1 | ! ============================================================================================================================== |
---|
2 | ! MODULE : enerbil |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF This module computes the energy balance on |
---|
10 | !! continental surfaces. The module contains the following subroutines: enerbil_initialize, enerbil_main, |
---|
11 | !! enerbil_clear, enerbil_begin, enerbil_surftemp, enerbil_flux, enerbil_evapveg, |
---|
12 | !! enerbil_fusion and enerbil_t2mdiag |
---|
13 | !! |
---|
14 | !!\n DESCRIPTION : |
---|
15 | !! \n |
---|
16 | !! \latexonly |
---|
17 | !! \input{enerbil_intro2.tex} |
---|
18 | !! \endlatexonly |
---|
19 | !! |
---|
20 | !! IMPORTANT NOTE: The coefficients A and B are defined differently than those in the referenced |
---|
21 | !! literature and from those in the code and documentation of the atmospheric model LMDZ. For the |
---|
22 | !! avoidance of doubt, the coefficients as described here always refer to the ORCHIDEE coefficients, |
---|
23 | !! and are denoted as such (with the marker: ORC). The re-definition of the coefficients takes place |
---|
24 | !! within LMDZ before they are passed to ORCHIDEE. The following sequence of expressions is to be |
---|
25 | !! found within the LMDZ module 'surf_land_orchidee':\n |
---|
26 | !! |
---|
27 | !! \latexonly |
---|
28 | !! \input{surflandLMDZ1.tex} |
---|
29 | !! \input{surflandLMDZ2.tex} |
---|
30 | !! \input{surflandLMDZ3.tex} |
---|
31 | !! \input{surflandLMDZ4.tex} |
---|
32 | !! \endlatexonly |
---|
33 | !! \n |
---|
34 | !! |
---|
35 | !! \latexonly |
---|
36 | !! \input{enerbil_symbols.tex} |
---|
37 | !! \endlatexonly |
---|
38 | !! |
---|
39 | !! RECENT CHANGE(S) : None |
---|
40 | !! |
---|
41 | !! REFERENCE(S) : None |
---|
42 | !! |
---|
43 | !! SVN : |
---|
44 | !! $HeadURL$ |
---|
45 | !! $Date$ |
---|
46 | !! $Revision$ |
---|
47 | !! \n |
---|
48 | !_ ================================================================================================================================ |
---|
49 | |
---|
50 | MODULE enerbil |
---|
51 | |
---|
52 | ! routines called : restput, restget |
---|
53 | ! |
---|
54 | ! modules used |
---|
55 | USE ioipsl |
---|
56 | USE xios_orchidee |
---|
57 | USE ioipsl_para |
---|
58 | USE constantes |
---|
59 | USE pft_parameters |
---|
60 | USE qsat_moisture |
---|
61 | USE sechiba_io |
---|
62 | USE constantes_soil |
---|
63 | USE explicitsnow |
---|
64 | |
---|
65 | IMPLICIT NONE |
---|
66 | |
---|
67 | PRIVATE |
---|
68 | PUBLIC :: enerbil_main, enerbil_fusion, enerbil_initialize, enerbil_finalize, enerbil_clear |
---|
69 | |
---|
70 | ! variables used inside enerbil module : declaration and initialisation |
---|
71 | |
---|
72 | ! one dimension array allocated, computed and used in enerbil module exclusively |
---|
73 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: psold !! Old surface dry static energy (J kg^{-1}) |
---|
74 | !$OMP THREADPRIVATE(psold) |
---|
75 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: qsol_sat !! Saturated specific humudity for old temperature (kg kg^{-1}) |
---|
76 | !$OMP THREADPRIVATE(qsol_sat) |
---|
77 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: pdqsold !! Deriv. of saturated specific humidity at old temp |
---|
78 | !! (kg (kg s)^{-1}) |
---|
79 | !$OMP THREADPRIVATE(pdqsold) |
---|
80 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: psnew !! New surface static energy (J kg^{-1}) |
---|
81 | !$OMP THREADPRIVATE(psnew) |
---|
82 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: qsol_sat_new !! New saturated surface air moisture (kg kg^{-1}) |
---|
83 | !$OMP THREADPRIVATE(qsol_sat_new) |
---|
84 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: netrad !! Net radiation (W m^{-2}) |
---|
85 | !$OMP THREADPRIVATE(netrad) |
---|
86 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: lwabs !! LW radiation absorbed by the surface (W m^{-2}) |
---|
87 | !$OMP THREADPRIVATE(lwabs) |
---|
88 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: lwup !! Long-wave up radiation (W m^{-2}) |
---|
89 | !$OMP THREADPRIVATE(lwup) |
---|
90 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: lwnet !! Net Long-wave radiation (W m^{-2}) |
---|
91 | !$OMP THREADPRIVATE(lwnet) |
---|
92 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: fluxsubli !! Energy of sublimation (mm day^{-1}) |
---|
93 | !$OMP THREADPRIVATE(fluxsubli) |
---|
94 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: qsat_air !! Air saturated specific humidity (kg kg^{-1}) |
---|
95 | !$OMP THREADPRIVATE(qsat_air) |
---|
96 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: tair !! Air temperature (K) |
---|
97 | !$OMP THREADPRIVATE(tair) |
---|
98 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: q_sol_pot !! Potential surface humidity |
---|
99 | !$OMP THREADPRIVATE(q_sol_pot) |
---|
100 | REAL(r_std), ALLOCATABLE, SAVE, DIMENSION (:) :: temp_sol_pot !! Potential surface temperature (unstressed) |
---|
101 | !$OMP THREADPRIVATE(temp_sol_pot) |
---|
102 | |
---|
103 | |
---|
104 | CONTAINS |
---|
105 | !! ============================================================================================================================= |
---|
106 | !! SUBROUTINE: enerbil_initialize |
---|
107 | !! |
---|
108 | !>\BRIEF Allocate module variables, read from restart file or initialize with default values |
