1 | !! |
---|
2 | !! This module computes hydrologic snow processes on continental points. |
---|
3 | !! |
---|
4 | MODULE explicitsnow |
---|
5 | USE ioipsl_para |
---|
6 | USE constantes_soil |
---|
7 | USE constantes |
---|
8 | USE pft_parameters |
---|
9 | USE qsat_moisture |
---|
10 | USE sechiba_io |
---|
11 | |
---|
12 | IMPLICIT NONE |
---|
13 | |
---|
14 | ! Public routines : |
---|
15 | PRIVATE |
---|
16 | PUBLIC :: explicitsnow_main, explicitsnow_initialize, explicitsnow_finalize |
---|
17 | |
---|
18 | CONTAINS |
---|
19 | |
---|
20 | !================================================================================================================================ |
---|
21 | !! SUBROUTINE : explicitsnow_initialize |
---|
22 | !! |
---|
23 | !>\BRIEF Read variables for explictsnow module from restart file |
---|
24 | !! |
---|
25 | !! DESCRIPTION : |
---|
26 | !! |
---|
27 | !! \n |
---|
28 | !_ |
---|
29 | !================================================================================================================================ |
---|
30 | SUBROUTINE explicitsnow_initialize( kjit, kjpindex, rest_id, snowrho, & |
---|
31 | snowtemp, snowdz, snowheat, snowgrain) |
---|
32 | |
---|
33 | !! 0.1 Input variables |
---|
34 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
35 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
36 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier |
---|
37 | |
---|
38 | !! 0.2 Output variables |
---|
39 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowrho !! Snow density |
---|
40 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowtemp !! Snow temperature |
---|
41 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowdz !! Snow layer thickness |
---|
42 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowheat !! Snow heat content |
---|
43 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowgrain !! Snow grainsize |
---|
44 | |
---|
45 | |
---|
46 | !! 1. Read from restart file |
---|
47 | CALL restget_p (rest_id, 'snowrho', nbp_glo, nsnow, 1, kjit,.TRUE.,snowrho, "gather", nbp_glo, index_g) |
---|
48 | CALL setvar_p (snowrho, val_exp, 'Snow Density profile', xrhosmin) |
---|
49 | |
---|
50 | CALL restget_p (rest_id, 'snowtemp', nbp_glo, nsnow, 1, kjit,.TRUE.,snowtemp, "gather", nbp_glo, index_g) |
---|
51 | CALL setvar_p (snowtemp, val_exp, 'Snow Temperature profile', tp_00) |
---|
52 | |
---|
53 | CALL restget_p (rest_id, 'snowdz', nbp_glo, nsnow, 1, kjit,.TRUE.,snowdz, "gather", nbp_glo, index_g) |
---|
54 | CALL setvar_p (snowdz, val_exp, 'Snow depth profile', 0.0) |
---|
55 | |
---|
56 | CALL restget_p (rest_id, 'snowheat', nbp_glo, nsnow, 1, kjit,.TRUE.,snowheat, "gather", nbp_glo, index_g) |
---|
57 | CALL setvar_p (snowheat, val_exp, 'Snow Heat profile', 0.0) |
---|
58 | |
---|
59 | CALL restget_p (rest_id, 'snowgrain', nbp_glo, nsnow, 1, kjit,.TRUE.,snowgrain, "gather", nbp_glo, index_g) |
---|
60 | CALL setvar_p (snowgrain, val_exp, 'Snow grain profile', 0.0) |
---|
61 | |
---|
62 | END SUBROUTINE explicitsnow_initialize |
---|
63 | |
---|
64 | |
---|
65 | !================================================================================================================================ |
---|
66 | !! SUBROUTINE : explicitsnow_main |
---|
67 | !! |
---|
68 | !>\BRIEF |
---|
69 | !! |
---|
70 | !! DESCRIPTION : |
---|
71 | !! |
---|
72 | !! RECENT CHANGE(S) : None |
---|
73 | !! |
---|
74 | !! MAIN OUTPUT VARIABLE(S): None |
---|
75 | !! |
---|
76 | !! REFERENCE(S) : |
---|
77 | !! |
---|
78 | !! FLOWCHART : None |
---|
79 | !! \n |
---|
80 | !_ |
---|
81 | !================================================================================================================================ |
---|
82 | SUBROUTINE explicitsnow_main(kjpindex, precip_rain, precip_snow, temp_air, pb, & ! in |
---|
83 | u, v, temp_sol_new, soilcap, pgflux, & ! in |
---|
84 | frac_nobio, totfrac_nobio,gtemp, & ! in |
---|
85 | lambda_snow, cgrnd_snow, dgrnd_snow, & ! in |
---|
86 | vevapsno, snow_age, snow_nobio_age,snow_nobio, snowrho, & ! inout |
---|
87 | snowgrain, snowdz, snowtemp, snowheat, snow, & ! inout |
---|
88 | temp_sol_add, & ! inout |
---|
89 | snowliq, subsnownobio, grndflux, snowmelt, tot_melt, & ! output |
---|
90 | subsinksoil ) ! output |
---|
91 | |
---|
92 | |
---|
93 | !! 0. Variable and parameter declaration |
---|
94 | |
---|
95 | !! 0.1 Input variables |
---|
96 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
97 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: precip_rain !! Rainfall |
---|
98 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: precip_snow !! Snowfall |
---|
99 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: temp_air !! Air temperature |
---|
100 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: pb !! Surface pressure |
---|
101 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: u,v !! Horizontal wind speed |
---|
102 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: temp_sol_new !! Surface temperature |
---|
103 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: soilcap !! Soil capacity |
---|
104 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: pgflux !! Net energy into snowpack |
---|
105 | REAL(r_std), DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of continental ice, lakes, ... |
---|
106 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of continental ice+lakes+ ... |
---|
107 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: gtemp !! First soil layer temperature |
---|
108 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: lambda_snow !! Coefficient of the linear extrapolation of surface temperature |
---|
109 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT (in) :: cgrnd_snow !! Integration coefficient for snow numerical scheme |
---|
110 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT (in) :: dgrnd_snow !! Integration coefficient for snow numerical scheme |
---|
111 | |
---|
112 | |
---|
113 | !! 0.2 Output fields |
---|
114 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(out) :: snowliq !! Snow liquid content (m) |
---|
115 | REAL(r_std), DIMENSION (kjpindex,nnobio), INTENT(out) :: subsnownobio !! Sublimation of snow on other surface types (ice, lakes, ...) |
---|
116 | REAL(r_std), DIMENSION (kjpindex), INTENT(out) :: grndflux !! Net flux into soil [W/m2] |
---|
117 | REAL(r_std), DIMENSION (kjpindex), INTENT(out) :: snowmelt !! Snow melt |
---|
118 | REAL(r_std), DIMENSION (kjpindex), INTENT(out) :: tot_melt !! Total melt from ice and snow |
---|
119 | REAL(r_std), DIMENSION (kjpindex), INTENT(out) :: subsinksoil !! Excess of sublimation as a sink for the soil |
---|
120 | |
---|
121 | !! 0.3 Modified fields |
---|
122 | REAL(r_std), DIMENSION (kjpindex), INTENT(inout) :: vevapsno !! Snow evaporation @tex ($kg m^{-2}$) @endtex |
---|
123 | REAL(r_std), DIMENSION (kjpindex), INTENT(inout) :: snow_age !! Snow age |
---|
124 | REAL(r_std), DIMENSION (kjpindex,nnobio), INTENT(inout) :: snow_nobio !! Ice water balance |
---|
125 | REAL(r_std), DIMENSION (kjpindex,nnobio), INTENT(inout) :: snow_nobio_age !! Snow age on ice, lakes, ... |
---|
126 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowrho !! Snow density |
---|
127 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowgrain !! Snow grainsize |
---|
128 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowdz !! Snow layer thickness |
---|
129 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowtemp !! Snow temperature |
---|
130 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowheat !! Snow heat content |
---|
131 | REAL(r_std), DIMENSION (kjpindex), INTENT(inout) :: snow !! Snow mass [Kg/m^2] |
---|
132 | REAL(r_std), DIMENSION (kjpindex), INTENT(inout) :: temp_sol_add !! Additional energy to melt snow for snow ablation case (K) |
---|
133 | |
---|
134 | |
---|
135 | !! 0.4 Local declaration |
---|
136 | INTEGER(i_std) :: ji, iv, jj,m,jv |
---|
137 | REAL(r_std),DIMENSION (kjpindex) :: snow_depth_tmp |
---|
138 | REAL(r_std),DIMENSION (kjpindex) :: snowmelt_from_maxmass |
---|
139 | REAL(r_std) :: snowdzm1 |
---|
140 | REAL(r_std), DIMENSION (kjpindex) :: thrufal !! Water leaving snow pack [kg/m2/s] |
---|
141 | REAL(r_std), DIMENSION (kjpindex) :: d_age !! Snow age change |
---|
142 | REAL(r_std), DIMENSION (kjpindex) :: xx !! Temporary |
---|
143 | REAL(r_std), DIMENSION (kjpindex) :: snowmelt_tmp,snowmelt_ice,icemelt,temp_sol_new_old |
---|
144 | REAL(r_std), DIMENSION (kjpindex,nsnow) :: snowdz_old |
---|
145 | REAL(r_std), DIMENSION (kjpindex) :: ZLIQHEATXS |
---|
146 | REAL(r_std), DIMENSION (kjpindex) :: ZSNOWEVAPS, ZSNOWDZ,subsnowveg |
---|
147 | REAL(r_std) :: maxmass_snowdepth |
---|
148 | REAL(r_std), DIMENSION (kjpindex,nsnow) :: WSNOWDZ,SMASS |
---|
149 | REAL(r_std), DIMENSION (kjpindex) :: SMASSC,snowacc |
---|
150 | INTEGER(i_std) :: locjj |
---|
151 | REAL(r_std) :: grndflux_tmp |
---|
