source: tags/ORCHIDEE_2_0/ORCHIDEE/src_parameters/constantes_soil_var.f90 @ 6392

Last change on this file since 6392 was 5034, checked in by josefine.ghattas, 6 years ago

Update defalut value for SECHIBA_QSINT to 0.02 which is the value used in coupled simulations. See ticket #414

File size: 18.1 KB
Line 
1! =================================================================================================================================
2! MODULE        : constantes_soil_var
3!
4! CONTACT       : orchidee-help _at_ listes.ipsl.fr
5!
6! LICENCE       : IPSL (2006)
7! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC
8!
9!>\BRIEF         "constantes_soil_var" module contains the parameters related to soil and hydrology.
10!!
11!!\n DESCRIPTION : The non saturated hydraulic properties are defined from the 
12!!                 formulations of van Genuchten (1980) and Mualem (1976), combined as 
13!!                 explained in d'Orgeval (2006). \n
14!!                 The related parameters for main soil textures (coarse, medium and fine if "fao",
15!!                 12 USDA testures if "usda") come from Carsel and Parrish (1988).
16!!
17!! RECENT CHANGE(S): Sonke Zaehle changed hcrit_litter value according to Shilong Piao
18!!                   from 0.03 to 0.08, 080806
19!!                   AD: mcw and mcf depend now on soil texture, based on Van Genuchten equations
20!!                   and classical matric potential values, and pcent is adapted
21!!
22!! REFERENCE(S) :
23!!- Roger A.Pielke, (2002), Mesoscale meteorological modeling, Academic Press Inc.
24!!- Polcher, J., Laval, K., DÃŒmenil, L., Lean, J., et Rowntree, P. R. (1996).
25!! Comparing three land surface schemes used in general circulation models. Journal of Hydrology, 180(1-4), 373--394.
26!!- Ducharne, A., Laval, K., et Polcher, J. (1998). Sensitivity of the hydrological cycle
27!! to the parametrization of soil hydrology in a GCM. Climate Dynamics, 14, 307--327.
28!!- Rosnay, P. de et Polcher, J. (1999). Modelling root water uptake in a complex land surface
29!! scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2(2/3), 239--255.
30!!- d'Orgeval, T. et Polcher, J. (2008). Impacts of precipitation events and land-use changes
31!! on West African river discharges during the years 1951--2000. Climate Dynamics, 31(2), 249--262.
32!!- Carsel, R. and Parrish, R.: Developing joint probability distributions of soil water
33!! retention characteristics, Water Resour. Res.,24, 755–769, 1988.
34!!- Mualem Y (1976) A new model for predicting the hydraulic conductivity 
35!! of unsaturated porous media. Water Resources Research 12(3):513-522
36!!- Van Genuchten M (1980) A closed-form equation for predicting the 
37!! hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 44(5):892-898
38!!
39!! SVN          :
40!! $HeadURL: $
41!! $Date: $
42!! $Revision: $
43!! \n
44!_ ================================================================================================================================
45
46MODULE constantes_soil_var
47
48  USE defprec
49  USE vertical_soil_var
50
51  IMPLICIT NONE
52
53  LOGICAL, SAVE             :: check_cwrr          !! To check the water balance in hydrol (true/false)
54!$OMP THREADPRIVATE(check_cwrr)
55  LOGICAL, SAVE             :: check_cwrr2         !! Calculate diagnostics to check the water balance in hydrol (true/false)
56!$OMP THREADPRIVATE(check_cwrr2)
57  LOGICAL, SAVE             :: check_waterbal      !! The check the water balance (true/false)
58!$OMP THREADPRIVATE(check_waterbal)
59
60
61  !! Number of soil classes
62
63  INTEGER(i_std), PARAMETER :: ntext=3                  !! Number of soil textures (Silt, Sand, Clay)
64  INTEGER(i_std), PARAMETER :: nstm=3                   !! Number of soil tiles (unitless)
65  CHARACTER(LEN=30)         :: soil_classif             !! Type of classification used for the map of soil types.
66                                                        !! It must be consistent with soil file given by
67                                                        !! SOILCLASS_FILE parameter.