---|
109 | !! |
---|
110 | !! DESCRIPTION: The purpose of this module is, firstly, to allocate space |
---|
111 | !! in memory for key variables within the 'enerbil' module. The second task is to retrieve previous data |
---|
112 | !! from the restart file. If the variables are not in restart file, default initialization is done. |
---|
113 | !! |
---|
114 | !! RECENT CHANGE(S): None |
---|
115 | !! |
---|
116 | !! MAIN OUTPUT VARIABLE(S): |
---|
117 | !! |
---|
118 | !! REFERENCE(S): None |
---|
119 | !! |
---|
120 | !! FLOWCHART: None |
---|
121 | !! \n |
---|
122 | !_ ============================================================================================================================== |
---|
123 | |
---|
124 | SUBROUTINE enerbil_initialize (kjit, kjpindex, index, rest_id, & |
---|
125 | temp_air, qair, & |
---|
126 | temp_sol, temp_sol_new, tsol_rad, t2mdiag, & |
---|
127 | evapot, evapot_corr, qsurf, fluxsens, & |
---|
128 | fluxlat, vevapp ) |
---|
129 | |
---|
130 | !! 0 Variable and parameter description |
---|
131 | !! 0.1 Input variables |
---|
132 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (-) |
---|
133 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
134 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map (-) |
---|
135 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier (-) |
---|
136 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_air !! Air temperature (K) |
---|
137 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity (kg kg^{-1}) |
---|
138 | |
---|
139 | !! 0.2 Output variables |
---|
140 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol !! Soil temperature (K) |
---|
141 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol_new !! New soil temperature (K) |
---|
142 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: tsol_rad !! Tsol_rad (W m^{-2}) |
---|
143 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: t2mdiag !! Diagnostic temperature at 2m above ground (K) |
---|
144 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: evapot !! Soil Potential Evaporation (mm/tstep) |
---|
145 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: evapot_corr !! Soil Potential Evaporation Correction (mm/tstep) |
---|
146 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: qsurf !! Surface specific humidity (kg kg^{-1}) |
---|
147 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxsens !! Sensible heat flux (W m^{-2}) |
---|
148 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxlat !! Latent heat flux (W m^{-2}) |
---|
149 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapp !! Total of evaporation (mm day^{-1}) |
---|
150 | |
---|
151 | |
---|
152 | !! 0.4 Local variables |
---|
153 | INTEGER(i_std) :: ier |
---|
154 | |
---|
155 | !_ ================================================================================================================================ |
---|
156 | |
---|
157 | IF (printlev>=3) WRITE (numout,*) 'enerbil_initialize : Start initillization' |
---|
158 | |
---|
159 | !! 1. Allocate module variables |
---|
160 | ALLOCATE (psold(kjpindex),stat=ier) |
---|
161 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable ','','') |
---|
162 | |
---|
163 | ALLOCATE (qsol_sat(kjpindex),stat=ier) |
---|
164 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable ','','') |
---|
165 | |
---|
166 | ALLOCATE (pdqsold(kjpindex),stat=ier) |
---|
167 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable ','','') |
---|
168 | |
---|
169 | ALLOCATE (psnew(kjpindex),stat=ier) |
---|
170 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable ','','') |
---|
171 | |
---|
172 | ALLOCATE (qsol_sat_new(kjpindex),stat=ier) |
---|
173 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable qsol_sat_new','','') |
---|
174 | |
---|
175 | ALLOCATE (netrad(kjpindex),stat=ier) |
---|
176 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable netrad','','') |
---|
177 | |
---|
178 | ALLOCATE (lwabs(kjpindex),stat=ier) |
---|
179 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable lwabs','','') |
---|
180 | |
---|
181 | ALLOCATE (lwup(kjpindex),stat=ier) |
---|
182 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable lwup','','') |
---|
183 | |
---|
184 | ALLOCATE (lwnet(kjpindex),stat=ier) |
---|
185 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable lwnet','','') |
---|
186 | |
---|
187 | ALLOCATE (fluxsubli(kjpindex),stat=ier) |
---|
188 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable fluxsubli','','') |
---|
189 | |
---|
190 | ALLOCATE (qsat_air(kjpindex),stat=ier) |
---|
191 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable qsat_air','','') |
---|
192 | |
---|
193 | ALLOCATE (tair(kjpindex),stat=ier) |
---|
194 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable tair','','') |
---|
195 | |
---|
196 | ALLOCATE (q_sol_pot(kjpindex),stat=ier) |
---|
197 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable q_sol_pot','','') |
---|
198 | |
---|
199 | ALLOCATE (temp_sol_pot(kjpindex),stat=ier) |
---|
200 | IF (ier /= 0) CALL ipslerr_p(3,'enerbil_initialize','Problem in allocation of variable temp_sol_pot','','') |
---|
201 | |
---|
202 | !! 2. Initialize variables from restart file or by default values |
---|
203 | !! The variables read are: temp_sol (surface temperature), qsurf (near surface specific humidity), |
---|
204 | !! evapot (soil potential evaporation), evapot_corr (corrected soil potential evaporation), tsolrad |