152 | REAL(r_std), DIMENSION (nsnow) :: snowtemp_tmp |
---|
153 | REAL(r_std) :: s2flux_tmp,fromsoilflux |
---|
154 | REAL(r_std), DIMENSION (kjpindex,nsnow) :: pcapa_snow |
---|
155 | REAL(r_std), DIMENSION (kjpindex) :: psnowhmass |
---|
156 | REAL(r_std), PARAMETER :: XP00 = 1.E5 |
---|
157 | |
---|
158 | |
---|
159 | !! 1. Initialization |
---|
160 | |
---|
161 | temp_sol_new_old = temp_sol_new |
---|
162 | DO ji=1,kjpindex |
---|
163 | snowmelt_ice(ji) = zero |
---|
164 | icemelt(ji) = zero |
---|
165 | tot_melt(ji) = zero |
---|
166 | snowmelt(ji) = zero |
---|
167 | ENDDO |
---|
168 | |
---|
169 | !! 2. on Vegetation |
---|
170 | ! 2.1 Snow fall |
---|
171 | CALL explicitsnow_fall(kjpindex,precip_snow,temp_air,u,v,totfrac_nobio,snowrho,snowdz,& |
---|
172 | & snowheat,snowgrain,snowtemp,psnowhmass) |
---|
173 | |
---|
174 | ! 2.2 calculate the new snow discretization |
---|
175 | snow_depth_tmp(:) = SUM(snowdz(:,:),2) |
---|
176 | |
---|
177 | snowdz_old = snowdz |
---|
178 | |
---|
179 | CALL explicitsnow_levels(kjpindex,snow_depth_tmp, snowdz) |
---|
180 | |
---|
181 | ! 2.3 Snow heat redistribution |
---|
182 | CALL explicitsnow_transf(kjpindex,snowdz_old,snowdz,snowrho,snowheat,snowgrain) |
---|
183 | |
---|
184 | ! 2.4 Diagonize water portion of the snow from snow heat content: |
---|
185 | DO ji=1, kjpindex |
---|
186 | IF (SUM(snowdz(ji,:)) .GT. 0.0) THEN |
---|
187 | snowtemp(ji,:) = snow3ltemp_1d(snowheat(ji,:),snowrho(ji,:),snowdz(ji,:)) |
---|
188 | snowliq(ji,:) = snow3lliq_1d(snowheat(ji,:),snowrho(ji,:),snowdz(ji,:),snowtemp(ji,:)) |
---|
189 | ELSE |
---|
190 | snowliq(ji,:) = zero |
---|
191 | snowtemp(ji,:) = tp_00 |
---|
192 | ENDIF |
---|
193 | END DO |
---|
194 | |
---|
195 | ! 2.5 snow compaction |
---|
196 | CALL explicitsnow_compactn(kjpindex,snowtemp,snowrho,snowdz) |
---|
197 | ! Update snow heat |
---|
198 | DO ji = 1, kjpindex |
---|
199 | snowheat(ji,:) = snow3lheat_1d(snowliq(ji,:),snowrho(ji,:),snowdz(ji,:),snowtemp(ji,:)) |
---|
200 | ENDDO |
---|
201 | |
---|
202 | !2.6 Calculate the snow temperature profile based on heat diffusion |
---|
203 | CALL explicitsnow_profile (kjpindex,cgrnd_snow,dgrnd_snow,lambda_snow,temp_sol_new, snowtemp,snowdz,temp_sol_add) |
---|
204 | |
---|
205 | !2.7 Test whether snow is existed on the ground or not |
---|
206 | grndflux(:)=0.0 |
---|
207 | CALL explicitsnow_gone(kjpindex,pgflux,& |
---|
208 | & snowheat,snowtemp,snowdz,snowrho,snowliq,grndflux,snowmelt) |
---|
209 | |
---|
210 | !2.8 Calculate snow melt/refreezing processes |
---|
211 | CALL explicitsnow_melt_refrz(kjpindex,precip_rain,pgflux,soilcap,& |
---|
212 | & snowtemp,snowdz,snowrho,snowliq,snowmelt,grndflux,temp_air) |
---|
213 | |
---|
214 | |
---|
215 | ! 2.9 Snow sublimation changing snow thickness |
---|
216 | snow(:) = 0.0 |
---|
217 | DO ji=1,kjpindex !domain size |
---|
218 | snow(ji) = SUM(snowrho(ji,:) * snowdz(ji,:)) |
---|
219 | ENDDO |
---|
220 | |
---|
221 | subsnownobio(:,:) = zero |
---|
222 | subsinksoil(:) = zero |
---|
223 | |
---|
224 | DO ji=1, kjpindex ! domain size |
---|
225 | IF ( snow(ji) > snowcri ) THEN |
---|
226 | subsnownobio(ji,iice) = frac_nobio(ji,iice)*vevapsno(ji) |
---|
227 | subsnowveg(ji) = vevapsno(ji) - subsnownobio(ji,iice) |
---|
228 | ELSE |
---|
229 | IF ( frac_nobio(ji,iice) .GT. min_sechiba) THEN |
---|
230 | subsnownobio(ji,iice) = vevapsno(ji) |
---|
231 | subsnowveg(ji) = zero |
---|
232 | ELSE |
---|
233 | subsnownobio(ji,iice) = zero |
---|
234 | subsnowveg(ji) = vevapsno(ji) |
---|
235 | ENDIF |
---|
236 | ENDIF |
---|
237 | |
---|
238 | !! 2.8.1 Check that sublimation on the vegetated fraction is possible. |
---|
239 | IF (subsnowveg(ji) .GT. snow(ji)) THEN |
---|
240 | IF( (un - totfrac_nobio(ji)).GT.min_sechiba) THEN |
---|
241 | subsinksoil (ji) = (subsnowveg(ji) - snow(ji))/ (un - totfrac_nobio(ji)) |
---|
242 | END IF |
---|
243 | ! Sublimation is thus limited to what is available |
---|
244 | subsnowveg(ji) = snow(ji) |
---|
245 | snow(ji) = zero |
---|
246 | snowdz(ji,:) = 0 |
---|
247 | snowliq(ji,:) = 0 |
---|
248 | snowtemp(ji,:) = tp_00 |
---|
249 | vevapsno(ji) = subsnowveg(ji) + subsnownobio(ji,iice) |
---|
250 | ELSE |
---|
251 | ! Calculating the snow accumulation |
---|
252 | WSNOWDZ(ji,:)= snowdz(ji,:)*snowrho(ji,:) |
---|
253 | SMASSC (ji)= 0.0 |
---|
254 | DO jj=1,nsnow |
---|
255 | SMASS(ji,jj) = SMASSC(ji) + WSNOWDZ(ji,jj) |
---|
256 | SMASSC(ji) = SMASSC(ji) + WSNOWDZ(ji,jj) |
---|
257 | ENDDO |
---|
258 | ! Finding the layer |
---|
259 | locjj=0 |
---|
260 | DO jj=1,nsnow-1 |
---|
261 | IF ((SMASS(ji,jj) .LE. subsnowveg(ji)) .AND. (SMASS(ji,jj+1) .GE. subsnowveg(ji)) ) THEN |
---|
262 | locjj=jj+1 |
---|
263 | ENDIF |
---|
264 | ENDDO |
---|
265 | |
---|
266 | ! Calculating the removal of snow depth |
---|
267 | IF (locjj .EQ. 1) THEN |
---|
268 | ZSNOWEVAPS(ji) = subsnowveg(ji)/snowrho(ji,1) |
---|
269 | ZSNOWDZ(ji) = snowdz(ji,1) - ZSNOWEVAPS(ji) |
---|
270 | snowdz(ji,1) = MAX(0.0, ZSNOWDZ(ji)) |
---|
271 | ELSE IF (locjj .GT. 1) THEN |
---|
272 | snowacc(ji)=0 |
---|
273 | DO jj=1,locjj-1 |
---|
274 | snowacc(ji)=snowacc(ji)+snowdz(ji,jj)*snowrho(ji,jj) |
---|
275 | snowdz(ji,jj)=0 |
---|
276 | ENDDO |
---|
277 | ZSNOWEVAPS(ji) = (subsnowveg(ji)-snowacc(ji))/snowrho(ji,locjj) |
---|
278 | ZSNOWDZ(ji) = snowdz(ji,locjj) - ZSNOWEVAPS(ji) |
---|
279 | snowdz(ji,locjj) = MAX(0.0, ZSNOWDZ(ji)) |
---|
280 | ELSE |
---|
281 | ZSNOWEVAPS(ji) = subsnowveg(ji)/snowrho(ji,1) |
---|
282 | ZSNOWDZ(ji) = snowdz(ji,1) - ZSNOWEVAPS(ji) |
---|
283 | snowdz(ji,1) = MAX(0.0, ZSNOWDZ(ji)) |
---|
284 | ENDIF |
---|
285 | |
---|
286 | ENDIF |
---|
287 | ENDDO |
---|
288 | |
---|
289 | !2.10 Calculate snow grain size using the updated thermal gradient |
---|
290 | |
---|
291 | CALL explicitsnow_grain(kjpindex,snowliq,snowdz,gtemp,snowtemp,pb,snowgrain) |
---|
292 | |
---|
293 | !2.11 Update snow heat |
---|
294 | ! Update the heat content (variable stored each time step) |
---|
295 | ! using current snow temperature and liquid water content: |
---|
296 | ! |
---|
297 | ! First, make check to make sure heat content not too large |
---|
298 | ! (this can result due to signifigant heating of thin snowpacks): |
---|
299 | ! add any excess heat to ground flux: |
---|
300 | ! |
---|
301 | DO ji=1,kjpindex |
---|
302 | DO jj=1,nsnow |
---|
303 | ZLIQHEATXS(ji) = MAX(0.0, snowliq(ji,jj)*ph2o - 0.10*snowdz(ji,jj)*snowrho(ji,jj))*chalfu0/dt_sechiba |
---|
304 | snowliq(ji,jj) = snowliq(ji,jj) - ZLIQHEATXS(ji)*dt_sechiba/(ph2o*chalfu0) |
---|
305 | snowliq(ji,jj) = MAX(0.0, snowliq(ji,jj)) |
---|
306 | grndflux(ji) = grndflux(ji) + ZLIQHEATXS(ji) |
---|
307 | ENDDO |
---|
308 | ENDDO |
---|
309 | |
---|
310 | snow(:) = 0.0 |
---|
311 | DO ji=1,kjpindex !domain size |
---|
312 | snow(ji) = SUM(snowrho(ji,:) * snowdz(ji,:)) |
---|
313 | ENDDO |
---|
314 | |
---|
315 | DO ji = 1, kjpindex |
---|
316 | snowheat(ji,:) = snow3lheat_1d(snowliq(ji,:),snowrho(ji,:),snowdz(ji,:),snowtemp(ji,:)) |
---|
317 | ENDDO |
---|
318 | |
---|
319 | !3. on land ice (using the default ORCHIDEE snow scheme) |
---|
320 | |
---|
321 | DO ji = 1,kjpindex |
---|
322 | |
---|
323 | !! 3.1. It is snowing |
---|
324 | |
---|
325 | snow_nobio(ji,iice) = snow_nobio(ji,iice) + frac_nobio(ji,iice)*precip_snow(ji) + & |
---|
326 | & frac_nobio(ji,iice)*precip_rain(ji) |
---|
327 | |
---|
328 | !! 3.2. Sublimation - was calculated before it can give us negative snow_nobio but that is OK |
---|
329 | !! Once it goes below a certain values (-maxmass_snow for instance) we should kill |
---|
330 | !! the frac_nobio(ji,iice) ! |
---|
331 | |
---|
332 | snow_nobio(ji,iice) = snow_nobio(ji,iice) - subsnownobio(ji,iice) |
---|
333 | |
---|
334 | !! 3.3. ice melt only for continental ice fraction |
---|
335 | |
---|
336 | snowmelt_tmp(ji) = zero |
---|
337 | IF (temp_sol_new_old(ji) .GT. tp_00) THEN |
---|
338 | |
---|
339 | !! 3.3.1 If there is snow on the ice-fraction it can melt |
---|
340 | |
---|
341 | snowmelt_tmp(ji) = frac_nobio(ji,iice)*(temp_sol_new_old(ji) - tp_00) * soilcap(ji) / chalfu0 |
---|
342 | |
---|
343 | IF ( snowmelt_tmp(ji) .GT. snow_nobio(ji,iice) ) THEN |
---|
344 | snowmelt_tmp(ji) = MAX( 0., snow_nobio(ji,iice)) |
---|
345 | ENDIF |
---|
346 | snowmelt_ice(ji) = snowmelt_ice(ji) + snowmelt_tmp(ji) |
---|
347 | snow_nobio(ji,iice) = snow_nobio(ji,iice) - snowmelt_tmp(ji) |
---|
348 | |
---|
349 | ENDIF |
---|
350 | |
---|
351 | !! Ice melt only if there is more than a given mass : maxmass_snow, i.e. only weight melts glaciers ! |
---|
352 | |
---|
353 | IF ( snow_nobio(ji,iice) .GE. maxmass_snow ) THEN |
---|
354 | icemelt(ji) = snow_nobio(ji,iice) - maxmass_snow |
---|
355 | snow_nobio(ji,iice) = maxmass_snow |
---|
356 | ENDIF |
---|
357 | |
---|
358 | END DO |
---|
359 | |
---|
360 | |
---|
361 | !! 4. On other surface types - not done yet |
---|
362 | |
---|
363 | IF ( nnobio .GT. 1 ) THEN |
---|
