_1 ([-] ) : Coefficient used in the response of relative growth rate of N2O denitrifiers to pH {OK_STOMATE } FPH_N2O_1 = 1.5 # KN ([kgN/m**3] ) : Half Saturation of N oxydes {OK_STOMATE } KN = 0.083 # CTE_BACT ([-]) : Denitrification activiy of bacteria {OK_STOMATE} CTE_BACT = 0.00005 # MU_NO3_MAX ([hour**-1] ) : Maximum Relative growth rate of NO3 denitrifiers {OK_STOMATE } MU_NO3_MAX = 0.67 # MU_NO_MAX ([hour**-1] ) : Maximum Relative growth rate of NO denitrifiers {OK_STOMATE } MU_NO_MAX = 0.34 # MU_N2O_MAX ([hour**-1] ) : Maximum Relative growth rate of N2O denitrifiers {OK_STOMATE } MU_N2O_MAX = 0.34 # Y_NO3 ([kgC / kgN] ) : Maximum growth yield of NO3 denitrifiers on N oxydes {OK_STOMATE } Y_NO3 = 0.401 # Y_NO ([kgC / kgN] ) : Maximum growth yield of NO denitrifiers on N oxydes {OK_STOMATE } Y_NO = 0.428 # Y_N2O ([kgC / kgN] ) : Maximum growth yield of N2O denitrifiers on N oxydes {OK_STOMATE } Y_N2O = 0.151 # M_NO3 ([kgN / kgC / hour] ) : Maintenance coefficient on NO3 {OK_STOMATE } M_NO3 = 0.09 # M_NO ([kgN / kgC / hour] ) : Maintenance coefficient on NO {OK_STOMATE } M_NO = 0.035 # M_N2O ([kgN / kgC / hour] ) : Maintenance coefficient on N2O {OK_STOMATE } M_N2O = 0.079 # MAINT_C ([kgC / kgC / hour] ) : Maintenance coefficient of carbon {OK_STOMATE } MAINT_C = 0.0076 # YC ([kgC / kgC ] ) : Maximum growth yield on soluble carbon {OK_STOMATE } YC = 0.503 # F_CLAY_0 ([-] ) : Coefficient used in the eq. defining the response of N-emission to clay fraction {OK_STOMATE } F_CLAY_0 = 0.13 # F_CLAY_1 ([-] ) : Coefficient used in the eq. defining the response of N-emission to clay fraction {OK_STOMATE } F_CLAY_1 = -0.079 # RATIO_NH4_FERT ([-] ) : Proportion of ammonium in the fertilizers (ammo-nitrate) {OK_STOMATE } RATIO_NH4_FERT = 0.875 # CN_RATIO_MANURE ([-] ) : C:N ratio of organic fertilizers coming from Fuchs,et al, {OK_STOMATE } CN_RATIO_MANURE = 13.7 # K_N_MIN ([umol per litter] ) : [NH4+] and [NO3-] for which the Nuptake equals vmax/2. {OK_STOMATE } K_N_MIN = 30. 30. # LOW_K_N_MIN ([umol**-1] ) : Rate of N uptake not associated with Michaelis- Menten Kinetics for Ammonium {OK_STOMATE } LOW_K_N_MIN = 0.0002 0.0002 # EMM_FAC ([-] ) : Factor for reducing NH3 emission {OK_NCYCLE} EMM_FAC = 0.2 # FACT_KN_NO ([-] ) : Factor for adusting kn constant for NOx production {OK_NCYCLE} FACT_KN_NO = 0.012 # FACT_KN_N2O ([-] ) : Factor for adusting kn constant for N2O production {OK_NCYCLE} FACT_KN_N2O = 0.04 # KFWDENIT ([-]) : Factor for adjusting sensitivity of denitrification to water content {OK_NCYCLE} KFWDENIT = -5. # FWDENITFC ([-]) : Value at field capacity of the sensitivity function of denitrification to water content {OK_NCYCLE} FWDENITFC = 0.05 # FRACN_DRAINAGE ([-] ) : Fraction of NH3/NO3 loss by drainage {OK_NCYCLE} FRACN_DRAINAGE = 1.0 # FRACN_RUNOFF ([-] ) : Fraction of NH3/NO3 loss by runoff {OK_NCYCLE} FRACN_RUNOFF = 0.3 # LEAF_N_DMAX (???) : ????????????? {OK_STOMATE } LEAF_N_DMAX = 0.25 # P_N_UPTAKE ([-]) : Minimum value of the correction factor for plant N uptake {OK_STOMATE } P_N_UPTAKE = 0.6 # SYNC_THRESHOLD ([-] ) : The threshold value for a warning when we sync biomass {OK_STOMATE } SYNC_THRESHOLD = 0.1 # TEST_GRID ([-]) : grid cell for which extra output is written to the out_execution file {OK_STOMATE} TEST_GRID = 1 # TEST_PFT ([-] ) : pft for which extra output is written to the out_execution file {OK_STOMATE} TEST_PFT = 6 # LNVGRASSPATCH ([-] ) : Activates a patch for grasslands that Nicolas came up with {OK_STOMATE} LNVGRASSPATCH = FALSE # MAX_DELTA_KF ([m] ) : Maximum change in KF from one time step to another {OK_STOMATE } MAX_DELTA_KF = 0.1 # MAINT_FROM_GPP ([-] ) : Some carbon needs to remain to support the growth, hence, {OK_STOMATE } MAINT_FROM_GPP = 0.8 # NEW_TURNOVER_TIME_REF ([days] ) : {OK_STOMATE } NEW_TURNOVER_TIME_REF = 20. # VMAX_OFFSET ([-] ) : offset (minimum relative vcmax) {OK_STOMATE } VMAX_OFFSET = 0.3 # LEAFAGE_FIRSTMAX ([-] ) : leaf age at which vmax attains vcmax_opt (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_FIRSTMAX = 0.03 # LEAFAGE_LASTMAX ([-] ) : leaf age at which vmax falls below vcmax_opt (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_LASTMAX = 0.5 # LEAFAGE_OLD ([-] ) : leaf age at which vmax attains its minimum (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_OLD = 1. # GPPFRAC_DORMANCE ([-]) : rapport maximal GPP/GGP_max pour dormance {OK_STOMATE } GPPFRAC_DORMANCE = 0.2 # TAU_CLIMATOLOGY ([days]) : tau for "climatologic variables {OK_STOMATE } TAU_CLIMATOLOGY = 20 # HVC1 ([-] ) : parameters for herbivore activity {OK_STOMATE } HVC1 = 0.019 # HVC2 ([-] ) : parameters for herbivore activity {OK_STOMATE } HVC2 = 1.38 # LEAF_FRAC_HVC ([-] ) : parameters for herbivore activity {OK_STOMATE } LEAF_FRAC_HVC = 0.33 # TLONG_REF_MAX ([K] ) : maximum reference long term temperature {OK_STOMATE } TLONG_REF_MAX = 303.1 # TLONG_REF_MIN ([K] ) : minimum reference long term temperature {OK_STOMATE } TLONG_REF_MIN = 253.1 # NCD_MAX_YEAR ([days]) : {OK_STOMATE } NCD_MAX_YEAR = 3. # GDD_THRESHOLD ([days] ) : {OK_STOMATE } GDD_THRESHOLD = 5. # GREEN_AGE_EVER ([-] ) : {OK_STOMATE } GREEN_AGE_EVER = 2. # GREEN_AGE_DEC ([-] ) : {OK_STOMATE } GREEN_AGE_DEC = 0.5 # NGD_MIN_DORMANCE ([days] ) : Minimum length (days) of the dormance period for species with the ngd phenology type {OK_STOMATE } NGD_MIN_DORMANCE = 90. # NAGEC ([-]) : Number of age classes {OK_STOMATE } NAGEC = 1 # AGE_CLASS_BOUND ([m]) : Boundaries of the age classes {OK_STOMATE } AGE_CLASS_BOUND = 5.0 # MIN_WATER_STRESS ([-] ) : Minimal value for wstress_fac {OK_STOMATE } MIN_WATER_STRESS = 0.1 # NDIA_HARVEST ([-]) : Number of basal area classes in which the harvest is stored {OK_STOMATE } NDIA_HARVEST = 5 # MAX_HARVEST_DIA ([m]) : The maximum diamter of tree which can be harvested {OK_STOMATE } MAX_HARVEST_DIA = 1.0 # N_PAI ([-]) : Number of years used for the calculation of the periodic annual increment {OK_STOMATE } N_PAI = 5 # NTREES_PROFIT ([number of trees]) : Number of trees below which the forest will be cut and replanted {FOREST_MANAGEMENT } NTREES_PROFIT = 100 # SPECIES_CHANGE_FORCE ([PFT number]) : New species after a final cut for testing and debugging only {OK_STOMATE} SPECIES_CHANGE_FORCE = -9999 # FM_CHANGE_FORCE ([1, 2, 3 or 4; unitless]) : New management after a final cut for testing and debugging only {OK_STOMATE, LCHANGE_SPECIES} FM_CHANGE_FORCE = ifm_none # nb_years_bgi ([years]) : numbers of years over which bark beetle generation index is calculated {OK_PEST, OK_STOMATE} nb_years_bgi = 3 # DAILY_MAX_TUNE ([-]) : Non linear tuning factor for daily maximum wind speed used in windthrow module {OK_WINDTHROW, stomate main program} DAILY_MAX_TUNE = 1.000 # WIND_SPEED_STORM_THR (meter per second ) : the wind speed threshold above which is_storm flag is set to TRUE {OK_WINDTHROW, stomate main program} WIND_SPEED_STORM_THR = 20.000 # NB_DAYS_STORM (days) : the number of days at which the max wind speed is less than wind_speed_storm_thr {OK_WINDTHROW, stomate main program} NB_DAYS_STORM = 5 # FORCED_CLEAR_CUT (year) : Use to force a clear cut at a specific year during a simulation. {OK_STOMATE} FORCED_CLEAR_CUT = .FALSE. # USE_HEIGHT_DOM ([-]) : Use the dominant vegetation height instead of the average height when calculating roughness length {OK_STOMATE} USE_HEIGHT_DOM = .FALSE. # ERR_ACT ([1: write to history file, 2: warn and write to history file, and 3&4: stop the model]) : Action following an error {OK_STOMATE} ERR_ACT = 1 # ESTAB_MAX_TREE ([-] ) : Maximum tree establishment rate {OK_DGVM} ESTAB_MAX_TREE = 0.12 # ESTAB_MAX_GRASS ([-] ) : Maximum grass establishment rate {OK_DGVM} ESTAB_MAX_GRASS = 0.12 # ESTABLISH_SCAL_FACT ([-] ) : {OK_DGVM } ESTABLISH_SCAL_FACT = 5. # MAX_TREE_COVERAGE ([-] ) : {OK_DGVM } MAX_TREE_COVERAGE = 0.98 # IND_0_ESTAB ([-] ) : {OK_DGVM } IND_0_ESTAB = 0.2 # ANNUAL_INCREASE ([FLAG]) : for diagnosis of fpc increase, compare today's fpc to last year's maximum (T) or to fpc of last time step (F)? {OK_DGVM} ANNUAL_INCREASE = y # MIN_COVER ([-] ) : For trees, minimum fraction of crown area occupied {OK_DGVM} MIN_COVER = 0.05 # IND_0 ([-] ) : initial density of individuals {OK_DGVM} IND_0 = 0.02 # MIN_AVAIL ([-] ) : minimum availability {OK_DGVM} MIN_AVAIL = 0.01 # RIP_TIME_MIN ([year] ) : {OK_DGVM} RIP_TIME_MIN = 1.25 # NPP_LONGTERM_INIT ([gC/m^2/year]) : {OK_DGVM} NPP_LONGTERM_INIT = 10. # EVERYWHERE_INIT ([-] ) : {OK_DGVM} EVERYWHERE_INIT = 0.05 # OK_FORCE_PHENO ([-]) : Use to force phenology when the conditions are not suitable {OK_STOMATE} OK_FORCE_PHENO = .TRUE. # PRINTLEV ([0, 1, 2, 3, 4]) : Print level for text output {} PRINTLEV = 2 # PRINTLEV_modname ([0, 1, 2, 3, 4]) : Specific print level of text output for the module "modname". Default as PRINTLEV. {} PRINTLEV_modname = PRINTLEV # SNOW_HEAT_COND ([W.m^{-2}.K^{-1}]) : Thermal Conductivity of snow {OK_SECHIBA } SNOW_HEAT_COND = 0.3 # SNOW_DENSITY ([-] ) : Snow density for the soil thermodynamics {OK_SECHIBA } SNOW_DENSITY = 330.0 # NOBIO_WATER_CAPAC_VOLUMETRI ([s/m^2]) : {} NOBIO_WATER_CAPAC_VOLUMETRI = 150. # SECHIBA_QSINT ([kg/m2]) : Interception reservoir coefficient {OK_SECHIBA } SECHIBA_QSINT = 0.02 # OK_FREEZE ([FLAG]) : Activate the complet soil freezing scheme {OK_SECHIBA } OK_FREEZE = TRUE # READ_REFTEMP ([FLAG]) : Initialize soil temperature using climatological temperature {} READ_REFTEMP = True/False depening on OK_FREEZE # OK_FREEZE_THERMIX ([FLAG]) : Activate thermal part of the soil freezing scheme {} OK_FREEZE_THERMIX = True if OK_FREEZE else false # OK_ECORR ([FLAG]) : Energy correction for freezing {OK_FREEZE_THERMIX} OK_ECORR = True if OK_FREEZE else false # OK_FREEZE_THAW_LATENT_HEAT ([FLAG]) : Activate latent heat part of the soil freezing scheme {} OK_FREEZE_THAW_LATENT_HEAT = FALSE # fr_dT ([K] ) : Freezing window {OK_SECHIBA} fr_dT = 2.0 # SOILC_MAX ([gC/m3] ) : Soil carbon above which soil thermal properties equals to organic soil properties {OK_SOIL_CARBON_DISCRETIZATION and USE_SOILC_TEMPDIFF} SOILC_MAX = 130000 # OK_FREEZE_CWRR ([FLAG]) : CWRR freezing scheme by I. Gouttevin {} OK_FREEZE_CWRR = True if OK_FREEZE else false # OK_THERMODYNAMICAL_FREEZING ([FLAG]) : Calculate frozen fraction thermodynamically {OK_FREEZE_CWRR} OK_THERMODYNAMICAL_FREEZING = True # CHECK_CWRR ([FLAG]) : Calculate diagnostics to check CWRR water balance {} CHECK_CWRR = n # DT_STOMATE ([seconds]) : Time step of STOMATE and other slow processes {OK_STOMATE} DT_STOMATE = 