68!$OMP THREADPRIVATE(soil_classif)
69  INTEGER(i_std), PARAMETER :: nscm_fao=3               !! For FAO Classification (unitless)
70  INTEGER(i_std), PARAMETER :: nscm_usda=12             !! For USDA Classification (unitless)
71  INTEGER(i_std), SAVE      :: nscm=nscm_fao            !! Default value for nscm
72!$OMP THREADPRIVATE(nscm)
73
74  !! Parameters for soil thermodynamics
75
76  REAL(r_std), SAVE :: so_capa_dry = 1.80e+6            !! Dry soil Heat capacity of soils
77                                                        !! @tex $(J.m^{-3}.K^{-1})$ @endtex
78!$OMP THREADPRIVATE(so_capa_dry)
79  REAL(r_std), SAVE :: so_cond_dry = 0.40               !! Dry soil Thermal Conductivity of soils
80                                                        !! @tex $(W.m^{-2}.K^{-1})$ @endtex
81!$OMP THREADPRIVATE(so_cond_dry)
82  REAL(r_std), SAVE :: so_capa_wet = 3.03e+6            !! Wet soil Heat capacity of soils
83                                                        !! @tex $(J.m^{-3}.K^{-1})$ @endtex
84!$OMP THREADPRIVATE(so_capa_wet)
85  REAL(r_std), SAVE :: so_cond_wet = 1.89               !! Wet soil Thermal Conductivity of soils
86                                                        !! @tex $(W.m^{-2}.K^{-1})$ @endtex
87!$OMP THREADPRIVATE(so_cond_wet)
88  REAL(r_std), SAVE :: sn_cond = 0.3                    !! Thermal Conductivity of snow
89                                                        !! @tex $(W.m^{-2}.K^{-1})$ @endtex 
90!$OMP THREADPRIVATE(sn_cond)
91  REAL(r_std), SAVE :: sn_dens = 330.0                  !! Snow density for the soil thermodynamics
92                                                        !! (kg/m3)
93!$OMP THREADPRIVATE(sn_dens)
94  REAL(r_std), SAVE :: sn_capa                          !! Heat capacity for snow
95                                                        !! @tex $(J.m^{-3}.K^{-1})$ @endtex
96!$OMP THREADPRIVATE(sn_capa)
97  REAL(r_std), SAVE :: water_capa = 4.18e+6             !! Water heat capacity
98                                                        !! @tex $(J.m^{-3}.K^{-1})$ @endtex
99!$OMP THREADPRIVATE(water_capa)
100  REAL(r_std), SAVE :: brk_capa = 2.0e+6                !! Heat capacity of generic rock
101                                                        !! @tex $(J.m^{-3}.K^{-1})$ @endtex
102!$OMP THREADPRIVATE(brk_capa)
103  REAL(r_std), SAVE :: brk_cond = 3.0                   !! Thermal conductivity of saturated granitic rock
104                                                        !! @tex $(W.m^{-1}.K^{-1})$ @endtex
105!$OMP THREADPRIVATE(brk_cond)
106
107
108  !! Specific parameters for the Choisnel hydrology
109
110  REAL(r_std), SAVE :: min_drain = 0.001                !! Diffusion constant for the slow regime
111                                                        !! (This is for the diffusion between reservoirs)
112                                                        !! @tex $(kg.m^{-2}.dt^{-1})$ @endtex
113!$OMP THREADPRIVATE(min_drain)
114  REAL(r_std), SAVE :: max_drain = 0.1                  !! Diffusion constant for the fast regime
115                                                        !! @tex $(kg.m^{-2}.dt^{-1})$ @endtex
116!$OMP THREADPRIVATE(max_drain)
117  REAL(r_std), SAVE :: exp_drain = 1.5                  !! The exponential in the diffusion law (unitless)
118!$OMP THREADPRIVATE(exp_drain)
119  REAL(r_std), SAVE :: qsintcst = 0.02                  !! Transforms leaf area index into size of interception reservoir
120                                                        !! (unitless)
121!$OMP THREADPRIVATE(qsintcst)
122  REAL(r_std), SAVE :: mx_eau_nobio = 150.              !! Volumetric available soil water capacity in nobio fractions
123                                                        !! @tex $(kg.m^{-3} of soil)$ @endtex
124!$OMP THREADPRIVATE(mx_eau_nobio)
125  REAL(r_std), SAVE :: rsol_cste = 33.E3                !! Constant in the computation of resistance for bare soil evaporation
126                                                        !! @tex $(s.m^{-2})$ @endtex
127!$OMP THREADPRIVATE(rsol_cste)
128  REAL(r_std), SAVE :: hcrit_litter=0.08_r_std          !! Scaling depth for litter humidity (m)
129!$OMP THREADPRIVATE(hcrit_litter)
130
131
132  !! Parameters specific for the CWRR hydrology.