364 | WRITE(numout,*) 'WE HAVE',nnobio-1,' SURFACE TYPES I DO NOT KNOW' |
---|
365 | WRITE(numout,*) 'CANNOT TREAT SNOW ON THESE SURFACE TYPES' |
---|
366 | CALL ipslerr_p(3,'explicitsnow_main','Cannot treat snow on these surface types.','','') |
---|
367 | ENDIF |
---|
368 | |
---|
369 | !! 5. Computes snow age on land and land ice (for albedo) |
---|
370 | |
---|
371 | DO ji = 1, kjpindex |
---|
372 | |
---|
373 | !! 5.1. Snow age on land |
---|
374 | |
---|
375 | IF (snow(ji) .LE. zero) THEN |
---|
376 | snow_age(ji) = zero |
---|
377 | ELSE |
---|
378 | snow_age(ji) =(snow_age(ji) + (un - snow_age(ji)/max_snow_age) * dt_sechiba/one_day) & |
---|
379 | & * EXP(-precip_snow(ji) / snow_trans) |
---|
380 | ENDIF |
---|
381 | |
---|
382 | !! 5.2. Snow age on land ice |
---|
383 | |
---|
384 | !! Age of snow on ice: a little bit different because in cold regions, we really |
---|
385 | !! cannot negect the effect of cold temperatures on snow metamorphism any more. |
---|
386 | |
---|
387 | IF (snow_nobio(ji,iice) .LE. zero) THEN |
---|
388 | snow_nobio_age(ji,iice) = zero |
---|
389 | ELSE |
---|
390 | |
---|
391 | d_age(ji) = ( snow_nobio_age(ji,iice) + & |
---|
392 | & (un - snow_nobio_age(ji,iice)/max_snow_age) * dt_sechiba/one_day ) * & |
---|
393 | & EXP(-precip_snow(ji) / snow_trans) - snow_nobio_age(ji,iice) |
---|
394 | IF (d_age(ji) .GT. 0. ) THEN |
---|
395 | xx(ji) = MAX( tp_00 - temp_sol_new(ji), zero ) |
---|
396 | xx(ji) = ( xx(ji) / 7._r_std ) ** 4._r_std |
---|
397 | d_age(ji) = d_age(ji) / (un+xx(ji)) |
---|
398 | ENDIF |
---|
399 | snow_nobio_age(ji,iice) = MAX( snow_nobio_age(ji,iice) + d_age(ji), zero ) |
---|
400 | |
---|
401 | ENDIF |
---|
402 | |
---|
403 | ENDDO |
---|
404 | |
---|
405 | |
---|
406 | !! 6. Check the snow on land |
---|
407 | DO ji=1,kjpindex |
---|
408 | IF (snow(ji) .EQ. 0) THEN |
---|
409 | snowrho(ji,:)=50.0 |
---|
410 | snowgrain(ji,:)=0.0 |
---|
411 | snowdz(ji,:)=0.0 |
---|
412 | snowliq(ji,:)=0.0 |
---|
413 | ENDIF |
---|
414 | ENDDO |
---|
415 | |
---|
416 | |
---|
417 | ! Snow melt only if there is more than a given mass : maxmass_snow |
---|
418 | ! Here I suggest to remove the snow based on a certain threshold of snow |
---|
419 | ! depth instead of snow mass because it is quite difficult for |
---|
420 | ! explictsnow module to calculate other snow properties following the |
---|
421 | ! removal of snow mass |
---|
422 | ! to define the threshold of snow depth based on old snow density (330 |
---|
423 | ! kg/m3) |
---|
424 | ! maxmass_snowdepth=maxmass_snow/sn_dens |
---|
425 | snowmelt_from_maxmass(:) = 0.0 |
---|
426 | |
---|
427 | !! 7. compute total melt |
---|
428 | |
---|
429 | DO ji=1,kjpindex |
---|
430 | tot_melt(ji) = icemelt(ji) + snowmelt(ji) + snowmelt_ice(ji) + snowmelt_from_maxmass(ji) |
---|
431 | IF ( tot_melt(ji) .LT. zero) THEN |
---|
432 | WRITE(numout,*) 'RL icemelt(ji) ', icemelt(ji) |
---|
433 | WRITE(numout,*) 'RL snowmelt(ji) ', snowmelt(ji) |
---|
434 | WRITE(numout,*) 'RL snowmelt_ice ', snowmelt_ice(ji) |
---|
435 | WRITE(numout,*) 'RL snowmelt_from_maxmass(ji) ', snowmelt_from_maxmass(ji) |
---|
436 | ENDIF |
---|
437 | ENDDO |
---|
438 | IF (printlev>=3) WRITE(numout,*) 'explicitsnow_main done' |
---|
439 | |
---|
440 | END SUBROUTINE explicitsnow_main |
---|
441 | |
---|
442 | |
---|
443 | !================================================================================================================================ |
---|
444 | !! SUBROUTINE : explicitsnow_finalize |
---|
445 | !! |
---|
446 | !>\BRIEF Write variables for explictsnow module to restart file |
---|
447 | !! |
---|
448 | !! DESCRIPTION : Write variables for explictsnow module to restart file |
---|
449 | !! |
---|
450 | !! \n |
---|
451 | !_ |
---|
452 | !================================================================================================================================ |
---|
453 | SUBROUTINE explicitsnow_finalize ( kjit, kjpindex, rest_id, snowrho, & |
---|
454 | snowtemp, snowdz, snowheat, snowgrain) |
---|
455 | |
---|
456 | !! 0.1 Input variables |
---|
457 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
458 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
459 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier |
---|
460 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowrho !! Snow density |
---|
461 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowtemp !! Snow temperature |
---|
462 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowdz !! Snow layer thickness |
---|
463 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowheat !! Snow heat content |
---|
464 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowgrain !! Snow grainsize |
---|
465 | |
---|
466 | |
---|
467 | !! 1. Write to restart file |
---|
468 | CALL restput_p(rest_id, 'snowrho', nbp_glo, nsnow, 1, kjit, snowrho, 'scatter', nbp_glo, index_g) |
---|
469 | CALL restput_p(rest_id, 'snowtemp', nbp_glo, nsnow, 1, kjit, snowtemp, 'scatter', nbp_glo, index_g) |
---|
470 | CALL restput_p(rest_id, 'snowdz', nbp_glo, nsnow, 1, kjit, snowdz, 'scatter', nbp_glo, index_g) |
---|
471 | CALL restput_p(rest_id, 'snowheat', nbp_glo, nsnow, 1, kjit, snowheat, 'scatter', nbp_glo, index_g) |
---|
472 | CALL restput_p(rest_id, 'snowgrain', nbp_glo, nsnow, 1, kjit, snowgrain, 'scatter', nbp_glo, index_g) |
---|
473 | |
---|
474 | END SUBROUTINE explicitsnow_finalize |
---|
475 | |
---|
476 | |
---|
477 | !================================================================================================================================ |
---|
478 | !! SUBROUTINE : explicitsnow_grain |
---|
479 | !! |
---|
480 | !>\BRIEF Compute evolution of snow grain size |
---|
481 | !! |
---|
482 | !! DESCRIPTION : |
---|
483 | !! |
---|
484 | !! RECENT CHANGE(S) : None |
---|
485 | !! |
---|
486 | !! MAIN OUTPUT VARIABLE(S): None |
---|
487 | !! |
---|
488 | !! REFERENCE(S) : R. Jordan (1991) |
---|
489 | !! |
---|
490 | !! FLOWCHART : None |
---|
491 | !! \n |
---|
492 | !_ |
---|
493 | !================================================================================================================================ |
---|
494 | |
---|
495 | |
---|
496 | SUBROUTINE explicitsnow_grain(kjpindex,snowliq,snowdz,gtemp,snowtemp,pb,snowgrain) |
---|
497 | |
---|
498 | !! 0.1 Input variables |
---|
499 | INTEGER(i_std),INTENT(in) :: kjpindex !! Domain size |
---|
500 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowliq !! Liquid water content |
---|
501 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth (m) |
---|
502 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: gtemp !! First soil layer temperature |
---|
503 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowtemp !! Snow temperature |
---|
504 | REAL(r_std),DIMENSION (kjpindex),INTENT(in) :: pb !! Surface pressure (hpa) |
---|
505 | |
---|
506 | !! 0.2 Output variables |
---|
507 | |
---|
508 | !! 0.3 Modified variables |
---|
509 | |
---|
510 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowgrain !! Snow grain size |
---|
511 | |
---|
512 | !! 0.4 Local variables |
---|
513 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zsnowdz,zdz,ztheta |
---|
514 | REAL(r_std),DIMENSION(kjpindex,0:nsnow) :: ztemp,zdiff,ztgrad,zthetaa,zfrac,& |
---|
515 | zexpo,zckt_liq,zckt_ice,zckt |
---|
516 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zrhomin,zgrainmin |
---|
517 | INTEGER(i_std) :: ji,jj |
---|
518 | |
---|
519 | !! 0.5 Local parameters |
---|
520 | REAL(r_std), PARAMETER :: ztheta_crit = 0.02 !! m3 m-3 |
---|
521 | REAL(r_std), PARAMETER :: zc1_ice = 8.047E+9 !! kg m-3 K |
---|
522 | REAL(r_std), PARAMETER :: zc1_liq = 5.726E+8 !! kg m-3 K |
---|
523 | REAL(r_std), PARAMETER :: zdeos = 0.92E-4 !! effective diffusion |
---|
524 | !! coef for water vapor in snow |
---|
525 | !! at 0C and 1000 mb (m2 s-1) |
---|
526 | REAL(r_std), PARAMETER :: zg1 = 5.0E-7 !! m4 kg-1 |
---|
527 | REAL(r_std), PARAMETER :: zg2 = 4.0E-12 !! m2 s-1 |
---|
528 | REAL(r_std), PARAMETER :: ztheta_w = 0.05 !! m3 m-3 |
---|
529 | REAL(r_std), PARAMETER :: ztheta_crit_w = 0.14 !! m3 m-3 |
---|
530 | REAL(r_std), PARAMETER :: zdzmin = 0.01 !! m : minimum thickness |
---|
531 | !! for thermal gradient evaluation: |
---|
532 | !! to prevent excessive gradients |
---|
533 | !! for vanishingly thin snowpacks. |
---|
534 | REAL(r_std), PARAMETER :: xp00=1.E5 |
---|
535 | !! 1. initialize |
---|
536 | |
---|
537 | DO ji=1,kjpindex |
---|
538 | |
---|
539 | |
---|
540 | zsnowdz(ji,:) = MAX(xsnowdmin/nsnow, snowdz(ji,:)) |
---|
541 | |
---|
542 | DO jj=1,nsnow-1 |
---|
543 | zdz(ji,jj) = zsnowdz(ji,jj) + zsnowdz(ji,jj+1) |
---|
544 | ENDDO |
---|
545 | zdz(ji,nsnow) = zsnowdz(ji,nsnow) |
---|
546 | |
---|
547 | ! compute interface average volumetric water content (m3 m-3): |
---|
548 | ! first, layer avg VWC: |
---|
549 | ! |
---|
550 | ztheta(ji,:) = snowliq(ji,:)/MAX(xsnowdmin, zsnowdz(ji,:)) |