86400. # SOIL_FRACTIONS ([-]) : Areal fraction of the 13 soil USDA textures; the dominant one is selected (0-dim mode) {IMPOSE_SOILT} SOIL_FRACTIONS = 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 # CLAY_FRACTION ([-] ) : Fraction of the clay fraction (0-dim mode) {IMPOSE_SOIL} CLAY_FRACTION = 0.2 # SAND_FRACTION ([-] ) : Fraction of the sand fraction (0-dim mode) {IMPOSE_SOIL} SAND_FRACTION = 0.4 # BULK ([-] ) : Bulk density (0-dim mode) {IMPOSE_SOIL} BULK = 1000.0 # SOIL_PH ([-]) : Soil pH (0-dim mode) {IMPOSE_SOIL} SOIL_PH = 5.5 # NVAN_IMP ([-] ) : nvan parameter from Van Genutchen equations (0-dim mode) {IMPOSE_SOILT} NVAN_IMP = 1.56 # AVAN_IMP ([-] ) : avan parameter from Van Genutchen equations (0-dim mode) {IMPOSE_SOILT} AVAN_IMP = 0.0036 # MCR_IMP ([-] ) : residual soil moisture (0-dim mode) {IMPOSE_SOILT} MCR_IMP = 0.078 # MCS_IMP ([-] ) : saturated soil moisture (0-dim mode) {IMPOSE_SOILT} MCS_IMP = 0.43 # KS_IMP ([mm/d] ) : saturated conductivity (0-dim mode) {IMPOSE_SOILT} KS_IMP = 249.6 # MCFC_IMP ([-] ) : field capacity soil moisture (0-dim mode) {IMPOSE_SOILT} MCFC_IMP = 0.1654 # MCW_IMP ([-] ) : wilting point soil moisture (0-dim mode) {IMPOSE_SOILT} MCW_IMP = 0.0884 # GET_SLOPE ([FLAG]) : Read slope from a file and do the interpolation {OK_SECHIBA} GET_SLOPE = n # REINF_SLOPE ([-]) : Fraction of reinfiltrated surface runoff {No restart available} REINF_SLOPE = 0.1 # SECHIBA_VEGMAX ([-]) : Maximum vegetation distribution within the mesh (0-dim mode) {IMPOSE_VEG} SECHIBA_VEGMAX = 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0 # SECHIBA_FRAC_NOBIO ([-]) : Fraction of other surface types within the mesh (0-dim mode) {IMPOSE_VEG} SECHIBA_FRAC_NOBIO = 0.0 # NINPUT_UPDATE ([years]) : Update N input frequency {ok_ncycle .AND. (.NOT. impose_cn) .AND. .NOT. impsoilt} NINPUT_UPDATE = 0Y # NAMMONIUM ([gN m-2 d-1] ) : Amount of N ammonium deposition {ok_ncycle .AND. (.NOT. impose_cn)} NAMMONIUM = 0 # NNITRATE ([gN m-2 d-1] ) : Amount of N nitrate deposition {ok_ncycle .AND. (.NOT. impose_cn)} NNITRATE = 0 # NFERT ([gN m-2 d-1] ) : Amount of N fertiliser {ok_ncycle .AND. (.NOT. impose_cn)} NFERT = 0 # NMANURE ([gN m-2 d-1] ) : Amount of N manure {ok_ncycle .AND. (.NOT. impose_cn)} NMANURE = 0 # NBNF ([gN m-2 d-1] ) : Amount of N biological fixation {ok_ncycle .AND. (.NOT. impose_cn)} NBNF = 0 # LAI_FILE ([FILE]) : Name of file from which the vegetation map is to be read {LAI_MAP} LAI_FILE = lai2D.nc # RENORM_LAI ([FLAG]) : flag to force LAI renormelization {LAI_MAP} RENORM_LAI = n # VEGETATION_FILE ([FILE]) : Name of file from which the vegetation map is to be read {} VEGETATION_FILE = PFTmap.nc # CNLEAF_FILE ([FILE]) : Name of file from which the cn leaf ratio is to be read {} CNLEAF_FILE = cnleaf_map.nc # CNLEAF_VAR ([VAR]) : Name of the variable in the file from which the cn leaf ratio is to be read {} CNLEAF_VAR = leaf_cn.nc # spmipexp ([-]) : number of sp_mip experiment {} spmipexp = number of sp_mip experiment # EXP4 ([-]) : number of sp_mip experiment 4 {} EXP4 = number of sp_mip experiment 4 # SOILCLASS_FILE ([FILE]) : Name of file from which soil types are read {NOT(IMPOSE_VEG)} SOILCLASS_FILE = soils_param.nc # SOIL_BULK_FILE ([FILE]) : Name of file from which soil bulk should be read {} SOIL_BULK_FILE = soil_bulk_and_ph.nc # SOIL_PH_FILE ([FILE]) : Name of file from which soil ph should be read {} SOIL_PH_FILE = soil_bulk_and_ph.nc # SLOPE_NOREINF ([FILE]) : Slope over which surface runoff does not reinfiltrate {} SLOPE_NOREINF = Slope over which surface runoff does not reinfiltrate # TOPOGRAPHY_FILE ([%]) : Name of file from which the topography map is to be read {} TOPOGRAPHY_FILE = cartepente2d_15min.nc # NINPUT File ([FILE]) : Name of file from which the N-input map is to be read {} NINPUT File = 'Ninput_fied'.nc # NINPUT var ([FILE]) : Name of the variable in the file from which the N-input map is to be read {} NINPUT var = 'Ninput_field' # WOODHARVEST_FILE ([FILE]) : Name of file from which the wood harvest will be read {DO_WOOD_HARVEST} WOODHARVEST_FILE = woodharvest.nc # ALB_BG_FILE ([FILE]) : Name of file from which the background albedo is read {ALB_BG_MODIS} ALB_BG_FILE = alb_bg.nc # SOILALB_FILE ([FILE]) : Name of file from which the bare soil albedo {NOT(IMPOSE_AZE)} SOILALB_FILE = soils_param.nc # CDRAG_FROM_GCM ([FLAG]) : Keep cdrag coefficient from gcm. {OK_SECHIBA} CDRAG_FROM_GCM = y # N_FERTIL_FILE (- ) : File name {CHEMISTRY_BVOC and NOx_FERTILIZERS_USE} N_FERTIL_FILE = orchidee_fertilizer_1995.nc # N_FERTIL_FILE (-) : File name {CHEMISTRY_BVOC and NOx_FERTILIZERS_USE} N_FERTIL_FILE = orchidee_fertilizer_1995.nc # ENERBIL_TSURF (Kelvin [K]) : Initial temperature if not found in restart {OK_SECHIBA} ENERBIL_TSURF = 280. # ENERBIL_EVAPOT () : Initial Soil Potential Evaporation {OK_SECHIBA } ENERBIL_EVAPOT = 0.0 # BEDROCK_FLAG ([FLAG]) : Flag to consider bedrock at deeper layers. {} BEDROCK_FLAG = 0 # USE_SOILC_TEMPDIFF ([FLAG]) : insolation effect of the organic top soil layer {OK_SOIL_CARBON_DISCRETIZATION } USE_SOILC_TEMPDIFF = FALSE # USE_REFSOC ([FLAG]) : Read a SOC map to perform the insolation effect {USE_SOILC_TEMPDIFF } USE_REFSOC = TRUE # USE_SOILC_METHOD ([FLAG]) : Flag to control the way to average thermal conductivity of mineral soil and organic soil {OK_SOIL_CARBON_DISCRETIZATION} USE_SOILC_METHOD = 1 # SNOW_COND_METHOD ([1=original method, 2=method by Decharme et al 2016]) : Flag to choose the way to calculate snow thermal conductivity {OK_SOIL_CARBON_DISCRETIZATION} SNOW_COND_METHOD = 1 # DRY_SOIL_HEAT_CAPACITY_FAO ([J.m^{-3}.K^{-1}] ) : Dry soil Heat capacity of soils according to FAO classification {SOILTYPE_CLASSIF=zobler} DRY_SOIL_HEAT_CAPACITY_FAO = (1.34, 1.21, 1.23)*e+6 # DRY_SOIL_HEAT_CAPACITY_USDA ([J.m^{-3}.K^{-1}] ) : Dry soil Heat capacity of soils according to USDA classification {SOILTYPE_CLASSIF=usda} DRY_SOIL_HEAT_CAPACITY_USDA = (1.47, 1.41, 1.34, 1.27, 1.21, 1.21, 1.18, 1.32, 1.23, 1.18, 1.15, 1.09,1.09)*e+6 # THERMOSOIL_TPRO (Kelvin [K]) : Initial soil temperature profile if not found in restart {OK_SECHIBA} THERMOSOIL_TPRO = 280. # SOIL_REFTEMP_FILE ([FILE]) : File with climatological soil temperature {READ_REFTEMP} SOIL_REFTEMP_FILE = reftemp.nc # SOIL_REFSOC_FILE ([FILE]) : File with soil carbon stocks {OK_SOIL_CARBON_DISCRETIZATION, USE_REFSOC, SOIL_CTEMPDIFF} SOIL_REFSOC_FILE = refSOC.nc # DO_PONDS ([FLAG]) : Should we include ponds {} DO_PONDS = n # FROZ_FRAC_CORR ([-]) : Coefficient for the frozen fraction correction {OK_FREEZE} FROZ_FRAC_CORR = 1.0 # MAX_FROZ_HYDRO ([-]) : Coefficient for the frozen fraction correction {OK_FREEZE} MAX_FROZ_HYDRO = 1.0 # SMTOT_CORR ([-]) : Coefficient for the frozen fraction correction {OK_FREEZE} SMTOT_CORR = 2.0 # DO_RSOIL ([FLAG]) : Should we reduce soil evaporation with a soil resistance {} DO_RSOIL = n # WETNESS_TRANSPIR_MAX ([-]) : Soil moisture above which transpir is max, for each soil texture class {} WETNESS_TRANSPIR_MAX = 