133
134  !!  1. Parameters for FAO Classification
135
136  !! Parameters for soil type distribution
137
138  REAL(r_std),DIMENSION(nscm_fao),SAVE :: soilclass_default_fao = &   !! Default soil texture distribution for fao :
139 & (/ 0.28, 0.52, 0.20 /)                                             !! in the following order : COARSE, MEDIUM, FINE (unitless)
140!$OMP THREADPRIVATE(soilclass_default_fao)
141
142  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: nvan_fao = &            !! Van Genuchten coefficient n (unitless)
143 & (/ 1.89_r_std, 1.56_r_std, 1.31_r_std /)                             !  RK: 1/n=1-m
144
145  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: avan_fao = &            !! Van Genuchten coefficient a
146  & (/ 0.0075_r_std, 0.0036_r_std, 0.0019_r_std /)                     !!  @tex $(mm^{-1})$ @endtex
147
148  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcr_fao = &             !! Residual volumetric water content
149 & (/ 0.065_r_std, 0.078_r_std, 0.095_r_std /)                         !!  @tex $(m^{3} m^{-3})$ @endtex
150
151  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcs_fao = &             !! Saturated volumetric water content
152 & (/ 0.41_r_std, 0.43_r_std, 0.41_r_std /)                            !!  @tex $(m^{3} m^{-3})$ @endtex
153
154  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: ks_fao = &              !! Hydraulic conductivity at saturation
155 & (/ 1060.8_r_std, 249.6_r_std, 62.4_r_std /)                         !!  @tex $(mm d^{-1})$ @endtex
156
157! The max available water content is smaller when mcw and mcf depend on texture,
158! so we increase pcent to a classical value of 80%
159  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: pcent_fao = &           !! Fraction of saturated volumetric soil moisture
160 & (/ 0.8_r_std, 0.8_r_std, 0.8_r_std /)                               !! above which transpir is max (0-1, unitless)
161
162  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: free_drain_max_fao = &  !! Max=default value of the permeability coeff 
163 & (/ 1.0_r_std, 1.0_r_std, 1.0_r_std /)                               !! at the bottom of the soil (0-1, unitless)
164
165!! We use the VG relationships to derive mcw and mcf depending on soil texture
166!! assuming that the matric potential for wilting point and field capacity is
167!! -150m (permanent WP) and -3.3m respectively
168!! (-1m for FC for the three sandy soils following Richards, L.A. and Weaver, L.R. (1944)
169!! Note that mcw GE mcr
170  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcf_fao = &             !! Volumetric water content at field capacity
171 & (/ 0.1218_r_std, 0.1654_r_std, 0.2697_r_std /)                      !!  @tex $(m^{3} m^{-3})$ @endtex
172
173  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcw_fao = &             !! Volumetric water content at wilting point
174 & (/ 0.0657_r_std,  0.0884_r_std, 0.1496_r_std/)                      !!  @tex $(m^{3} m^{-3})$ @endtex
175
176  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mc_awet_fao = &         !! Vol. wat. cont. above which albedo is cst
177 & (/ 0.25_r_std, 0.25_r_std, 0.25_r_std /)                            !!  @tex $(m^{3} m^{-3})$ @endtex
178
179  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mc_adry_fao = &         !! Vol. wat. cont. below which albedo is cst
180 & (/ 0.1_r_std, 0.1_r_std, 0.1_r_std /)                               !!  @tex $(m^{3} m^{-3})$ @endtex
181
182  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: SMCMAX_fao = &          !! porosity
183 & (/ 0.41_r_std, 0.43_r_std, 0.41_r_std /)                            !! & (/ 0.434_r_std, 0.439_r_std, 0.465_r_std /) !!noah lsm
184
185  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: QZ_fao = &              !! QUARTZ CONTENT (SOIL TYPE DEPENDENT)