---|
205 | !! (radiative surface temperature), evapora (evaporation), fluxlat (latent heat flux), fluxsens |
---|
206 | !! (sensible heat flux) and temp_sol_new (new surface temperature). |
---|
207 | IF (printlev>=3) WRITE (numout,*) 'Read a restart file for ENERBIL variables' |
---|
208 | |
---|
209 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
210 | CALL ioconf_setatt_p('LONG_NAME','Surface temperature') |
---|
211 | CALL restget_p (rest_id, 'temp_sol', nbp_glo, 1, 1, kjit, .TRUE., temp_sol, "gather", nbp_glo, index_g) |
---|
212 | |
---|
213 | !Config Key = ENERBIL_TSURF |
---|
214 | !Config Desc = Initial temperature if not found in restart |
---|
215 | !Config If = OK_SECHIBA |
---|
216 | !Config Def = 280. |
---|
217 | !Config Help = The initial value of surface temperature if its value is not found |
---|
218 | !Config in the restart file. This should only be used if the model is |
---|
219 | !Config started without a restart file. |
---|
220 | !Config Units = Kelvin [K] |
---|
221 | CALL setvar_p (temp_sol, val_exp,'ENERBIL_TSURF', 280._r_std) |
---|
222 | |
---|
223 | ! Initialize temp_sol_new with temp_sol. These variables are always equal in the beginning of a new time step. |
---|
224 | temp_sol_new(:) = temp_sol(:) |
---|
225 | |
---|
226 | CALL ioconf_setatt_p('UNITS', 'g/g') |
---|
227 | CALL ioconf_setatt_p('LONG_NAME','near surface specific humidity') |
---|
228 | CALL restget_p (rest_id, 'qsurf', nbp_glo, 1, 1, kjit, .TRUE., qsurf, "gather", nbp_glo, index_g) |
---|
229 | IF ( ALL( qsurf(:) .EQ. val_exp ) ) THEN |
---|
230 | qsurf(:) = qair(:) |
---|
231 | ENDIF |
---|
232 | |
---|
233 | CALL ioconf_setatt_p('UNITS', 'mm day^{-1}') |
---|
234 | CALL ioconf_setatt_p('LONG_NAME','Soil Potential Evaporation') |
---|
235 | CALL restget_p (rest_id, 'evapot', nbp_glo, 1, 1, kjit, .TRUE., evapot, "gather", nbp_glo, index_g) |
---|
236 | CALL setvar_p (evapot, val_exp, 'ENERBIL_EVAPOT', zero) |
---|
237 | |
---|
238 | CALL ioconf_setatt_p('UNITS', 'mm day^{-1}') |
---|
239 | CALL ioconf_setatt_p('LONG_NAME','Corrected Soil Potential Evaporation') |
---|
240 | CALL restget_p (rest_id, 'evapot_corr', nbp_glo, 1, 1, kjit, .TRUE., evapot_corr, "gather", nbp_glo, index_g) |
---|
241 | !Config Key = ENERBIL_EVAPOT |
---|
242 | !Config Desc = Initial Soil Potential Evaporation |
---|
243 | !Config If = OK_SECHIBA |
---|
244 | !Config Def = 0.0 |
---|
245 | !Config Help = The initial value of soil potential evaporation if its value |
---|
246 | !Config is not found in the restart file. This should only be used if |
---|
247 | !Config the model is started without a restart file. |
---|
248 | !Config Units = |
---|
249 | CALL setvar_p (evapot_corr, val_exp, 'ENERBIL_EVAPOT', zero) |
---|
250 | |
---|
251 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
252 | CALL ioconf_setatt_p('LONG_NAME','Radiative surface temperature') |
---|
253 | CALL restget_p (rest_id, 'tsolrad', nbp_glo, 1, 1, kjit, .TRUE., tsol_rad, "gather", nbp_glo, index_g) |
---|
254 | IF ( ALL( tsol_rad(:) .EQ. val_exp ) ) THEN |
---|
255 | tsol_rad(:) = temp_sol(:) |
---|
256 | ENDIF |
---|
257 | |
---|
258 | !! 1.3 Set the fluxes so that we have something reasonable and not NaN on some machines |
---|
259 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2/dt') |
---|
260 | CALL ioconf_setatt_p('LONG_NAME','Evaporation') |
---|
261 | CALL restget_p (rest_id, 'evapora', nbp_glo, 1, 1, kjit, .TRUE., vevapp, "gather", nbp_glo, index_g) |
---|
262 | IF ( ALL( vevapp(:) .EQ. val_exp ) ) THEN |
---|
263 | vevapp(:) = zero |
---|
264 | ENDIF |
---|
265 | |
---|
266 | CALL ioconf_setatt_p('UNITS', 'W/m^2') |
---|
267 | CALL ioconf_setatt_p('LONG_NAME','Latent heat flux') |
---|
268 | CALL restget_p (rest_id, 'fluxlat', nbp_glo, 1, 1, kjit, .TRUE., fluxlat, "gather", nbp_glo, index_g) |
---|
269 | IF ( ALL( fluxlat(:) .EQ. val_exp ) ) THEN |
---|
270 | fluxlat(:) = zero |
---|
271 | ENDIF |
---|
272 | |
---|
273 | CALL ioconf_setatt_p('UNITS', 'W/m^2') |
---|
274 | CALL ioconf_setatt_p('LONG_NAME','Sensible heat flux') |
---|
275 | CALL restget_p (rest_id, 'fluxsens', nbp_glo, 1, 1, kjit, .TRUE., fluxsens, "gather", nbp_glo, index_g) |
---|
276 | IF ( ALL( fluxsens(:) .EQ. val_exp ) ) THEN |
---|
277 | fluxsens(:) = zero |
---|
278 | ENDIF |
---|
279 | |
---|
280 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
281 | CALL ioconf_setatt_p('LONG_NAME','Potential surface temperature') |
---|
282 | CALL restget_p (rest_id, 'tempsolpot', nbp_glo, 1, 1, kjit, .TRUE., temp_sol_pot, "gather", nbp_glo, index_g) |
---|
283 | IF ( ALL( temp_sol_pot(:) .EQ. val_exp ) ) THEN |
---|
284 | temp_sol_pot = temp_sol |
---|
285 | ENDIF |
---|
286 | |
---|
287 | CALL ioconf_setatt_p('UNITS', 'kg/m^2') |
---|
288 | CALL ioconf_setatt_p('LONG_NAME','Potential saturated surface humidity') |
---|
289 | CALL restget_p (rest_id, 'qsolpot', nbp_glo, 1, 1, kjit, .TRUE., q_sol_pot, "gather", nbp_glo, index_g) |
---|
290 | IF ( ALL( q_sol_pot(:) .EQ. val_exp ) ) THEN |
---|
291 | q_sol_pot = qsurf |
---|
292 | ENDIF |
---|
293 | |
---|
294 | !! 3. Initialize temperature at 2m |
---|
295 | CALL enerbil_t2mdiag (kjpindex, temp_air, t2mdiag) |
---|
296 | |
---|
297 | END SUBROUTINE enerbil_initialize |
---|
298 | |
---|
299 | |
---|
300 | |
---|
301 | !! =========================================================================================================================== |