---|
551 | |
---|
552 | ! at interfaces: |
---|
553 | zthetaa(ji,0) = ztheta(ji,1) |
---|
554 | DO jj=1,nsnow-1 |
---|
555 | zthetaa(ji,jj) = (zsnowdz(ji,jj) *ztheta(ji,jj) + & |
---|
556 | zsnowdz(ji,jj+1)*ztheta(ji,jj+1))/zdz(ji,jj) |
---|
557 | ENDDO |
---|
558 | zthetaa(ji,nsnow) = ztheta(ji,nsnow) |
---|
559 | ! compute interface average temperatures (K): |
---|
560 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
561 | ! |
---|
562 | ztemp(ji,0) = snowtemp(ji,1) |
---|
563 | DO jj=1,nsnow-1 |
---|
564 | ztemp(ji,jj) = (zsnowdz(ji,jj) *snowtemp(ji,jj) + & |
---|
565 | zsnowdz(ji,jj+1)*snowtemp(ji,jj+1))/zdz(ji,jj) |
---|
566 | ENDDO |
---|
567 | ztemp(ji,nsnow) = snowtemp(ji,nsnow) |
---|
568 | ! |
---|
569 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
570 | ! compute variation of saturation vapor pressure with temperature |
---|
571 | ! for solid and liquid phases: |
---|
572 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
573 | zexpo(ji,:) = chalsu0/(xrv*ztemp(ji,:)) |
---|
574 | zckt_ice(ji,:) = (zc1_ice/ztemp(ji,:)**2)*(zexpo(ji,:) - 1.0)*EXP(-zexpo(ji,:)) |
---|
575 | ! |
---|
576 | zexpo(ji,:) = chalev0/(xrv*ztemp(ji,:)) |
---|
577 | zckt_liq(ji,:) = (zc1_liq/ztemp(ji,:)**2)*(zexpo(ji,:) - 1.0)*EXP(-zexpo(ji,:)) |
---|
578 | ! |
---|
579 | ! compute the weighted ice/liquid total variation (N m-2 K): |
---|
580 | ! |
---|
581 | zfrac(ji,:) = MIN(1.0, zthetaa(ji,:)/ztheta_crit) |
---|
582 | zckt(ji,:) = zfrac(ji,:)*zckt_liq(ji,:) + (1.0 - zfrac(ji,:))*zckt_ice(ji,:) |
---|
583 | |
---|
584 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
585 | ! Compute effective diffusion coefficient (m2 s-1): |
---|
586 | ! -diffudivity relative to a reference diffusion at 1000 mb and freezing point |
---|
587 | ! multiplied by phase energy coefficient |
---|
588 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
589 | ! |
---|
590 | DO jj=0,nsnow |
---|
591 | zdiff(ji,jj) = zdeos*(xp00/(pb(ji)*100.))*((ztemp(ji,jj)/tp_00)**6)*zckt(ji,jj) |
---|
592 | ENDDO |
---|
593 | |
---|
594 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
595 | ! Temperature gradient (K m-1): |
---|
596 | |
---|
597 | ztgrad(ji,0) = 0.0 ! uppermost layer-mean and surface T's are assumed to be equal |
---|
598 | DO jj=1,nsnow-1 |
---|
599 | ztgrad(ji,jj) = 2*(snowtemp(ji,jj)-snowtemp(ji,jj+1))/MAX(zdzmin, zdz(ji,jj)) |
---|
600 | ENDDO |
---|
601 | ! |
---|
602 | ! assume at base of snow, temperature is in equilibrium with soil |
---|
603 | ! (but obviously must be at or below freezing point!) |
---|
604 | ! |
---|
605 | ztgrad(ji,nsnow) = 2*(snowtemp(ji,nsnow) - MIN(tp_00, gtemp(ji)))/MAX(zdzmin, zdz(ji,nsnow)) |
---|
606 | ! prognostic grain size (m) equation: |
---|
607 | !------------------------------------------------------------------- |
---|
608 | ! first compute the minimum grain size (m): |
---|
609 | ! |
---|
610 | zrhomin(ji,:) = xrhosmin |
---|
611 | zgrainmin(ji,:) = snow3lgrain_1d(zrhomin(ji,:)) |
---|
612 | |
---|
613 | ! dry snow: |
---|
614 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
615 | ! |
---|
616 | DO jj=1,nsnow |
---|
617 | |
---|
618 | IF(ztheta(ji,jj) == 0.0) THEN |
---|
619 | |
---|
620 | ! only allow growth due to vapor flux INTO layer: |
---|
621 | ! aab add sublimation(only condensation) as upper BC...? |
---|
622 | |
---|
623 | snowgrain(ji,jj) = snowgrain(ji,jj) + & |
---|
624 | (dt_sechiba*zg1/MAX(zgrainmin(ji,jj),snowgrain(ji,jj)))* & |
---|
625 | ( zdiff(ji,jj-1)*MAX(0.0,ztgrad(ji,jj-1)) - & |
---|
626 | zdiff(ji,jj) *MIN(0.0,ztgrad(ji,jj)) ) |
---|
627 | ELSE |
---|
628 | |
---|
629 | ! wet snow |
---|
630 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
631 | ! |
---|
632 | snowgrain(ji,jj) = snowgrain(ji,jj) + & |
---|
633 | (dt_sechiba*zg2/MAX(zgrainmin(ji,jj),snowgrain(ji,jj)))* & |
---|
634 | MIN(ztheta_crit_w, ztheta(ji,jj) + ztheta_w) |
---|
635 | END IF |
---|
636 | |
---|
637 | ENDDO |
---|
638 | |
---|
639 | |
---|
640 | ENDDO |
---|
641 | |
---|
642 | |
---|
643 | END SUBROUTINE explicitsnow_grain |
---|
644 | |
---|
645 | !! |
---|
646 | !================================================================================================================================ |
---|
647 | !! SUBROUTINE : explicitsnow_compactn |
---|
648 | !! |
---|
649 | !>\BRIEF Compute Compaction/Settling |
---|
650 | !! |
---|
651 | !! DESCRIPTION : |
---|
652 | !! Snow compaction due to overburden and settling. |
---|
653 | !! Mass is unchanged: layer thickness is reduced |
---|
654 | !! in proportion to density increases. Method |
---|
655 | !! of Anderson (1976): see Loth and Graf, 1993, |
---|
656 | !! J. of Geophys. Res., 98, 10,451-10,464. |
---|
657 | !! |
---|
658 | !! RECENT CHANGE(S) : None |
---|
659 | !! |
---|
660 | !! MAIN OUTPUT VARIABLE(S): None |
---|
661 | !! |
---|
662 | !! REFERENCE(S) : Loth and Graf (1993), Mellor (1964) and Anderson (1976) |
---|
663 | !! |
---|
664 | !! FLOWCHART : None |
---|
665 | !! \n |
---|
666 | !_ |
---|
667 | !================================================================================================================================ |
---|
668 | |
---|
669 | |
---|
670 | SUBROUTINE explicitsnow_compactn(kjpindex,snowtemp,snowrho,snowdz) |
---|
671 | |
---|
672 | !! 0.1 Input variables |
---|
673 | |
---|
674 | INTEGER(i_std),INTENT(in) :: kjpindex !! Domain size |
---|
675 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowtemp !! Snow temperature |
---|
676 | |
---|
677 | !! 0.2 Output variables |
---|
678 | |
---|
679 | !! 0.3 Modified variables |
---|
680 | |
---|
681 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowrho !! Snow density |
---|
682 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowdz !! Snow depth |
---|
683 | |
---|
684 | !! 0.4 Local variables |
---|
685 | |
---|
686 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zwsnowdz,zsmass,zsnowrho2,zviscocity,zsettle |
---|
687 | REAL(r_std),DIMENSION(kjpindex) :: zsmassc !! cummulative snow mass (kg/m2) |
---|
688 | REAL(r_std),DIMENSION(kjpindex) :: snowdepth_crit |
---|
689 | INTEGER(i_std) :: ji,jj |
---|
690 | |
---|
691 | !! 1. initialize |
---|
692 | |
---|
693 | zsnowrho2 = snowrho |
---|
694 | zsettle(:,:) = ZSNOWCMPCT_ACM |
---|
695 | zviscocity(:,:) = ZSNOWCMPCT_V0 |
---|
696 | |
---|
697 | !! 2. Calculating Cumulative snow mass (kg/m2): |
---|
698 | |
---|
699 | DO ji=1, kjpindex |
---|
700 | |
---|
701 | |
---|
702 | IF (SUM(snowdz(ji,:)) .GT. 0.0) THEN |
---|
703 | |
---|
704 | zwsnowdz(ji,:)= snowdz(ji,:)*snowrho(ji,:) |
---|
705 | |
---|
706 | zsmassc (ji)= 0.0 |
---|
707 | |
---|
708 | DO jj=1,nsnow |
---|
709 | zsmass(ji,jj) = zsmassc(ji) + zwsnowdz(ji,jj) |
---|
710 | zsmassc(ji) = zsmassc(ji) + zwsnowdz(ji,jj) |
---|
711 | ENDDO |
---|
712 | |
---|
713 | |
---|
714 | !! 3. Computing compaction/Settling |
---|
715 | ! ---------------------- |
---|
716 | ! Compaction/settling if density below upper limit |
---|
717 | ! (compaction is generally quite small above ~ 500 kg m-3): |
---|
718 | ! |
---|
719 | DO jj=1,nsnow |
---|
720 | IF (snowrho(ji,jj) .LT. xrhosmax) THEN |
---|
721 | |
---|
722 | ! |
---|
723 | ! First calculate settling due to freshly fallen snow: (NOTE:bug here for the snow temperature profile) |
---|
724 | ! |
---|
725 | |
---|
726 | zsettle(ji,jj) = ZSNOWCMPCT_ACM*EXP( & |
---|
727 | -ZSNOWCMPCT_BCM*(tp_00-MIN(tp_00,snowtemp(ji,jj))) & |
---|
728 | -ZSNOWCMPCT_CCM*MAX(0.0, & |
---|
729 | snowrho(ji,jj)-ZSNOWCMPCT_RHOD)) |
---|
730 | ! |
---|
731 | ! Snow viscocity: |
---|
732 | ! |
---|
733 | zviscocity(ji,jj) = ZSNOWCMPCT_V0*EXP( ZSNOWCMPCT_VT*(tp_00-MIN(tp_00,snowtemp(ji,jj))) + & |
---|
734 | ZSNOWCMPCT_VR*snowrho(ji,jj) ) |
---|
735 | |
---|
736 | ! Calculate snow density: compaction from weight/over-burden |
---|
737 | ! Anderson 1976 method: |
---|
738 | zsnowrho2(ji,jj) = snowrho(ji,jj) + snowrho(ji,jj)*dt_sechiba*( & |
---|
739 | (cte_grav*zsmass(ji,jj)/zviscocity(ji,jj)) & |
---|
740 | + zsettle(ji,jj) ) |
---|
741 | ! Conserve mass by decreasing grid thicknesses in response |
---|
742 | ! to density increases |
---|
743 | ! |
---|
744 | snowdz(ji,jj) = snowdz(ji,jj)*(snowrho(ji,jj)/zsnowrho2(ji,jj)) |
---|
745 | |
---|
746 | ENDIF |
---|
747 | ENDDO |
---|
748 | |
---|
749 | ! Update density (kg m-3): |
---|
750 | snowrho(ji,:) = zsnowrho2(ji,:) |
---|
751 | |
---|
752 | ENDIF |
---|
753 | |
---|
754 | ENDDO |
---|
755 | |
---|
756 | END SUBROUTINE explicitsnow_compactn |
---|
757 | |
---|
758 | !! |
---|
759 | !================================================================================================================================ |
---|
760 | !! SUBROUTINE : explicitsnow_transf |
---|
761 | !! |
---|
762 | !>\BRIEF Computing snow mass and heat redistribution due to grid thickness configuration resetting |
---|
763 | !! |
---|
764 | !! DESCRIPTION : Snow mass and heat redistibution due to grid thickness |
---|