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 # VWC_MIN_FOR_WET_ALB ([m3/m3] ) : Vol. wat. cont. above which albedo is cst {} VWC_MIN_FOR_WET_ALB = 0.25, 0.25, 0.25 # VWC_MAX_FOR_DRY_ALB ([m3/m3] ) : Vol. wat. cont. below which albedo is cst {} VWC_MAX_FOR_DRY_ALB = 0.1, 0.1, 0.1 # HYDROL_MOISTURE_CONTENT ([m3/m3]) : Soil moisture on each soil tile and levels {} HYDROL_MOISTURE_CONTENT = 0.3 # US_INIT ([-]) : US_NVM_NSTM_NSLM {} US_INIT = 0.0 # ZWT_FORCE ([m]) : Prescribed water depth, dimension nstm {} ZWT_FORCE = -9999. -9999. -9999. # FREE_DRAIN_COEF ([-]) : Coefficient for free drainage at bottom, dimension nstm {} FREE_DRAIN_COEF = 1.0 1.0 1.0 # WATER_TO_INFILT ([mm]) : Water to be infiltrated on top of the soil {} WATER_TO_INFILT = 0.0 # EVAPNU_SOIL ([mm]) : Bare soil evap on each soil if not found in restart {} EVAPNU_SOIL = 0.0 # HYDROL_SNOW () : Initial snow mass if not found in restart {OK_SECHIBA} HYDROL_SNOW = 0.0 # HYDROL_SNOWAGE (***) : Initial snow age if not found in restart {OK_SECHIBA} HYDROL_SNOWAGE = 0.0 # HYDROL_SNOW_NOBIO ([mm]) : Initial snow amount on ice, lakes, etc. if not found in restart {OK_SECHIBA} HYDROL_SNOW_NOBIO = 0.0 # HYDROL_SNOW_NOBIO_AGE (***) : Initial snow age on ice, lakes, etc. if not found in restart {OK_SECHIBA} HYDROL_SNOW_NOBIO_AGE = 0.0 # HYDROL_QSV ([mm]) : Initial water on canopy if not found in restart {OK_SECHIBA} HYDROL_QSV = 0.0 # CWRR_NKS_N0 ([-]) : fitted value for relation log((n-n0)/(n_ref-n0)) {} CWRR_NKS_N0 = 0.0 # CWRR_NKS_POWER ([-]) : fitted value for relation log((n-n0)/(n_ref-n0)) {} CWRR_NKS_POWER = 0.0 # CWRR_AKS_A0 ([1/mm]) : fitted value for relation log((a-a0)/(a_ref-a0)) {} CWRR_AKS_A0 = 0.0 # CWRR_AKS_POWER ([-]) : fitted value for relation log((a-a0)/(a_ref-a0)) {} CWRR_AKS_POWER = 0.0 # KFACT_DECAY_RATE ([1/m]) : Factor for Ks decay with depth {} KFACT_DECAY_RATE = 2.0 # KFACT_STARTING_DEPTH ([m]) : Depth for compacted value of Ks {} KFACT_STARTING_DEPTH = 0.3 # KFACT_MAX ([-]) : Maximum Factor for Ks increase due to vegetation {} KFACT_MAX = 10.0 # KFACT_ROOT_CONST ([y/n]) : Set constant kfact_root in every soil layer. Otherwise kfact_root increase over soil depth in the rootzone. {} KFACT_ROOT_CONST = n # DT_ROUTING ([seconds]) : Time step of the routing scheme {RIVER_ROUTING} DT_ROUTING = 86400. # ROUTING_RIVERS ([-]) : Number of rivers {RIVER_ROUTING} ROUTING_RIVERS = 50 # DO_FLOODINFILT ([FLAG]) : Should floodplains reinfiltrate into the soil {RIVER_ROUTING} DO_FLOODINFILT = n # DO_SWAMPS ([FLAG]) : Should we include swamp parameterization {RIVER_ROUTING} DO_SWAMPS = n # DO_PONDS ([FLAG]) : Should we include ponds {RIVER_ROUTING} DO_PONDS = n # SLOW_TCST ([days]) : Time constant for the slow reservoir {RIVER_ROUTING } SLOW_TCST = 25.0 # FAST_TCST ([days]) : Time constant for the fast reservoir {RIVER_ROUTING } FAST_TCST = 3.0 # STREAM_TCST ([days]) : Time constant for the stream reservoir {RIVER_ROUTING} STREAM_TCST = 0.24 # FLOOD_TCST ([days]) : Time constant for the flood reservoir {RIVER_ROUTING} FLOOD_TCST = 4.0 # SWAMP_CST ([-]) : Fraction of the river that flows back to swamps {RIVER_ROUTING} SWAMP_CST = 0.2 # FLOOD_BETA ([-] ) : Parameter to fix the shape of the floodplain {RIVER_ROUTING} FLOOD_BETA = 2.0 # POND_BETAP ([-] ) : Ratio of the basin surface intercepted by ponds and the maximum surface of ponds {RIVER_ROUTING} POND_BETAP = 0.5 # FLOOD_CRI ([mm] ) : Potential height for which all the basin is flooded {DO_FLOODPLAINS or DO_PONDS} FLOOD_CRI = 