---|
302 | !! SUBROUTINE : enerbil_main |
---|
303 | !! |
---|
304 | !! |
---|
305 | !>\BRIEF Calls each part of the energy budget calculation in sequence |
---|
306 | !! |
---|
307 | !! DESCRIPTION : |
---|
308 | !! This is the main routine for the 'enerbil' module. It is called |
---|
309 | !! once during the initialisation of ORCHIDEE, and then once for each time step. It is called a final |
---|
310 | !! time at the culmination of the last time step, for the writing of a restart file.\n |
---|
311 | !! |
---|
312 | !! The algorithm first calls 'enerbil_begin' for initialisation, followed by 'enerbil_surftemp' to |
---|
313 | !! calculate the surface static energy and the saturated surface humidity for the new time step. |
---|
314 | !! Next is the module 'enerbil_flux' which calculates the new surface temperature, the net radiation in |
---|
315 | !! the surface layer, the total evaporation and the latent and sensible heat fluxes. Finally comes |
---|
316 | !! 'enerbil_evapveg', which calculates the evaporation and transpiration from the vegetation.\n |
---|
317 | |
---|
318 | !! \n |
---|
319 | !! |
---|
320 | !! RECENT CHANGE(S): None |
---|
321 | !! |
---|
322 | !! MAIN OUTPUT VARIABLE(S) : evapot, evapot_corr, temp_sol, qsurf, fluxsens, fluxlat, tsol_rad, |
---|
323 | !! vevapp, temp_sol_new, vevapnu, vevapsno, transpir, vevapwet, t2mdiag |
---|
324 | !! |
---|
325 | !! REFERENCE(S) : |
---|
326 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
327 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
328 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
329 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
330 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
331 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
332 | !! interface avec la surface planetaire dans LMDZ, Technical note, available (22/12/11): |
---|
333 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
334 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
335 | !! sur le cycle de l'eau, PhD Thesis, available (22/12/11): |
---|
336 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pdf |
---|
337 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
338 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
339 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
340 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
341 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
342 | !! Interscience Publishers\n |
---|
343 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
344 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
345 | !! |
---|
346 | !! FLOWCHART : |
---|
347 | !! \latexonly |
---|
348 | !! \includegraphics[scale=0.5]{enerbil_main_flowchart.png} |
---|
349 | !! \endlatexonly |
---|
350 | !! \n |
---|
351 | !_ ============================================================================================================================== |
---|
352 | |
---|
353 | SUBROUTINE enerbil_main (kjit, kjpindex, & |
---|
354 | & index, indexveg, zlev, lwdown, swnet, epot_air, temp_air, u, v, petAcoef, petBcoef, & |
---|
355 | & qair, peqAcoef, peqBcoef, pb, rau, vbeta, valpha, vbeta1, vbeta2, vbeta3, vbeta3pot, vbeta4, vbeta5, & |
---|
356 | & emis, soilflx, soilcap, q_cdrag, humrel, fluxsens, fluxlat, & |
---|
357 | & vevapp, transpir, transpot, vevapnu, vevapwet, vevapsno, vevapflo, t2mdiag, temp_sol, tsol_rad, & |
---|
358 | & temp_sol_new, qsurf, evapot, evapot_corr, rest_id, hist_id, hist2_id, & |
---|
359 | & precip_rain, pgflux, snowdz, temp_sol_add) |
---|
360 | |
---|
361 | |
---|
362 | !! 0 Variable and parameter description |
---|
363 | |
---|
364 | !! 0.1 Input variables |
---|
365 | |
---|
366 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (-) |
---|
367 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
368 | INTEGER(i_std),INTENT (in) :: rest_id,hist_id !! _Restart_ file and _history_ file identifier (-) |
---|
369 | INTEGER(i_std),INTENT (in) :: hist2_id !! _history_ file 2 identifier (-) |
---|
370 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map (-) |
---|
371 | INTEGER(i_std),DIMENSION(kjpindex*nvm), INTENT(in) :: indexveg !! Indeces of the points on the 3D map |
---|
372 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
373 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: lwdown !! Down-welling long-wave flux (W m^{-2}) |
---|
374 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: swnet !! Net surface short-wave flux (W m^{-2}) |
---|
375 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: epot_air !! Air potential energy (?? J) |
---|
376 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_air !! Air temperature (K) |
---|
377 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u !! Eastward Lowest level wind speed (m s^{-1}) |
---|
378 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: v !! Northward Lowest level wind speed (m s^{-1}) |
---|
379 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petAcoef !! PetAcoef (see note) |
---|
380 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petBcoef !! PetBcoef (see note) |
---|
381 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity (kg kg^{-1}) |
---|
382 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqAcoef !! PeqAcoef (see note) |
---|
383 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqBcoef !! PeqBcoef (see note) |
---|