765 | !! configuration resetting. Total mass and heat content |
---|
766 | !! of the overall snowpack unchanged/conserved within this routine. |
---|
767 | !! RECENT CHANGE(S) : None |
---|
768 | !! |
---|
769 | !! MAIN OUTPUT VARIABLE(S): None |
---|
770 | !! |
---|
771 | !! REFERENCE(S) : |
---|
772 | !! |
---|
773 | !! FLOWCHART : None |
---|
774 | !! \n |
---|
775 | !_ |
---|
776 | !================================================================================================================================ |
---|
777 | |
---|
778 | SUBROUTINE explicitsnow_transf(kjpindex,snowdz_old,snowdz,snowrho,snowheat,snowgrain) |
---|
779 | |
---|
780 | !! 0.1 Input variables |
---|
781 | |
---|
782 | INTEGER(i_std),INTENT(in) :: kjpindex !! Domain size |
---|
783 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowdz_old !! Snow depth at the previous time step |
---|
784 | |
---|
785 | !! 0.2 Output variables |
---|
786 | |
---|
787 | !! 0.3 Modified variables |
---|
788 | |
---|
789 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowrho !! Snow density |
---|
790 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowgrain !! Snow grain size |
---|
791 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowdz !! Snow depth (m) |
---|
792 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowheat !! Snow heat content/enthalpy (J/m2) |
---|
793 | |
---|
794 | !! 0.4 Local varibles |
---|
795 | |
---|
796 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zsnowzo |
---|
797 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zsnowzn |
---|
798 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zsnowddz |
---|
799 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zdelta |
---|
800 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: zsnowrhon,zsnowheatn,zsnowgrainn |
---|
801 | REAL(r_std),DIMENSION(kjpindex) :: zsnowmix_delta |
---|
802 | REAL(r_std),DIMENSION(kjpindex) :: zsumheat, zsumswe, zsumgrain |
---|
803 | INTEGER(i_std),DIMENSION(nsnow,2) :: locflag |
---|
804 | REAL(r_std) :: psnow |
---|
805 | INTEGER(i_std) :: ji,jj,jjj |
---|
806 | |
---|
807 | ! Initialization |
---|
808 | zsumheat(:) = 0.0 |
---|
809 | zsumswe(:) = 0.0 |
---|
810 | zsumgrain(:) = 0.0 |
---|
811 | zsnowmix_delta(:) = 0.0 |
---|
812 | locflag(:,:) = 0 |
---|
813 | |
---|
814 | DO ji=1, kjpindex |
---|
815 | |
---|
816 | |
---|
817 | psnow = SUM(snowdz(ji,:)) |
---|
818 | |
---|
819 | IF (psnow .GE. xsnowcritd .AND. snowdz_old(ji,1) .NE. 0 .AND. snowdz_old(ji,2) .NE. 0 .AND. snowdz_old(ji,3) .NE. 0) THEN |
---|
820 | ! |
---|
821 | zsnowzo(ji,1) = snowdz_old(ji,1) |
---|
822 | zsnowzn(ji,1) = snowdz(ji,1) |
---|
823 | ! |
---|
824 | DO jj=2,nsnow |
---|
825 | zsnowzo(ji,jj) = zsnowzo(ji,jj-1) + snowdz_old(ji,jj) |
---|
826 | zsnowzn(ji,jj) = zsnowzn(ji,jj-1) + snowdz(ji,jj) |
---|
827 | ENDDO |
---|
828 | |
---|
829 | !layer thickness change |
---|
830 | |
---|
831 | zsnowddz(ji,:) = zsnowzn(ji,:) - zsnowzo(ji,:) |
---|
832 | ! |
---|
833 | ! Calculate the delta function: |
---|
834 | ! |
---|
835 | zdelta(ji,:) = 0.0 |
---|
836 | WHERE(zsnowddz(ji,:) > 0.0) zdelta(ji,:) = 1.0 |
---|
837 | ! |
---|
838 | |
---|
839 | ! Calculate mass and heat transfers due to grid adjustment/changes: |
---|
840 | ! Upper layer: |
---|
841 | ! |
---|
842 | zsnowrhon(ji,1) = ( snowdz_old(ji,1)*snowrho(ji,1) + zsnowddz(ji,1)* & |
---|
843 | ( zdelta(ji,1) *snowrho(ji,2) + & |
---|
844 | (1.0-zdelta(ji,1))*snowrho(ji,1) ) ) & |
---|
845 | /snowdz(ji,1) |
---|
846 | ! |
---|
847 | IF (snowdz_old(ji,1) .GT. 0.0) THEN |
---|
848 | |
---|
849 | zsnowheatn(ji,1) = snowheat(ji,1) + zsnowddz(ji,1)* & |
---|
850 | (( zdelta(ji,1) *snowheat(ji,2)/snowdz_old(ji,2)) + & |
---|
851 | ((1.0-zdelta(ji,1))*snowheat(ji,1)/snowdz_old(ji,1)) ) |
---|
852 | ELSE |
---|
853 | zsnowheatn(ji,1) = snowheat(ji,2)/snowdz_old(ji,2)*zsnowddz(ji,1) |
---|
854 | |
---|
855 | ENDIF |
---|
856 | ! |
---|
857 | zsnowgrainn(ji,1) = ( snowdz_old(ji,1)*snowgrain(ji,1) + zsnowddz(ji,1)* & |
---|
858 | ( zdelta(ji,1) *snowgrain(ji,2) + & |
---|
859 | (1.0-zdelta(ji,1))*snowgrain(ji,1) ) ) & |
---|
860 | /snowdz(ji,1) |
---|
861 | |
---|
862 | |
---|
863 | |
---|
864 | |
---|
865 | ! Lowest layer: |
---|
866 | ! |
---|
867 | zsnowrhon(ji,nsnow) = ( snowdz_old(ji,nsnow)*snowrho(ji,nsnow) - & |
---|
868 | zsnowddz(ji,nsnow-1)* & |
---|
869 | ( zdelta(ji,nsnow-1) *snowrho(ji,nsnow) + & |
---|
870 | (1.0-zdelta(ji,nsnow-1))*snowrho(ji,nsnow-1) ) ) & |
---|
871 | /snowdz(ji,nsnow) |
---|
872 | ! |
---|
873 | zsnowheatn(ji,nsnow) = snowheat(ji,nsnow) - zsnowddz(ji,nsnow-1)* & |
---|
874 | (( zdelta(ji,nsnow-1) *snowheat(ji,nsnow)/ & |
---|
875 | snowdz_old(ji,nsnow)) + & |
---|
876 | ((1.0-zdelta(ji,nsnow-1))*snowheat(ji,nsnow-1) & |
---|
877 | /snowdz_old(ji,nsnow-1)) ) |
---|
878 | ! |
---|
879 | zsnowgrainn(ji,nsnow) = ( snowdz_old(ji,nsnow)*snowgrain(ji,nsnow) - & |
---|
880 | zsnowddz(ji,nsnow-1)* & |
---|
881 | ( zdelta(ji,nsnow-1) *snowgrain(ji,nsnow) + & |
---|
882 | (1.0-zdelta(ji,nsnow-1))*snowgrain(ji,nsnow-1) ) ) & |
---|
883 | /snowdz(ji,nsnow) |
---|
884 | |
---|
885 | |
---|
886 | ! |
---|
887 | zsnowzo(ji,1) = snowdz_old(ji,1) |
---|
888 | zsnowzn(ji,1) = snowdz(ji,1) |
---|
889 | ! |
---|
890 | DO jj=2,nsnow |
---|
891 | zsnowzo(ji,jj) = zsnowzo(ji,jj-1) + snowdz_old(ji,jj) |
---|
892 | zsnowzn(ji,jj) = zsnowzn(ji,jj-1) + snowdz(ji,jj) |
---|
893 | ENDDO |
---|
894 | |
---|
895 | |
---|
896 | DO jj=2,nsnow-1 |
---|
897 | |
---|
898 | !first diagonise where the new snow layer lies in the old snow discretization |
---|
899 | DO jjj=nsnow,1,-1 |
---|
900 | |
---|
901 | !upper bound of the snow layer |
---|
902 | IF (zsnowzn(ji,jj-1) .LE. zsnowzo(ji,jjj)) THEN |
---|
903 | locflag(jj,1) = jjj |
---|
904 | ENDIF |
---|
905 | |
---|
906 | !lower bound of the snow layer |
---|
907 | IF (zsnowzn(ji,jj) .LE. zsnowzo(ji,jjj)) THEN |
---|
908 | locflag(jj,2) = jjj |
---|
909 | ENDIF |
---|
910 | |
---|
911 | ENDDO |
---|
912 | |
---|
913 | !to interpolate |
---|
914 | ! when heavy snow occurred |
---|
915 | IF (locflag(jj,1) .EQ. locflag(jj,2)) THEN |
---|
916 | |
---|
917 | zsnowrhon(ji,jj) = snowrho(ji,locflag(jj,1)) |
---|
918 | |
---|
919 | zsnowheatn(ji,jj) = snowheat(ji,locflag(jj,1))*snowdz(ji,jj)/snowdz_old(ji,locflag(jj,1)) |
---|
920 | |
---|
921 | zsnowgrainn(ji,jj) = snowgrain(ji,locflag(jj,1)) |
---|
922 | |
---|
923 | ELSE |
---|
924 | |
---|
925 | !snow density |
---|
926 | |
---|
927 | zsnowrhon(ji,jj) = snowrho(ji,locflag(jj,1)) * & |
---|
928 | (zsnowzo(ji,locflag(jj,1))-zsnowzn(ji,jj-1)) + & |
---|
929 | snowrho(ji,locflag(jj,2)) * & |
---|
930 | (zsnowzn(ji,jj)-zsnowzo(ji,locflag(jj,2)-1)) |
---|
931 | |
---|
932 | DO jjj=locflag(jj,1),locflag(jj,2)-1 |
---|
933 | zsnowrhon(ji,jj)=zsnowrhon(ji,jj) + & |
---|
934 | (jjj-locflag(jj,1))*snowrho(ji,jjj)*snowdz_old(ji,jjj) |
---|
935 | ENDDO |
---|
936 | |
---|
937 | zsnowrhon(ji,jj) = zsnowrhon(ji,jj) / snowdz(ji,jj) |
---|
938 | |
---|
939 | |
---|
940 | !snow heat |
---|
941 | |
---|
942 | zsnowheatn(ji,jj) = snowheat(ji,locflag(jj,1)) * & |
---|
943 | (zsnowzo(ji,locflag(jj,1))-zsnowzn(ji,jj-1))/snowdz_old(ji,locflag(jj,1)) + & |
---|
944 | snowheat(ji,locflag(jj,2)) * & |
---|
945 | (zsnowzn(ji,jj)-zsnowzo(ji,locflag(jj,2)-1))/snowdz_old(ji,locflag(jj,2)) |
---|
946 | |
---|
947 | DO jjj=locflag(jj,1),locflag(jj,2)-1 |
---|
948 | zsnowheatn(ji,jj)=zsnowheatn(ji,jj) + & |
---|
949 | (jjj-locflag(jj,1))*snowheat(ji,jjj) |
---|
950 | ENDDO |
---|
951 | |
---|
952 | |
---|
953 | |
---|
954 | !snow grain |
---|
955 | zsnowgrainn(ji,jj) = snowgrain(ji,locflag(jj,1)) * & |
---|
956 | (zsnowzo(ji,locflag(jj,1))-zsnowzn(ji,jj-1)) + & |
---|
957 | snowgrain(ji,locflag(jj,2)) * & |
---|
958 | (zsnowzn(ji,jj)-zsnowzo(ji,locflag(jj,2)-1)) |
---|
959 | |
---|
960 | DO jjj=locflag(jj,1),locflag(jj,2)-1 |
---|
961 | zsnowgrainn(ji,jj)=zsnowgrainn(ji,jj) + & |
---|
962 | (jjj-locflag(jj,1))*snowgrain(ji,jjj)*snowdz_old(ji,jjj) |
---|
963 | ENDDO |
---|
964 | |
---|
965 | zsnowgrainn(ji,jj) = zsnowgrainn(ji,jj) / snowdz(ji,jj) |
---|
966 | |
---|
967 | |
---|
968 | ENDIF |
---|
969 | |
---|
970 | ENDDO |
---|
971 | snowrho(ji,:) = zsnowrhon(ji,:) |
---|
972 | snowheat(ji,:) = zsnowheatn(ji,:) |
---|
973 | snowgrain(ji,:) = zsnowgrainn(ji,:) |
---|
974 | |
---|
975 | ENDIF |
---|
976 | |
---|
977 | ! Vanishing or very thin snowpack check: |
---|
978 | ! ----------------------------------------- |
---|
979 | ! |
---|
980 | ! NOTE: ONLY for very shallow snowpacks, mix properties (homogeneous): |
---|
981 | ! this avoids problems related to heat and mass exchange for |
---|
982 | ! thin layers during heavy snowfall or signifigant melt: one |
---|
983 | ! new/old layer can exceed the thickness of several old/new layers. |
---|
984 | ! Therefore, mix (conservative): |
---|
985 | ! |
---|
986 | ! modified by Tao Wang |
---|
987 | IF (psnow > 0 .AND. (psnow < xsnowcritd .OR. snowdz_old(ji,1) & |
---|