186 & (/ 0.60_r_std, 0.40_r_std, 0.35_r_std /)                            !! Peters et al [1998]
187
188  REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: so_capa_dry_ns_fao = &  !! Dry soil Heat capacity of soils,J.m^{-3}.K^{-1}
189 & (/ 1.34e+6_r_std, 1.21e+6_r_std, 1.23e+6_r_std /)                   !! Pielke [2002, 2013]
190
191  !!  2. Parameters for USDA Classification
192
193  !! Parameters for soil type distribution :
194  !! Sand, Loamy Sand, Sandy Loam, Silt Loam, Silt, Loam, Sandy Clay Loam, Silty Clay Loam, Clay Loam, Sandy Clay, Silty Clay, Clay
195
196  REAL(r_std),DIMENSION(nscm_usda),SAVE :: soilclass_default_usda = &    !! Default soil texture distribution in the above order :
197 & (/ 0.28, 0.52, 0.20, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)   !! Thus different from "FAO"'s COARSE, MEDIUM, FINE
198                                                                         !! which have indices 3,6,9 in the 12-texture vector
199  !$OMP THREADPRIVATE(soilclass_default_usda)
200
201  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: nvan_usda = &            !! Van Genuchten coefficient n (unitless)
202 & (/ 2.68_r_std, 2.28_r_std, 1.89_r_std, 1.41_r_std, &                   !  RK: 1/n=1-m
203 &    1.37_r_std, 1.56_r_std, 1.48_r_std, 1.23_r_std, &
204 &    1.31_r_std, 1.23_r_std, 1.09_r_std, 1.09_r_std /)
205
206  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: avan_usda = &            !! Van Genuchten coefficient a
207 & (/ 0.0145_r_std, 0.0124_r_std, 0.0075_r_std, 0.0020_r_std, &          !!  @tex $(mm^{-1})$ @endtex
208 &    0.0016_r_std, 0.0036_r_std, 0.0059_r_std, 0.0010_r_std, &
209 &    0.0019_r_std, 0.0027_r_std, 0.0005_r_std, 0.0008_r_std /)
210
211  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcr_usda = &             !! Residual volumetric water content
212 & (/ 0.045_r_std, 0.057_r_std, 0.065_r_std, 0.067_r_std, &              !!  @tex $(m^{3} m^{-3})$ @endtex
213 &    0.034_r_std, 0.078_r_std, 0.100_r_std, 0.089_r_std, &
214 &    0.095_r_std, 0.100_r_std, 0.070_r_std, 0.068_r_std /)
215
216  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcs_usda = &             !! Saturated volumetric water content
217 & (/ 0.43_r_std, 0.41_r_std, 0.41_r_std, 0.45_r_std, &                  !!  @tex $(m^{3} m^{-3})$ @endtex
218 &    0.46_r_std, 0.43_r_std, 0.39_r_std, 0.43_r_std, &
219 &    0.41_r_std, 0.38_r_std, 0.36_r_std, 0.38_r_std /)
220
221  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: ks_usda = &              !! Hydraulic conductivity at saturation
222 & (/ 7128.0_r_std, 3501.6_r_std, 1060.8_r_std, 108.0_r_std, &           !!  @tex $(mm d^{-1})$ @endtex
223 &    60.0_r_std, 249.6_r_std, 314.4_r_std, 16.8_r_std, &
224 &    62.4_r_std, 28.8_r_std, 4.8_r_std, 48.0_r_std /)
225
226  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: pcent_usda = &           !! Fraction of saturated volumetric soil moisture
227 & (/ 0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std, &                      !! above which transpir is max (0-1, unitless)
228 &    0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std, &
229 &    0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std /)
230
231  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: free_drain_max_usda = &  !! Max=default value of the permeability coeff
232 & (/ 1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std, &                      !! at the bottom of the soil (0-1, unitless)
233 &    1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std, &
234 &    1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std /)
235
236  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcf_usda = &             !! Volumetric water content at field capacity
237 & (/ 0.0493_r_std, 0.0710_r_std, 0.1218_r_std, 0.2402_r_std, &          !!  @tex $(m^{3} m^{-3})$ @endtex