384 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: pb !! Lowest level pressure (hPa) |
---|
385 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: rau !! Air density (kg m^{-3}) |
---|
386 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta !! Resistance coefficient (-) |
---|
387 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: valpha !! Resistance coefficient (-) |
---|
388 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta1 !! Snow resistance (-) |
---|
389 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta4 !! Bare soil resistance (-) |
---|
390 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta5 !! Floodplains resistance |
---|
391 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: emis !! Emissivity (-) |
---|
392 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilflx !! Effective ground heat flux including both snow and soil (W m^{-2}) |
---|
393 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilcap !! Soil calorific capacity including both snow and soil (J K^{-1]) |
---|
394 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: q_cdrag !! Surface drag (m s^{-1}) |
---|
395 | |
---|
396 | REAL(r_std),DIMENSION (kjpindex, nvm), INTENT (in) :: humrel !! Soil moisture stress (within range 0 to 1) |
---|
397 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta2 !! Interception resistance (-) |
---|
398 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta3 !! Vegetation resistance (-) |
---|
399 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta3pot !! Vegetation resistance for potential transpiration |
---|
400 | REAL(r_std),DIMENSION (kjpindex),INTENT (in) :: precip_rain !! Rainfall |
---|
401 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth at each snow layer |
---|
402 | |
---|
403 | !! 0.2 Output variables |
---|
404 | |
---|
405 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapnu !! Bare soil evaporation (mm day^{-1}) |
---|
406 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapsno !! Snow evaporation (mm day^{-1}) |
---|
407 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapflo !! Floodplains evaporation |
---|
408 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: transpir !! Transpiration (mm day^{-1}) |
---|
409 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: transpot !! Potential transpiration |
---|
410 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: vevapwet !! Interception (mm day^{-1}) |
---|
411 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: t2mdiag !! Diagnostic temperature at 2m above ground (K) |
---|
412 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol_new !! New soil temperature (K) |
---|
413 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol_add !! Additional energy to melt snow for snow ablation case (K) |
---|
414 | |
---|
415 | !! 0.3 Modified variables |
---|
416 | |
---|
417 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: evapot !! Soil Potential Evaporation (mm/tstep) |
---|
418 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: evapot_corr !! Soil Potential Evaporation Correction (mm/tstep) |
---|
419 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: temp_sol !! Soil temperature (K) |
---|
420 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: qsurf !! Surface specific humidity (kg kg^{-1}) |
---|
421 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxsens !! Sensible heat flux (W m^{-2}) |
---|
422 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxlat !! Latent heat flux (W m^{-2}) |
---|
423 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: tsol_rad !! Tsol_rad (W m^{-2}) |
---|
424 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapp !! Total of evaporation (mm day^{-1}) |
---|
425 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: pgflux !! Net energy into snowpack(W/m^2) |
---|
426 | |
---|
427 | !! 0.4 Local variables |
---|
428 | |
---|
429 | REAL(r_std),DIMENSION (kjpindex) :: epot_air_new, qair_new |
---|
430 | REAL(r_std),DIMENSION (kjpindex) :: diffevap !! Difference betwence vevapp and composing fluxes (Kg/m^2/s) |
---|
431 | INTEGER(i_std) :: ji,ii,iv |
---|
432 | |
---|
433 | |
---|
434 | !_ ================================================================================================================================ |
---|
435 | |
---|
436 | !! 1. Computes some initialisation variables |
---|
437 | |
---|
438 | ! Computes some initialisation variables psold (the old surface static energy), qsol_sat |
---|
439 | ! (the saturated surface humidity) and pdqsold (the derivative of the saturated surface humidity, |
---|
440 | ! calculated with respect to the surface temperature at the 'old' timestep) |
---|
441 | CALL enerbil_begin (kjpindex, temp_sol, lwdown, swnet, pb, psold, qsol_sat, pdqsold, netrad, emis) |
---|
442 | |
---|
443 | |
---|
444 | !! 2. Computes psnew (the surface static energy at the 'new' timestep) |
---|
445 | |
---|
446 | ! Computes psnew (the surface static energy at the 'new' timestep), qsol_sat_new (the surface |
---|
447 | ! saturated humidity at the 'new' timestep), temp_sol_new (the surface temperature at the 'new' |
---|
448 | ! timestep), qair_new (the lowest atmospheric humidity at the 'new' timestep) and epot_air_new |
---|
449 | ! (the lowest atmospheric evaporation potential at the 'new' timestep) |
---|
450 | CALL enerbil_surftemp (kjpindex, zlev, emis, & |
---|