2000. # POND_CRI ([mm] ) : Potential height for which all the basin is a pond {DO_FLOODPLAINS or DO_PONDS} POND_CRI = 2000. # MAX_LAKE_RESERVOIR ([kg/m2(routing area)] ) : Maximum limit of water in lake_reservoir {RIVER_ROUTING} MAX_LAKE_RESERVOIR = 7000 # RIVER_DESC ([FLAG]) : Writes out a description of the rivers {RIVER_ROUTING} RIVER_DESC = n # RIVER_DESC_FILE ([FILE]) : Filename in which we write the description of the rivers. If suffix is ".nc" a netCDF file is created {RIVER_DESC} RIVER_DESC_FILE = river_desc.nc # ROUTING_FILE ([FILE]) : Name of file which contains the routing information {RIVER_ROUTING} ROUTING_FILE = routing.nc # IRRIGATION_FILE ([FILE]) : Name of file which contains the map of irrigated areas {DO_IRRIGATION OR DO_FLOODPLAINS} IRRIGATION_FILE = floodplains.nc # EPS_CARBON ([%] ) : Allowed error on carbon stock {SPINUP_ANALYTIC} EPS_CARBON = 0.01 # SPINUP_PERIOD ([years] ) : Period to calulcate equilibrium during spinup analytic {SPINUP_ANALYTIC} SPINUP_PERIOD = -1 # FOREST_MANAGED ([FLAG]) : Forest management flag {OK_STOMATE} FOREST_MANAGED = 1 (unmanaged) # ([FLAG]) : Clearcut flag during spinup {OK_STOMATE} = 0 (not clearcut) # FORCESOIL_STEP_PER_YEAR ([days, months, year]) : Number of time steps per year for carbon spinup. {STOMATE_CFORCING_NAME and OK_STOMATE and OK_SOIL_CARBON_DISCRETIZATION} FORCESOIL_STEP_PER_YEAR = 365 (366, ...) # FORCESOIL_NB_YEAR ([years]) : Number of years saved for carbon spinup. {STOMATE_CFORCING_NAME and OK_STOMATE} FORCESOIL_NB_YEAR = 1 # CIRC_CLASS_DIST ([-]) : Probability distribution of the circumference classes {OK_STOMATE} CIRC_CLASS_DIST = 1 # ST_DIST ([-]) : The distribution for killing trees in self-thinning. {OK_STOMATE} ST_DIST = circ_class_dist # FROZEN_RESPIRATION_FUNC ([1]) : Method for soil decomposition function {OK_SOIL_CARBON_DISCRETIZATION } FROZEN_RESPIRATION_FUNC = 1 # STOMATE_DIAGPT ([-]) : Index of grid point for online diagnostics {OK_STOMATE} STOMATE_DIAGPT = 1 # XIOS_ORCHIDEE_OK ([FLAG]) : Use XIOS for writing diagnostics file {} XIOS_ORCHIDEE_OK = y # XIOS_INTERPOLATION ([FLAG]) : Actiave reading and intrepolation using XIOS {XIOS_ORCHIDEE_OK} XIOS_INTERPOLATION = n # XIOS_REMAP_OUTPUT ([FLAG]) : Actiave remaping of diagnostic output files to regular grid {XIOS_ORCHIDEE_OK .AND. grid_type=unstructured} XIOS_REMAP_OUTPUT = True # DT_STOMATE ([seconds]) : Time step of STOMATE and other slow processes {OK_STOMATE} DT_STOMATE = 86400. # FM_FILE ([FILE]) : Name of file from which the forest management map is to be read {OK_STOMATE} FM_FILE = FMmap.nc # FM_FILE ([FILE]) : Name of file to be read {OK_STOMATE} FM_FILE = FMmap.nc # LITTER_FILE ([FILE]) : Name of file from which the litter raking map is to be read {OK_STOMATE} LITTER_FILE = litter_map.nc # SPECIES_CHANGE_FILE ([FILE]) : Name of file from which the species change map is to be read {OK_STOMATE} SPECIES_CHANGE_FILE = replant_species.nc # FM_FILE ([FILE]) : Name of file from which the forest management map is to be read {OK_STOMATE} FM_FILE = FMmap.nc # organic_layer_thickness ([-]) : The thickness of organic layer {OK_SOIL_CARBON_DISCRETIZATION} organic_layer_thickness = 0.0 # OK_METHANE ([FLAG]) : Is Methanogenesis and methanotrophy taken into account? {OK_SOIL_CARBON_DISCRETIZATION} OK_METHANE = n # HEAT_CO2_ACT ([J/Kg C]) : specific heat of soil organic matter oxidation for active carbon {OK_SOIL_CARBON_DISCRETIZATION} HEAT_CO2_ACT = 40.0E6 # HEAT_CO2_SLO ([J/Kg C]) : specific heat of soil organic