988 | & .eq. 0 .OR. snowdz_old(ji,2) .eq. 0 .OR. snowdz_old(ji,3) .eq. 0)) THEN |
---|
989 | zsumheat(ji) = SUM(snowheat(ji,:)) |
---|
990 | zsumswe(ji) = SUM(snowrho(ji,:)*snowdz_old(ji,:)) |
---|
991 | zsumgrain(ji)= SUM(snowgrain(ji,:)*snowdz_old(ji,:)) |
---|
992 | zsnowmix_delta(ji) = 1.0 |
---|
993 | DO jj=1,nsnow |
---|
994 | zsnowheatn(ji,jj) = zsnowmix_delta(ji)*(zsumheat(ji)/nsnow) |
---|
995 | snowdz(ji,jj) = zsnowmix_delta(ji)*(psnow/nsnow) |
---|
996 | zsnowrhon(ji,jj) = zsnowmix_delta(ji)*(zsumswe(ji)/psnow) |
---|
997 | zsnowgrainn(ji,jj) = zsnowmix_delta(ji)*(zsumgrain(ji)/psnow) |
---|
998 | ENDDO |
---|
999 | ! Update mass (density and thickness), heat and grain size: |
---|
1000 | ! ------------------------------------------------------------ |
---|
1001 | ! |
---|
1002 | snowrho(ji,:) = zsnowrhon(ji,:) |
---|
1003 | snowheat(ji,:) = zsnowheatn(ji,:) |
---|
1004 | snowgrain(ji,:) = zsnowgrainn(ji,:) |
---|
1005 | |
---|
1006 | ENDIF |
---|
1007 | |
---|
1008 | ENDDO |
---|
1009 | |
---|
1010 | |
---|
1011 | END SUBROUTINE explicitsnow_transf |
---|
1012 | |
---|
1013 | |
---|
1014 | !! |
---|
1015 | !================================================================================================================================ |
---|
1016 | !! SUBROUTINE : explicitsnow_fall |
---|
1017 | !! |
---|
1018 | !>\BRIEF Computes snowfall |
---|
1019 | !! |
---|
1020 | !! DESCRIPTION : |
---|
1021 | !routine. |
---|
1022 | !! RECENT CHANGE(S) : None |
---|
1023 | !! |
---|
1024 | !! MAIN OUTPUT VARIABLE(S): None |
---|
1025 | !! |
---|
1026 | !! REFERENCE(S) : |
---|
1027 | !! |
---|
1028 | !! FLOWCHART : None |
---|
1029 | !! \n |
---|
1030 | !_ |
---|
1031 | !================================================================================================================================ |
---|
1032 | |
---|
1033 | SUBROUTINE explicitsnow_fall(kjpindex,precip_snow,temp_air,u,v,totfrac_nobio,snowrho,snowdz,& |
---|
1034 | & snowheat,snowgrain,snowtemp,psnowhmass) |
---|
1035 | |
---|
1036 | !! 0.1 Input variables |
---|
1037 | |
---|
1038 | INTEGER(i_std),INTENT(in) :: kjpindex !! Domain size |
---|
1039 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: precip_snow !! Snow rate (SWE) (kg/m2 per dt_sechiba) |
---|
1040 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
1041 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: u,v !! Horizontal wind speed |
---|
1042 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(in) :: snowtemp !! Snow temperature |
---|
1043 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: totfrac_nobio |
---|
1044 | !! 0.2 Output variables |
---|
1045 | |
---|
1046 | REAL(r_std), DIMENSION(kjpindex),INTENT(out) :: psnowhmass !! Heat content of snowfall (J/m2) |
---|
1047 | |
---|
1048 | !! 0.3 Modified variables |
---|
1049 | |
---|
1050 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowrho !! Snow density profile (kg/m3) |
---|
1051 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowdz !! Snow layer thickness profile (m) |
---|
1052 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowheat !! Snow heat content/enthalpy (J/m2) |
---|
1053 | REAL(r_std),DIMENSION(kjpindex,nsnow),INTENT(inout) :: snowgrain !! Snow grain size |
---|
1054 | |
---|
1055 | !! 0.4 Local variables |
---|
1056 | |
---|
1057 | REAL(r_std), DIMENSION(kjpindex) :: rhosnew !! Snowfall density |
---|
1058 | REAL(r_std), DIMENSION(kjpindex) :: dsnowfall !! Snowfall thickness (m) |
---|
1059 | REAL(r_std), DIMENSION(kjpindex,nsnow) :: snowdz_old |
---|
1060 | REAL(r_std), DIMENSION(kjpindex) :: snow_depth,snow_depth_old,newgrain |
---|
1061 | REAL(r_std) :: snowfall_delta,speed |
---|
1062 | INTEGER(i_std) :: ji,jj |
---|
1063 | |
---|
1064 | !! 1. initialize the variables |
---|
1065 | |
---|
1066 | snowdz_old = snowdz |
---|
1067 | DO ji=1,kjpindex |
---|
1068 | snow_depth(ji) = SUM(snowdz(ji,:)) |
---|
1069 | ENDDO |
---|
1070 | |
---|
1071 | snow_depth_old = snow_depth |
---|
1072 | |
---|
1073 | snowfall_delta = 0.0 |
---|
1074 | |
---|
1075 | !! 2. incorporate snowfall into snowpack |
---|
1076 | DO ji = 1, kjpindex |
---|
1077 | |
---|
1078 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
1079 | |
---|
1080 | ! new snow fall on snowpack |
---|
1081 | ! NOTE: when the surface temperature is zero, it means that snowfall has no |
---|
1082 | ! heat content but it can be used for increasing the thickness and changing the density (maybe it is a bug) |
---|
1083 | psnowhmass(ji) = 0.0 |
---|
1084 | IF ( (precip_snow(ji) .GT. 0.0) ) THEN |
---|
1085 | |
---|
1086 | !calculate |
---|
1087 | |
---|
1088 | psnowhmass(ji) = precip_snow(ji)*(un-totfrac_nobio(ji))* & |
---|
1089 | (xci*(snowtemp(ji,1)-tp_00)-chalfu0) |
---|
1090 | |
---|
1091 | ! Snowfall density: Following CROCUS (Pahaut 1976) |
---|
1092 | ! |
---|
1093 | rhosnew(ji) = MAX(xrhosmin, snowfall_a_sn + snowfall_b_sn*(temp_air(ji)-tp_00)+ & |
---|
1094 | snowfall_c_sn*SQRT(speed)) |
---|
1095 | |
---|
1096 | ! Augment total pack depth: |
---|
1097 | ! Note that dsnowfall(ji) can be equal to zero if totfrac_nobio(ji)=1 |
---|
1098 | dsnowfall(ji) = (precip_snow(ji)*(un-totfrac_nobio(ji)))/rhosnew(ji) !snowfall thickness (m) |
---|
1099 | |
---|
1100 | snow_depth(ji) = snow_depth(ji) + dsnowfall(ji) |
---|
1101 | |
---|
1102 | |
---|
1103 | ! Fresh snowfall changes the snowpack density and liquid content in uppermost layer |
---|
1104 | |
---|
1105 | IF (dsnowfall(ji) .GT. zero) THEN |
---|
1106 | snowrho(ji,1) = (snowdz(ji,1)*snowrho(ji,1) + dsnowfall(ji)*rhosnew(ji))/ & |
---|
1107 | (snowdz(ji,1)+dsnowfall(ji)) |
---|
1108 | |
---|
1109 | snowdz(ji,1) = snowdz(ji,1) + dsnowfall(ji) |
---|
1110 | |
---|
1111 | ! Add energy of snowfall to snowpack: |
---|
1112 | ! Update heat content (J/m2) (therefore the snow temperature |
---|
1113 | ! and liquid content): |
---|
1114 | ! |
---|
1115 | snowheat(ji,1) = snowheat(ji,1) + psnowhmass(ji) |
---|
1116 | ! |
---|
1117 | ! Incorporate snowfall grain size: |
---|
1118 | ! |
---|
1119 | newgrain(ji) = MIN(dgrain_new_max, snow3lgrain_0d(rhosnew(ji))) |
---|
1120 | |
---|
1121 | snowgrain(ji,1) = (snowdz_old(ji,1)*snowgrain(ji,1) + dsnowfall(ji)*newgrain(ji))/ & |
---|
1122 | snowdz(ji,1) |
---|
1123 | ENDIF |
---|
1124 | ELSE |
---|
1125 | dsnowfall(ji) = 0. |
---|
1126 | ENDIF |
---|
1127 | |
---|
1128 | ! new snow fall on snow free surface. |
---|
1129 | ! we use the linearization for the new snow fall on snow-free ground |
---|
1130 | |
---|
1131 | IF ( (dsnowfall(ji) .GT. zero) .AND. (snow_depth_old(ji) .EQ. zero) ) THEN |
---|
1132 | |
---|
1133 | snowfall_delta = 1.0 |
---|
1134 | |
---|
1135 | DO jj=1,nsnow |
---|
1136 | |
---|
1137 | snowdz(ji,jj) = snowfall_delta*(dsnowfall(ji)/nsnow) + & |
---|
1138 | (1.0-snowfall_delta)*snowdz(ji,jj) |
---|
1139 | |
---|
1140 | snowheat(ji,jj) = snowfall_delta*(psnowhmass(ji)/nsnow) + & |
---|
1141 | (1.0-snowfall_delta)*snowheat(ji,jj) |
---|
1142 | |
---|
1143 | snowrho(ji,jj) = snowfall_delta*rhosnew(ji) + & |
---|
1144 | (1.0-snowfall_delta)*snowrho(ji,jj) |
---|
1145 | |
---|
1146 | snowgrain(ji,jj)= snowfall_delta*newgrain(ji) + & |
---|
1147 | (1.0-snowfall_delta)*snowgrain(ji,jj) |
---|
1148 | |
---|
1149 | ENDDO |
---|
1150 | |
---|
1151 | |
---|
1152 | ENDIF |
---|
1153 | |
---|
1154 | |
---|
1155 | ENDDO |
---|
1156 | |
---|
1157 | END SUBROUTINE explicitsnow_fall |
---|
1158 | |
---|
1159 | !! |
---|
1160 | !================================================================================================================================ |
---|
1161 | !! SUBROUTINE : explicitsnow_gone |
---|
1162 | !! |
---|
1163 | !>\BRIEF Check whether snow is gone |
---|
1164 | !! |
---|
1165 | !! DESCRIPTION : If so, set thickness (and therefore mass and heat) and liquid |
---|
1166 | !! content to zero, and adjust fluxes of water, evaporation and |
---|
1167 | !! heat into underlying surface. |
---|
1168 | !! RECENT CHANGE(S) : None |
---|
1169 | !! |
---|
1170 | !! MAIN OUTPUT VARIABLE(S): None |
---|
1171 | !! |
---|
1172 | !! REFERENCE(S) : |
---|
1173 | !! |
---|
1174 | !! FLOWCHART : None |
---|
1175 | !! \n |
---|
1176 | !_ |
---|
1177 | !================================================================================================================================ |
---|
1178 | |
---|
1179 | SUBROUTINE explicitsnow_gone(kjpindex,pgflux,& |
---|
1180 | snowheat,snowtemp,snowdz,snowrho,snowliq,grndflux,snowmelt) |
---|
1181 | |
---|
1182 | !! 0.1 Input variables |
---|
1183 | |
---|
1184 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
1185 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: pgflux !! Net energy into snow pack(w/m2) |
---|
1186 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowheat !! Snow heat content |
---|
1187 | |
---|
1188 | !! 0.2 Output variables |
---|
1189 | |
---|
1190 | !! 0.3 Modified variables |
---|
1191 | |
---|