451 | & epot_air, petAcoef, petBcoef, qair, peqAcoef, peqBcoef, soilflx, rau, u, v, q_cdrag, vbeta,& |
---|
452 | & valpha, vbeta1, vbeta5, soilcap, lwdown, swnet, psnew, qsol_sat_new, temp_sol_new, & |
---|
453 | & qair_new, epot_air_new) |
---|
454 | |
---|
455 | |
---|
456 | ! 3. computes surface temperature and humidity for a saturated surface |
---|
457 | ! |
---|
458 | CALL enerbil_pottemp (kjpindex, zlev, emis, & |
---|
459 | & epot_air, petAcoef, petBcoef, qair, peqAcoef, peqBcoef, soilflx, rau, u, v, q_cdrag, vbeta,& |
---|
460 | & valpha, vbeta1, vbeta5, soilcap, lwdown, swnet, q_sol_pot, temp_sol_pot) |
---|
461 | |
---|
462 | |
---|
463 | !! 4. Diagnoses components of the energy budget |
---|
464 | |
---|
465 | ! Diagnoses lwup (upwards long wave radiation), lwnet (net long wave radiation), tsol_rad (radiative |
---|
466 | ! ground temperature), netrad (net radiation), qsurf (surface humidity), vevapp (total evaporation), |
---|
467 | ! evapot (evaporation potential), evapot_corr (evaporation potential correction factor), |
---|
468 | ! fluxlat (latent heat flux), fluxsubli (sublimination heat flux) and fluxsens (sensible heat flux). |
---|
469 | |
---|
470 | CALL enerbil_flux (kjpindex, emis, temp_sol, rau, u, v, q_cdrag, vbeta, valpha, vbeta1, vbeta5, & |
---|
471 | & qair_new, epot_air_new, psnew, qsurf, & |
---|
472 | & fluxsens , fluxlat , fluxsubli, vevapp, temp_sol_new, lwdown, swnet, & |
---|
473 | & lwup, lwnet, pb, tsol_rad, netrad, evapot, evapot_corr, & |
---|
474 | & precip_rain,snowdz,temp_air,pgflux, soilcap, temp_sol_add) |
---|
475 | |
---|
476 | !! 5. Diagnoses the values for evaporation and transpiration |
---|
477 | |
---|
478 | ! Diagnoses the values for evaporation and transpiration: vevapsno (snow evaporation), vevapnu |
---|
479 | ! (bare soil evaporation), transpir (transpiration) and vevapwet (interception) |
---|
480 | CALL enerbil_evapveg (kjpindex, vbeta1, vbeta2, vbeta3, vbeta3pot, vbeta4, vbeta5, & |
---|
481 | & rau, u, v, q_cdrag, qair_new, humrel, vevapsno, vevapnu , vevapflo, vevapwet, & |
---|
482 | & transpir, transpot, evapot) |
---|
483 | |
---|
484 | |
---|
485 | |
---|
486 | !! 6. Assigns a temperature 2 metres above the ground |
---|
487 | |
---|
488 | ! Assigns a temperature 2 metres above the ground. The output variable - t2mdiag, is used just for |
---|
489 | ! diagnostic purposes, for now. |
---|
490 | CALL enerbil_t2mdiag (kjpindex, temp_air, t2mdiag) |
---|
491 | |
---|
492 | CALL xios_orchidee_send_field("netrad",netrad) |
---|
493 | CALL xios_orchidee_send_field("evapot",evapot/dt_sechiba) |
---|
494 | CALL xios_orchidee_send_field("evapot_corr",evapot_corr/dt_sechiba) |
---|
495 | CALL xios_orchidee_send_field("lwdown",lwabs) |
---|
496 | CALL xios_orchidee_send_field("lwnet",lwnet) |
---|
497 | CALL xios_orchidee_send_field("Qv",fluxsubli) |
---|
498 | CALL xios_orchidee_send_field("PotSurfT",temp_sol_pot) |
---|
499 | |
---|
500 | DO ji=1,kjpindex |
---|
501 | diffevap(ji) = vevapp(ji) - ( SUM(vevapwet(ji,:)) + & |
---|
502 | SUM(transpir(ji,:)) + vevapnu(ji) + vevapsno(ji) + vevapflo(ji) ) |
---|
503 | ENDDO |
---|
504 | CALL xios_orchidee_send_field("diffevap",diffevap/dt_sechiba) ! mm/s |
---|
505 | |
---|
506 | IF ( .NOT. almaoutput ) THEN |
---|
507 | CALL histwrite_p(hist_id, 'netrad', kjit, netrad, kjpindex, index) |
---|
508 | CALL histwrite_p(hist_id, 'evapot', kjit, evapot, kjpindex, index) |
---|
509 | CALL histwrite_p(hist_id, 'evapot_corr', kjit, evapot_corr, kjpindex, index) |
---|
510 | CALL histwrite_p(hist_id, 'lwdown', kjit, lwabs, kjpindex, index) |
---|
511 | CALL histwrite_p(hist_id, 'lwnet', kjit, lwnet, kjpindex, index) |
---|
512 | IF ( hist2_id > 0 ) THEN |
---|
513 | CALL histwrite_p(hist2_id, 'netrad', kjit, netrad, kjpindex, index) |
---|
514 | CALL histwrite_p(hist2_id, 'evapot', kjit, evapot, kjpindex, index) |
---|
515 | CALL histwrite_p(hist2_id, 'evapot_corr', kjit, evapot_corr, kjpindex, index) |
---|
516 | CALL histwrite_p(hist2_id, 'lwdown', kjit, lwabs, kjpindex, index) |
---|
517 | CALL histwrite_p(hist2_id, 'lwnet', kjit, lwnet, kjpindex, index) |
---|
518 | ENDIF |
---|
519 | ELSE |
---|
520 | CALL histwrite_p(hist_id, 'LWnet', kjit, lwnet, kjpindex, index) |
---|
521 | CALL histwrite_p(hist_id, 'Qv', kjit, fluxsubli, kjpindex, index) |
---|
522 | CALL histwrite_p(hist_id, 'PotEvap', kjit, evapot_corr, kjpindex, index) |
---|
523 | CALL histwrite_p(hist_id, 'PotEvapOld', kjit, evapot, kjpindex, index) |
---|
524 | CALL histwrite_p(hist_id, 'PotSurfT', kjit, temp_sol_pot, kjpindex, index) |
---|
525 | IF ( hist2_id > 0 ) THEN |
---|
526 | CALL histwrite_p(hist2_id, 'LWnet', kjit, lwnet, kjpindex, index) |
---|
527 | CALL histwrite_p(hist2_id, 'Qv', kjit, fluxsubli, kjpindex, index) |
---|
528 | CALL histwrite_p(hist2_id, 'PotEvap', kjit, evapot_corr, kjpindex, index) |
---|
529 | ENDIF |
---|
530 | ENDIF |
---|
531 | |
---|
532 | IF (printlev>=3) WRITE (numout,*) ' enerbil_main Done ' |
---|
533 | |
---|
534 | END SUBROUTINE enerbil_main |
---|
535 | |
---|
536 | |
---|
537 | !! ============================================================================================================================= |
---|
538 | !! SUBROUTINE: enerbil_finalize |
---|
539 | !! |
---|
540 | !>\BRIEF Write to restart file |
---|
541 | !! |
---|
542 | !! DESCRIPTION: This subroutine writes the module variables and variables calculated in enerbil |
---|