matter oxidation for slow carbon pool {OK_SOIL_CARBON_DISCRETIZATION} HEAT_CO2_SLO = 30.0E6 # HEAT_CO2_PAS ([J/Kg C]) : specific heat of soil organic matter oxidation for passive carbon pool {OK_SOIL_CARBON_DISCRETIZATION} HEAT_CO2_PAS = 10.0E6 # TAU_CH4_TROPH ([s]) : time constant of methanetrophy {OK_SOIL_CARBON_DISCRETIZATION} TAU_CH4_TROPH = 432000 # TAU_CH4_GEN_RATIO ([-]) : time constant of methanogenesis (ratio to that of oxic) {OK_SOIL_CARBON_DISCRETIZATION} TAU_CH4_GEN_RATIO = 9.0 # O2_SEUIL_MGEN ([g/m3]) : oxygen concentration below which there is anoxy {OK_SOIL_CARBON_DISCRETIZATION} O2_SEUIL_MGEN = 3.0 # HEAT_CH4_GEN ([J/kgC]) : specific heat of methanogenesis {OK_SOIL_CARBON_DISCRETIZATION} HEAT_CH4_GEN = 0 # HEAT_CH4_TROPH ([J/kgC]) : specific heat of methanotrophy {OK_SOIL_CARBON_DISCRETIZATION} HEAT_CH4_TROPH = 0 # O2_LIMIT ([flag]) : O2 limitation taken into account {OK_SOIL_CARBON_DISCRETIZATION} O2_LIMIT = n # cryoturbate ([flag]) : Do we allow for cyoturbation? {OK_SOIL_CARBON_DISCRETIZATION} cryoturbate = y # cryoturbation_diff_k_in ([m2/year]) : diffusion constant for cryoturbation {OK_SOIL_CARBON_DISCRETIZATION} cryoturbation_diff_k_in = 0.001 # bioturbation_diff_k_in ([m2/year]) : diffusion constant for bioturbation {OK_SOIL_CARBON_DISCRETIZATION} bioturbation_diff_k_in = 0.0 # MG_useallCpools ([flag]) : Do we allow all three C pools to feed methanogenesis? {OK_SOIL_CARBON_DISCRETIZATION} MG_useallCpools = y # max_shum_value ([-]) : maximum saturation degree on the thermal axes {OK_SOIL_CARBON_DISCRETIZATION} max_shum_value = 1 # reset_yedoma_carbon ([flag]) : Do we reset carbon concentrations for yedoma region? {OK_SOIL_CARBON_DISCRETIZATION} reset_yedoma_carbon = n # yedoma_map_filename ([]) : The filename for yedoma map {OK_SOIL_CARBON_DISCRETIZATION} yedoma_map_filename = yedoma_map.nc # yedoma_depth ([m]) : The depth for soil carbon in yedoma {OK_SOIL_CARBON_DISCRETIZATION} yedoma_depth = 20 # deepC_a_init ([gC/?]) : Carbon concentration for active soil C pool in yedoma {OK_SOIL_CARBON_DISCRETIZATION} deepC_a_init = 1790.1 # deepC_s_init ([gC/?]) : Carbon concentration for slow soil C pool in yedoma {OK_SOIL_CARBON_DISCRETIZATION} deepC_s_init = 14360.8 # deepC_p_init ([gC/>]) : Carbon concentration for passive soil C pool in yedoma {OK_SOIL_CARBON_DISCRETIZATION} deepC_p_init = 1436 # newaltcalc ([flag]) : calculate alt ? {OK_SOIL_CARBON_DISCRETIZATION} newaltcalc = n # new_carbinput_intdepzlit ([flag]) : ??? {OK_SOIL_CARBON_DISCRETIZATION} new_carbinput_intdepzlit = n # correct_carboninput_vertprof ([flag]) : ??? {OK_SOIL_CARBON_DISCRETIZATION} correct_carboninput_vertprof = n # use_new_cryoturbation ([flag]) : use new scheme to calculate cryoturbation {OK_SOIL_CARBON_DISCRETIZATION} use_new_cryoturbation = n # cryoturbation_method ([]) : Which method should be used to calculate cryoturbation { OK_SOIL_CARBON_DISCRETIZATION } cryoturbation_method = 1 # max_cryoturb_alt ([???]) : ??? {OK_SOIL_CARBON_DISCRETIZATION} max_cryoturb_alt = 1 # min_cryoturb_alt ([???]) : ??? {OK_SOIL_CARBON_DISCRETIZATION} min_cryoturb_alt = 1 # reset_fixed_cryoturbation_depth ([flag]) : reset fixed cryoturbation depth {OK_SOIL_CARBON_DISCRETIZATION} reset_fixed_cryoturbation_depth = n # use_fixed_cryoturbation_depth ([flag]) : use fixed cryoturbation depth {OK_SOIL_CARBON_DISCRETIZATION} use_fixed_cryoturbation_depth = n # bioturbation_depth () : maximum bioturbation depth {OK_SOIL_CARBON_DISCRETIZATION} bioturbation_depth = 2