1192 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowtemp !! Snow temperature |
---|
1193 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowdz !! Snow depth |
---|
1194 | REAL(r_std),DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowrho !! Snow density |
---|
1195 | REAL(r_std),DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowliq !! Liquid water content |
---|
1196 | REAL(r_std),DIMENSION(kjpindex), INTENT(inout) :: grndflux !! Soil/snow interface heat flux (W/m2) |
---|
1197 | REAL(r_std),DIMENSION(kjpindex),INTENT(inout) :: snowmelt !! Snow melt |
---|
1198 | REAL(r_std),DIMENSION(kjpindex) :: thrufal !! Water leaving snowpack(kg/m2/s) |
---|
1199 | |
---|
1200 | !! 0.4 Local variables |
---|
1201 | |
---|
1202 | INTEGER(i_std) :: ji,jj |
---|
1203 | REAL(r_std),DIMENSION(kjpindex) :: snowgone_delta |
---|
1204 | REAL(r_std),DIMENSION (kjpindex) :: totsnowheat !!snow heat content at each layer |
---|
1205 | REAL(r_std),DIMENSION(kjpindex) :: snowdepth_crit |
---|
1206 | |
---|
1207 | ! first caculate total snowpack snow heat content |
---|
1208 | snowgone_delta(:) = un |
---|
1209 | thrufal(:)=0.0 |
---|
1210 | snowmelt(:)=0 |
---|
1211 | totsnowheat(:) = SUM(snowheat(:,:),2) |
---|
1212 | |
---|
1213 | DO ji = 1, kjpindex |
---|
1214 | |
---|
1215 | IF ( (SUM(snowdz(ji,:)) .GT. zero)) THEN |
---|
1216 | |
---|
1217 | IF( pgflux(ji) >= (-totsnowheat(ji)/dt_sechiba) ) THEN |
---|
1218 | |
---|
1219 | grndflux(ji) = pgflux(ji) + (totsnowheat(ji)/dt_sechiba) |
---|
1220 | |
---|
1221 | thrufal(ji)=SUM(snowrho(ji,:)*snowdz(ji,:)) |
---|
1222 | |
---|
1223 | snowgone_delta(ji) = 0.0 |
---|
1224 | |
---|
1225 | snowmelt(ji) = snowmelt(ji)+thrufal(ji) |
---|
1226 | |
---|
1227 | ENDIF |
---|
1228 | |
---|
1229 | ! update of snow state (either still present or not) |
---|
1230 | |
---|
1231 | DO jj=1,nsnow |
---|
1232 | snowdz(ji,jj) = snowdz(ji,jj) *snowgone_delta(ji) |
---|
1233 | snowliq(ji,jj) = snowliq(ji,jj) *snowgone_delta(ji) |
---|
1234 | snowtemp(ji,jj) = (1.0-snowgone_delta(ji))*tp_00 + snowtemp(ji,jj)*snowgone_delta(ji) |
---|
1235 | ENDDO |
---|
1236 | |
---|
1237 | ENDIF |
---|
1238 | ENDDO |
---|
1239 | |
---|
1240 | END SUBROUTINE explicitsnow_gone |
---|
1241 | |
---|
1242 | !================================================================================================================================ |
---|
1243 | !! SUBROUTINE : explicitsnow_melt_refrz |
---|
1244 | !! |
---|
1245 | !>\BRIEF Computes snow melt and refreezing processes within snowpack |
---|
1246 | !! |
---|
1247 | !! DESCRIPTION : |
---|
1248 | !! RECENT CHANGE(S) : None |
---|
1249 | !! |
---|
1250 | !! MAIN OUTPUT VARIABLE(S): None |
---|
1251 | !! |
---|
1252 | !! REFERENCE(S) : |
---|
1253 | !! |
---|
1254 | !! FLOWCHART : None |
---|
1255 | !! \n |
---|
1256 | !_ |
---|
1257 | !================================================================================================================================ |
---|
1258 | |
---|
1259 | SUBROUTINE explicitsnow_melt_refrz(kjpindex,precip_rain,pgflux,soilcap,& |
---|
1260 | snowtemp,snowdz,snowrho,snowliq,snowmelt,grndflux,temp_air) |
---|
1261 | |
---|
1262 | !! 0.1 Input variables |
---|
1263 | |
---|
1264 | INTEGER(i_std), INTENT (in) :: kjpindex !! Domain size |
---|
1265 | REAL(r_std),DIMENSION (kjpindex,nsnow) :: pcapa_snow !! Heat capacity for snow |
---|
1266 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: precip_rain !! Rainfall |
---|
1267 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: temp_air !! Air temperature |
---|
1268 | REAL(r_std),DIMENSION (kjpindex),INTENT(in) :: pgflux !! Net energy into snowpack(w/m2) |
---|
1269 | REAL(r_std),DIMENSION (kjpindex),INTENT(in) :: soilcap !! Soil heat capacity |
---|
1270 | |
---|
1271 | !! 0.2 Output variables |
---|
1272 | |
---|
1273 | !! 0.3 Modified variables |
---|
1274 | |
---|
1275 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowtemp !! Snow temperature |
---|
1276 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowdz !! Snow depth |
---|
1277 | REAL(r_std),DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowrho !! Snow layer density |
---|
1278 | REAL(r_std),DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowliq !! Liquid water content |
---|
1279 | REAL(r_std),DIMENSION(kjpindex),INTENT(inout) :: grndflux !! Net energy input to soil |
---|
1280 | REAL(r_std),DIMENSION (kjpindex), INTENT(inout) :: snowmelt !! Snowmelt |
---|
1281 | |
---|
1282 | !! 0.4 Local variables |
---|
1283 | |
---|
1284 | REAL(r_std),DIMENSION (kjpindex) :: meltxs !! Residual snowmelt energy applied to underlying soil |
---|
1285 | REAL(r_std) :: enerin,melttot,hrain |
---|
1286 | REAL(r_std),DIMENSION (nsnow) :: zsnowlwe |
---|
1287 | REAL(r_std),DIMENSION (nsnow) :: flowliq |
---|
1288 | REAL(r_std),DIMENSION (kjpindex) :: snowmass |
---|
1289 | REAL(r_std),DIMENSION (nsnow) :: zphase !! Phase change (from ice to water) (J/m2) |
---|
1290 | REAL(r_std),DIMENSION (nsnow) :: zphase2 !! Phase change (from water to ice) |
---|
1291 | REAL(r_std),DIMENSION (nsnow) :: zphase3 !! Phase change related with net energy input to snowpack |
---|
1292 | REAL(r_std),DIMENSION (nsnow) :: zsnowdz !! Snow layer depth |
---|
1293 | REAL(r_std),DIMENSION (nsnow) :: zsnowmelt !! Snow melt (liquid water) (m) |
---|
1294 | REAL(r_std),DIMENSION (nsnow) :: zsnowtemp |
---|
1295 | REAL(r_std),DIMENSION (nsnow) :: zmeltxs !! Excess melt |
---|
1296 | REAL(r_std),DIMENSION (nsnow) :: zwholdmax !! Maximum liquid water holding (m) |
---|
1297 | REAL(r_std),DIMENSION (nsnow) :: zcmprsfact !! Compression factor due to densification from melting |
---|
1298 | REAL(r_std),DIMENSION (nsnow) :: zscap !! Snow heat capacity (J/m3 K) |
---|
1299 | REAL(r_std),DIMENSION (nsnow) :: zsnowliq !! (m) |
---|
1300 | REAL(r_std),DIMENSION (nsnow) :: snowtemp_old |
---|
1301 | REAL(r_std),DIMENSION (0:nsnow) :: zflowliqt !!(m) |
---|
1302 | REAL(r_std) :: zrainfall,zpcpxs |
---|
1303 | REAL(r_std) :: ztotwcap |
---|
1304 | REAL(r_std),DIMENSION(kjpindex,nsnow) :: snowdz_old,snowliq_old |
---|
1305 | INTEGER(i_std) :: jj,ji, iv |
---|
1306 | REAL(r_std),DIMENSION(nsnow) :: snowdz_old2 |
---|
1307 | REAL(r_std),DIMENSION(nsnow) :: zsnowrho |
---|
1308 | |
---|
1309 | !initialize |
---|
1310 | snowdz_old = snowdz |
---|
1311 | snowliq_old = snowliq |
---|
1312 | |
---|
1313 | DO ji = 1, kjpindex |
---|
1314 | |
---|
1315 | |
---|
1316 | snowmass(ji) = SUM(snowrho(ji,:) * snowdz(ji,:)) |
---|
1317 | IF ((snowmass(ji) .GT. 0.)) THEN |
---|
1318 | |
---|
1319 | !! 1 snow melting due to positive snowpack snow temperature |
---|
1320 | |
---|
1321 | !! 1.0 total liquid equivalent water content of each snow layer |
---|
1322 | |
---|
1323 | zsnowlwe(:) = snowrho(ji,:) * snowdz(ji,:)/ ph2o |
---|
1324 | |
---|
1325 | !! 1.1 phase change (J/m2) |
---|
1326 | |
---|
1327 | pcapa_snow(ji,:) = snowrho(ji,:)*xci |
---|
1328 | |
---|
1329 | zphase(:) = MIN(pcapa_snow(ji,:)*MAX(0.0, snowtemp(ji,:)-tp_00)* & |
---|
1330 | snowdz(ji,:), & |
---|
1331 | MAX(0.0,zsnowlwe(:)-snowliq(ji,:))*chalfu0*ph2o) |
---|
1332 | |
---|
1333 | !! 1.2 update snow liq water and temperature if melting |
---|
1334 | |
---|
1335 | zsnowmelt(:) = zphase(:)/(chalfu0*ph2o) |
---|
1336 | |
---|
1337 | !! 1.3 cool off the snow layer temperature due to melt |
---|
1338 | |
---|
1339 | zsnowtemp(:) = snowtemp(ji,:) - zphase(:)/(pcapa_snow(ji,:)* snowdz(ji,:)) |
---|
1340 | |
---|
1341 | snowtemp(ji,:) = MIN(tp_00, zsnowtemp(:)) |
---|
1342 | |
---|
1343 | zmeltxs(:) = (zsnowtemp(:)-snowtemp(ji,:))*pcapa_snow(ji,:)*snowdz(ji,:) |
---|
1344 | |
---|
1345 | !! 1.4 loss of snowpack depth and liquid equivalent water |
---|
1346 | |
---|
1347 | zwholdmax(:) = snow3lhold_1d(snowrho(ji,:),snowdz(ji,:)) ! 1 dimension |
---|
1348 | |
---|
1349 | zcmprsfact(:) = (zsnowlwe(:)-MIN(snowliq(ji,:)+zsnowmelt(:),zwholdmax(:)))/ & |
---|
1350 | (zsnowlwe(:)-MIN(snowliq(ji,:),zwholdmax(:))) |
---|
1351 | |
---|
1352 | snowdz(ji,:) = snowdz(ji,:)*zcmprsfact(:) |
---|
1353 | |
---|
1354 | snowrho(ji,:) = zsnowlwe(:)*ph2o/snowdz(ji,:) |
---|
1355 | |
---|
1356 | snowliq(ji,:) = snowliq(ji,:) + zsnowmelt(:) |
---|
1357 | |
---|
1358 | |
---|
1359 | !! 2 snow refreezing process |
---|
1360 | !! 2.1 freeze liquid water in any layer |
---|
1361 | zscap(:) = snowrho(ji,:)*xci !J K-1 m-3 |
---|
1362 | zphase2(:) = MIN(zscap(:)* & |
---|
1363 | MAX(0.0, tp_00 - snowtemp(ji,:))*snowdz(ji,:), & |
---|
1364 | snowliq(ji,:)*chalfu0*ph2o) |
---|
1365 | |
---|
1366 | ! warm layer and reduce liquid if freezing occurs |
---|
1367 | zsnowdz(:) = MAX(xsnowdmin/nsnow, snowdz(ji,:)) |
---|
1368 | snowtemp_old(:) = snowtemp(ji,:) |
---|
1369 | snowtemp(ji,:) = snowtemp(ji,:) + zphase2(:)/(zscap(:)*zsnowdz(:)) |
---|
1370 | |
---|
1371 | ! Reduce liquid portion if freezing occurs: |
---|
1372 | snowliq(ji,:) = snowliq(ji,:) - ( (snowtemp(ji,:)-snowtemp_old(:))* & |
---|
1373 | zscap(:)*zsnowdz(:)/(chalfu0*ph2o) ) |