543 | !! to restart file |
---|
544 | !! |
---|
545 | !! RECENT CHANGE(S): None |
---|
546 | !! |
---|
547 | !! REFERENCE(S): None |
---|
548 | !! |
---|
549 | !! FLOWCHART: None |
---|
550 | !! \n |
---|
551 | !_ ============================================================================================================================== |
---|
552 | SUBROUTINE enerbil_finalize (kjit, kjpindex, rest_id, & |
---|
553 | evapot, evapot_corr, temp_sol, tsol_rad, & |
---|
554 | qsurf, fluxsens, fluxlat, vevapp ) |
---|
555 | |
---|
556 | !! 0 Variable and parameter description |
---|
557 | !! 0.1 Input variables |
---|
558 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (-) |
---|
559 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
560 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier (-) |
---|
561 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: evapot !! Soil Potential Evaporation (mm/tstep) |
---|
562 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: evapot_corr !! Soil Potential Evaporation Correction (mm/tstep) |
---|
563 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_sol !! Soil temperature (K) |
---|
564 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: tsol_rad !! Tsol_rad (W m^{-2}) |
---|
565 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qsurf !! Surface specific humidity (kg kg^{-1}) |
---|
566 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: fluxsens !! Sensible heat flux (W m^{-2}) |
---|
567 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: fluxlat !! Latent heat flux (W m^{-2}) |
---|
568 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vevapp !! Total of evaporation (mm day^{-1}) |
---|
569 | |
---|
570 | !_ ================================================================================================================================ |
---|
571 | |
---|
572 | !! 1. Write variables to restart file to be used for the next simulation |
---|
573 | IF (printlev>=3) WRITE (numout,*) 'Write restart file with ENERBIL variables' |
---|
574 | |
---|
575 | CALL restput_p(rest_id, 'temp_sol', nbp_glo, 1, 1, kjit, temp_sol, 'scatter', nbp_glo, index_g) |
---|
576 | CALL restput_p(rest_id, 'qsurf', nbp_glo, 1, 1, kjit, qsurf, 'scatter', nbp_glo, index_g) |
---|
577 | CALL restput_p(rest_id, 'evapot', nbp_glo, 1, 1, kjit, evapot, 'scatter', nbp_glo, index_g) |
---|
578 | CALL restput_p(rest_id, 'evapot_corr', nbp_glo, 1, 1, kjit, evapot_corr, 'scatter', nbp_glo, index_g) |
---|
579 | CALL restput_p(rest_id, 'tsolrad', nbp_glo, 1, 1, kjit, tsol_rad, 'scatter', nbp_glo, index_g) |
---|
580 | CALL restput_p(rest_id, 'evapora', nbp_glo, 1, 1, kjit, vevapp, 'scatter', nbp_glo, index_g) |
---|
581 | CALL restput_p(rest_id, 'fluxlat', nbp_glo, 1, 1, kjit, fluxlat, 'scatter', nbp_glo, index_g) |
---|
582 | CALL restput_p(rest_id, 'fluxsens', nbp_glo, 1, 1, kjit, fluxsens, 'scatter', nbp_glo, index_g) |
---|
583 | CALL restput_p(rest_id, 'tempsolpot', nbp_glo, 1, 1, kjit, temp_sol_pot, 'scatter', nbp_glo, index_g) |
---|
584 | CALL restput_p(rest_id, 'qsolpot', nbp_glo, 1, 1, kjit, q_sol_pot, 'scatter', nbp_glo, index_g) |
---|
585 | |
---|
586 | END SUBROUTINE enerbil_finalize |
---|
587 | |
---|
588 | |
---|
589 | |
---|
590 | |
---|
591 | !! ============================================================================================================================= |
---|
592 | !! SUBROUTINE : enerbil_clear |
---|
593 | !! |
---|
594 | !>\BRIEF Routine deallocates clear output variables if already allocated. |
---|
595 | !! |
---|
596 | !! DESCRIPTION : This is a 'housekeeping' routine that deallocates the key output |
---|
597 | !! variables, if they have already been allocated. The variables that are deallocated are psold, |
---|
598 | !! qsol_sat, pdqsold, psnew, qsol_sat_new, netrad, lwabs, lwup, lwnet, fluxsubli, qsat_air, tair |
---|
599 | !! |
---|
600 | !! RECENT CHANGE(S) : None |
---|
601 | !! |
---|
602 | !! MAIN OUTPUT VARIABLE(S) : None |
---|
603 | !! |
---|
604 | !! REFERENCES : None |
---|
605 | !! |
---|
606 | !! FLOWCHART : None |
---|
607 | !! \n |
---|
608 | !_ ============================================================================================================================== |
---|
609 | |
---|
610 | SUBROUTINE enerbil_clear () |
---|
611 | IF ( ALLOCATED (psold)) DEALLOCATE (psold) |
---|
612 | IF ( ALLOCATED (qsol_sat)) DEALLOCATE (qsol_sat) |
---|
613 | IF ( ALLOCATED (pdqsold)) DEALLOCATE (pdqsold) |
---|
614 | IF ( ALLOCATED (psnew)) DEALLOCATE (psnew) |
---|
615 | IF ( ALLOCATED (qsol_sat_new)) DEALLOCATE (qsol_sat_new) |
---|
616 | IF ( ALLOCATED (netrad)) DEALLOCATE (netrad) |
---|
617 | IF ( ALLOCATED (lwabs)) DEALLOCATE (lwabs) |
---|
618 | IF ( ALLOCATED (lwup)) DEALLOCATE (lwup) |
---|
619 | IF ( ALLOCATED (lwnet)) DEALLOCATE (lwnet) |
---|
620 | IF ( ALLOCATED (fluxsubli)) DEALLOCATE (fluxsubli) |
---|
621 | IF ( ALLOCATED (qsat_air)) DEALLOCATE (qsat_air) |
---|
622 | IF ( ALLOCATED (tair)) DEALLOCATE (tair) |
---|
623 | IF ( ALLOCATED (q_sol_pot)) DEALLOCATE (q_sol_pot) |
---|
624 | IF ( ALLOCATED (temp_sol_pot)) DEALLOCATE (temp_sol_pot) |
---|
625 | |
---|
626 | END SUBROUTINE enerbil_clear |
---|
627 | |
---|
628 | |
---|
629 | !! ============================================================================================================================= |
---|
630 | !! SUBROUTINE : enerbil_begin |
---|
631 | !! |