238      0.2582_r_std, 0.1654_r_std, 0.1695_r_std, 0.3383_r_std, &
239      0.2697_r_std, 0.2672_r_std, 0.3370_r_std, 0.3469_r_std /)
240 
241  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcw_usda = &             !! Volumetric water content at wilting point
242 & (/ 0.0450_r_std, 0.0570_r_std, 0.0657_r_std, 0.1039_r_std, &          !!  @tex $(m^{3} m^{-3})$ @endtex
243      0.0901_r_std, 0.0884_r_std, 0.1112_r_std, 0.1967_r_std, &
244      0.1496_r_std, 0.1704_r_std, 0.2665_r_std, 0.2707_r_std /)
245
246  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mc_awet_usda = &         !! Vol. wat. cont. above which albedo is cst
247 & (/ 0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std, &                  !!  @tex $(m^{3} m^{-3})$ @endtex
248 &    0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std, &
249 &    0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std /)
250
251  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mc_adry_usda = &         !! Vol. wat. cont. below which albedo is cst
252 & (/ 0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std, &                      !!  @tex $(m^{3} m^{-3})$ @endtex
253 &    0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std, &
254 &    0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std /)
255
256  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: SMCMAX_usda = &          !! porosity
257 & (/ 0.43_r_std, 0.41_r_std, 0.41_r_std, 0.45_r_std, &
258 &    0.46_r_std, 0.43_r_std, 0.39_r_std, 0.43_r_std, &
259 &    0.41_r_std, 0.38_r_std, 0.36_r_std, 0.38_r_std /)
260 
261  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: QZ_usda = &              !! QUARTZ CONTENT (SOIL TYPE DEPENDENT)
262 & (/ 0.92_r_std, 0.82_r_std, 0.60_r_std, 0.25_r_std, &
263 &    0.10_r_std, 0.40_r_std, 0.60_r_std, 0.10_r_std, &
264 &    0.35_r_std, 0.52_r_std, 0.10_r_std, 0.25_r_std /)                  !! Peters et al [1998]
265
266  REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: so_capa_dry_ns_usda = &  !! Dry soil Heat capacity of soils,J.m^{-3}.K^{-1}
267 & (/ 1.47e+6_r_std, 1.41e+6_r_std, 1.34e+6_r_std, 1.27e+6_r_std, &
268 &    1.21e+6_r_std, 1.21e+6_r_std, 1.18e+6_r_std, 1.32e+6_r_std, &
269 &    1.23e+6_r_std, 1.18e+6_r_std, 1.15e+6_r_std, 1.09e+6_r_std /)      !! Pielke [2002, 2013]
270 
271  !! Parameters for the numerical scheme used by CWRR
272
273  INTEGER(i_std), PARAMETER :: imin = 1                                 !! Start for CWRR linearisation (unitless)
274  INTEGER(i_std), PARAMETER :: nbint = 50                               !! Number of interval for CWRR linearisation (unitless)
275  INTEGER(i_std), PARAMETER :: imax = nbint+1                           !! Number of points for CWRR linearisation (unitless)
276  REAL(r_std), PARAMETER    :: w_time = 1.0_r_std                       !! Time weighting for CWRR numerical integration (unitless)
277
278
279  !! Variables related to soil freezing, in thermosoil :
280  LOGICAL, SAVE        :: ok_Ecorr                    !! Flag for energy conservation correction
281  LOGICAL, SAVE        :: ok_freeze_thermix           !! Flag to activate thermal part of the soil freezing scheme
282  LOGICAL, SAVE        :: read_reftemp                !! Flag to initialize soil temperature using climatological temperature
283  REAL(r_std), SAVE    :: poros                       !! Soil porosity (from USDA classification, mean value)(-)
284  REAL(r_std), SAVE    :: fr_dT                       !! Freezing window (K)
285
286  !! Variables related to soil freezing, in hydrol :
287  LOGICAL, SAVE        :: ok_freeze_cwrr              !! CWRR freezing scheme by I. Gouttevin
288  LOGICAL, SAVE        :: ok_thermodynamical_freezing !! Calculate frozen fraction thermodynamically
289
290 
291END MODULE constantes_soil_var
Note: See TracBrowser for help on using the repository browser.