---|
1374 | snowliq(ji,:) = MAX(snowliq(ji,:), 0.0) |
---|
1375 | !! 3. thickness change due to snowmelt in excess of holding capacity |
---|
1376 | zwholdmax(:) = snow3lhold_1d(snowrho(ji,:),snowdz(ji,:)) ! 1 dimension |
---|
1377 | flowliq(:) = MAX(0.,(snowliq(ji,:)-zwholdmax(:))) |
---|
1378 | snowliq(ji,:) = snowliq(ji,:) - flowliq(:) |
---|
1379 | snowdz(ji,:) = snowdz(ji,:) - flowliq(:)*ph2o/snowrho(ji,:) |
---|
1380 | ! to prevent possible very small negative values (machine |
---|
1381 | ! prescision as snow vanishes |
---|
1382 | snowdz(ji,:) = MAX(0.0, snowdz(ji,:)) |
---|
1383 | |
---|
1384 | !! 4. liquid water flow |
---|
1385 | ztotwcap = SUM(zwholdmax(:)) |
---|
1386 | ! Rain entering snow (m): |
---|
1387 | !ORCHIDEE has assumed that all precipitation entering snow has |
---|
1388 | !left the snowpack and finally become runoff in hydrolc_soil. Here we just put zrainfall as 0.0 |
---|
1389 | !!zrainfall = precip_rain(ji)/ph2o ! rainfall (m) |
---|
1390 | zrainfall = 0.0 |
---|
1391 | |
---|
1392 | zflowliqt(0) = MIN(zrainfall,ztotwcap) |
---|
1393 | ! Rain assumed to directly pass through the pack to runoff (m): |
---|
1394 | zpcpxs = zrainfall - zflowliqt(0) |
---|
1395 | ! |
---|
1396 | DO jj=1,nsnow |
---|
1397 | zflowliqt(jj) = flowliq(jj) |
---|
1398 | ENDDO |
---|
1399 | |
---|
1400 | ! translated into a density increase: |
---|
1401 | flowliq(:) = 0.0 ! clear this array for work |
---|
1402 | zsnowliq(:) = snowliq(ji,:) ! reset liquid water content |
---|
1403 | ! |
---|
1404 | |
---|
1405 | DO jj=1,nsnow |
---|
1406 | snowliq(ji,jj) = snowliq(ji,jj) + zflowliqt(jj-1) |
---|
1407 | flowliq(jj) = MAX(0.0, (snowliq(ji,jj)-zwholdmax(jj))) |
---|
1408 | snowliq(ji,jj) = snowliq(ji,jj) - flowliq(jj) |
---|
1409 | |
---|
1410 | !Modified by Tao Wang based on previous ISBA-ES scheme |
---|
1411 | snowrho(ji,jj) = snowrho(ji,jj) + (snowliq(ji,jj) - zsnowliq(jj))* & |
---|
1412 | & ph2o/MAX(xsnowdmin/nsnow,snowdz(ji,jj)) |
---|
1413 | |
---|
1414 | zflowliqt(jj) = zflowliqt(jj) + flowliq(jj) |
---|
1415 | ENDDO |
---|
1416 | |
---|
1417 | snowmelt(ji) = snowmelt(ji) + (zflowliqt(nsnow) + zpcpxs) * ph2o |
---|
1418 | |
---|
1419 | ! excess heat from melting, using it to warm underlying ground to conserve energy |
---|
1420 | meltxs(ji) = SUM(zmeltxs(:))/dt_sechiba ! (W/m2) |
---|
1421 | |
---|
1422 | ! energy flux into the soil |
---|
1423 | grndflux(ji) = grndflux(ji) + meltxs(ji) |
---|
1424 | |
---|
1425 | ENDIF |
---|
1426 | |
---|
1427 | ENDDO |
---|
1428 | |
---|
1429 | END SUBROUTINE explicitsnow_melt_refrz |
---|
1430 | |
---|
1431 | !================================================================================================================================ |
---|
1432 | !! SUBROUTINE : explicitsnow_levels |
---|
1433 | !! |
---|
1434 | !>\BRIEF Computes snow discretization based on given total snow depth |
---|
1435 | !! |
---|
1436 | !! DESCRIPTION : |
---|
1437 | !! RECENT CHANGE(S) : None |
---|
1438 | !! |
---|
1439 | !! MAIN OUTPUT VARIABLE(S): None |
---|
1440 | !! |
---|
1441 | !! REFERENCE(S) : |
---|
1442 | !! |
---|
1443 | !! FLOWCHART : None |
---|
1444 | !! \n |
---|
1445 | !_ |
---|
1446 | !================================================================================================================================ |
---|
1447 | SUBROUTINE explicitsnow_levels( kjpindex,snow_thick, snowdz) |
---|
1448 | |
---|
1449 | !! 0.1 Input variables |
---|
1450 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
1451 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: snow_thick !! Total snow depth |
---|
1452 | |
---|
1453 | !! 0.2 Output variables |
---|
1454 | |
---|
1455 | !! 0.3 Modified variables |
---|
1456 | |
---|
1457 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(inout) :: snowdz !! Snow depth |
---|
1458 | |
---|
1459 | !! 0.4 Local variables |
---|
1460 | |
---|
1461 | INTEGER(i_std) :: il,it,ji |
---|
1462 | INTEGER(i_std) :: i,j, ix |
---|
1463 | REAL(r_std), DIMENSION(kjpindex) :: xi, xf |
---|
1464 | REAL(r_std), PARAMETER, DIMENSION(3) :: ZSGCOEF1 = (/0.25, 0.50, 0.25/) !! Snow grid parameters |
---|
1465 | REAL(r_std), PARAMETER, DIMENSION(2) :: ZSGCOEF2 = (/0.05, 0.34/) !! Snow grid parameters |
---|
1466 | REAL(r_std), PARAMETER :: ZSNOWTRANS = 0.20 !! Minimum total snow depth at which surface layer thickness is constant (m) |
---|
1467 | REAL(r_std), PARAMETER :: XSNOWCRITD = 0.03 !! (m) |
---|
1468 | |
---|
1469 | DO ji=1,kjpindex |
---|
1470 | IF ( snow_thick(ji) .LE. (XSNOWCRITD+0.01)) THEN |
---|
1471 | |
---|
1472 | snowdz(ji,1) = MIN(0.01, snow_thick(ji)/nsnow) |
---|
1473 | snowdz(ji,3) = MIN(0.01, snow_thick(ji)/nsnow) |
---|
1474 | snowdz(ji,2) = snow_thick(ji) - snowdz(ji,1) - snowdz(ji,3) |
---|
1475 | |
---|
1476 | ENDIF |
---|
1477 | ENDDO |
---|
1478 | |
---|
1479 | WHERE ( snow_thick(:) .LE. ZSNOWTRANS .AND. & |
---|
1480 | snow_thick(:) .GT. (XSNOWCRITD+0.01) ) |
---|
1481 | ! |
---|
1482 | snowdz(:,1) = snow_thick(:)*ZSGCOEF1(1) |
---|
1483 | snowdz(:,2) = snow_thick(:)*ZSGCOEF1(2) |
---|
1484 | snowdz(:,3) = snow_thick(:)*ZSGCOEF1(3) |
---|
1485 | ! |
---|
1486 | END WHERE |
---|
1487 | |
---|
1488 | DO ji = 1,kjpindex |
---|
1489 | IF (snow_thick(ji) .GT. ZSNOWTRANS) THEN |
---|
1490 | snowdz(ji,1) = ZSGCOEF2(1) |
---|
1491 | snowdz(ji,2) = (snow_thick(ji)-ZSGCOEF2(1))*ZSGCOEF2(2) + ZSGCOEF2(1) |
---|
1492 | !When using simple finite differences, limit the thickness |
---|
1493 | !factor between the top and 2nd layers to at most 10 |
---|
1494 | snowdz(ji,2) = MIN(10*ZSGCOEF2(1), snowdz(ji,2) ) |
---|
1495 | snowdz(ji,3) = snow_thick(ji) - snowdz(ji,2) - snowdz(ji,1) |
---|
1496 | |
---|
1497 | ENDIF |
---|
1498 | ENDDO |
---|
1499 | |
---|
1500 | |
---|
1501 | END SUBROUTINE explicitsnow_levels |
---|
1502 | |
---|
1503 | !! |
---|
1504 | !================================================================================================================================ |
---|
1505 | !! SUBROUTINE : explicitsnow_profile |
---|
1506 | !! |
---|
1507 | !>\BRIEF |
---|
1508 | !! |
---|
1509 | !! DESCRIPTION : In this routine solves the numerical soil thermal scheme, ie calculates the new soil temperature profile. |
---|
1510 | !! |
---|
1511 | !! RECENT CHANGE(S) : None |
---|
1512 | !! |
---|
1513 | !! MAIN OUTPUT VARIABLE(S): |
---|
1514 | !! |
---|
1515 | !! REFERENCE(S) : |
---|
1516 | !! |
---|
1517 | !! FLOWCHART : None |
---|
1518 | !! \n |
---|
1519 | !_ |
---|
1520 | !================================================================================================================================ |
---|
1521 | SUBROUTINE explicitsnow_profile (kjpindex, cgrnd_snow,dgrnd_snow,lambda_snow,temp_sol_new, snowtemp,snowdz,temp_sol_add) |
---|
1522 | |
---|
1523 | !! 0. Variables and parameter declaration |
---|
1524 | |
---|
1525 | !! 0.1 Input variables |
---|
1526 | |
---|
1527 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (unitless) |
---|
1528 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_sol_new !! skin temperature |
---|
1529 | REAL(r_std), DIMENSION (kjpindex,nsnow),INTENT (in) :: cgrnd_snow !! Integration coefficient for snow numerical scheme |
---|
1530 | REAL(r_std), DIMENSION (kjpindex,nsnow),INTENT (in) :: dgrnd_snow !! Integration coefficient for snow numerical scheme |
---|
1531 | REAL(r_std), DIMENSION (kjpindex),INTENT(in) :: lambda_snow !! Coefficient of the linear extrapolation of surface temperature |
---|
1532 | REAL(r_std), DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow layer thickness |
---|
1533 | REAL(r_std), DIMENSION (kjpindex),INTENT(inout) :: temp_sol_add !! Additional energy to melt snow for snow ablation case (K) |
---|
1534 | |
---|
1535 | !! 0.3 Modified variable |
---|
1536 | |
---|
1537 | !! 0.2 Output variables |
---|
1538 | |
---|
1539 | !! 0.3 Modified variables |
---|
1540 | REAL(r_std),DIMENSION (kjpindex,nsnow), INTENT (inout) :: snowtemp |
---|
1541 | |
---|
1542 | !! 0.4 Local variables |
---|
1543 | |
---|
1544 | INTEGER(i_std) :: ji, jg |
---|
1545 | !_ |
---|
1546 | !================================================================================================================================ |
---|
1547 | !! 1. Computes the snow temperatures ptn. |
---|
1548 | DO ji = 1,kjpindex |
---|
1549 | IF (SUM(snowdz(ji,:)) .GT. 0) THEN |
---|
1550 | snowtemp(ji,1) = (lambda_snow(ji) * cgrnd_snow(ji,1) + (temp_sol_new(ji)+temp_sol_add(ji))) / & |
---|
1551 | (lambda_snow(ji) * (un - dgrnd_snow(ji,1)) + un) |
---|
1552 | temp_sol_add(ji) = zero |
---|
1553 | DO jg = 1,nsnow-1 |
---|
1554 | snowtemp(ji,jg+1) = cgrnd_snow(ji,jg) + dgrnd_snow(ji,jg) * snowtemp(ji,jg) |
---|
1555 | ENDDO |
---|
1556 | ENDIF |
---|
1557 | ENDDO |
---|
1558 | IF (printlev>=3) WRITE (numout,*) ' explicitsnow_profile done ' |
---|
1559 | |
---|
1560 | END SUBROUTINE explicitsnow_profile |
---|
1561 | |
---|
1562 | END MODULE explicitsnow |
---|