---|
632 | !>\BRIEF Preliminary variables required for the calculation of |
---|
633 | !! the energy budget are derived. |
---|
634 | !! |
---|
635 | !! DESCRIPTION : This routines computes preliminary variables required |
---|
636 | !! for the calculation of the energy budget: the old surface static energy (psold), the surface saturation |
---|
637 | !! humidity (qsol_sat), the derivative of satured specific humidity at the old temperature (pdqsold) |
---|
638 | !! and the net radiation (netrad). |
---|
639 | !! |
---|
640 | !! MAIN OUTPUT VARIABLE(S) : psold, qsol_sat, pdqsold, netrad |
---|
641 | !! |
---|
642 | !! REFERENCE(S) : |
---|
643 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
644 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
645 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
646 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
647 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
648 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
649 | !! interface avec la surface planetaire dans LMDZ, Technical note, available (22/12/11): |
---|
650 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
651 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
652 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
653 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
654 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
655 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
656 | !! Interscience Publishers\n |
---|
657 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
658 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
659 | !! |
---|
660 | !! FLOWCHART : None |
---|
661 | !! \n |
---|
662 | !_ ============================================================================================================================== |
---|
663 | |
---|
664 | SUBROUTINE enerbil_begin (kjpindex, temp_sol, lwdown, swnet, pb, psold, qsol_sat, pdqsold, netrad, emis) |
---|
665 | |
---|
666 | !! 0. Variable and parameter declaration |
---|
667 | |
---|
668 | !! 0.1 Input variables |
---|
669 | |
---|
670 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
671 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_sol !! Soil temperature (K) |
---|
672 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: lwdown !! Down-welling long-wave flux (W m^{-2}) |
---|
673 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: swnet !! Net surface short-wave flux (W m^{-2}) |
---|
674 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: pb !! Lowest level pressure (hPa) |
---|
675 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: emis !! Emissivity (-) |
---|
676 | |
---|
677 | !! 0.2 Output variables |
---|
678 | |
---|
679 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: psold !! Old surface dry static energy (J kg^{-1}) |
---|
680 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: qsol_sat !! Saturated specific humudity for old temperature |
---|
681 | !! (kg kg^{-1}) |
---|
682 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: pdqsold !! Derivative of satured specific humidity at the old |
---|
683 | !! temperature (kg (kg s)^{-1}) |
---|
684 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: netrad !! Net radiation (W m^{-2}) |
---|
685 | |
---|
686 | !! 0.3 Modified variables |
---|
687 | |
---|
688 | !! 0.4 Local variables |
---|
689 | |
---|
690 | INTEGER(i_std) :: ji |
---|
691 | REAL(r_std), DIMENSION(kjpindex) :: dev_qsol |
---|
692 | REAL(r_std), PARAMETER :: missing = 999998. |
---|
693 | |
---|
694 | !_ ================================================================================================================================ |
---|
695 | |
---|
696 | !! 1. Computes psold (the surface static energy for the old timestep) |
---|
697 | |
---|
698 | !! We here define the surface static energy for the 'old' timestep, in terms of the surface |
---|
699 | !! temperature and heat capacity. |
---|
700 | !! \latexonly |
---|
701 | !! \input{enerbilbegin1.tex} |
---|
702 | !! \endlatexonly |
---|
703 | psold(:) = temp_sol(:)*cp_air |
---|
704 | !! 2. Computes qsol_sat (the surface saturated humidity). |
---|
705 | |
---|
706 | !! We call the routine 'qsatcalc' from within the module 'src_parameters/constantes_veg'. |
---|
707 | CALL qsatcalc (kjpindex, temp_sol, pb, qsol_sat) |
---|
708 | IF ( diag_qsat ) THEN |
---|
709 | IF ( ANY(ABS(qsol_sat(:)) .GT. missing) ) THEN |
---|
710 | DO ji = 1, kjpindex |
---|
711 | IF ( ABS(qsol_sat(ji)) .GT. missing) THEN |
---|
712 | WRITE(numout,*) 'ERROR on ji = ', ji |
---|
713 | WRITE(numout,*) 'temp_sol(ji), pb(ji) :', temp_sol(ji), pb(ji) |
---|
714 | CALL ipslerr_p (3,'enerbil_begin', & |
---|
715 | & 'qsol too high ','','') |
---|
716 | ENDIF |
---|
717 | ENDDO |
---|
718 | ENDIF |
---|
719 | ENDIF |
---|
720 | |
---|
721 | !! 3. Computes pdqsold |
---|
722 | |
---|
723 | !! Computes pdqsold (the derivative of the saturated humidity with respect to temperature |
---|
724 | !! analysed at the surface temperature at the 'old' timestep. |
---|
725 | !! We call the routine 'dev_qsatcalc' from qsat_moisture module. |
---|
726 | CALL dev_qsatcalc (kjpindex, temp_sol, pb, dev_qsol) |
---|
727 | |
---|
728 | !! \latexonly |
---|
729 | !! \input{enerbilbegin2.tex} |
---|
730 | !! \endlatexonly |
---|
731 | pdqsold(:) = dev_qsol(:) |
---|
732 | |
---|
733 | |
---|
734 | IF ( diag_qsat ) THEN |
---|
735 | IF ( ANY(ABS( pdqsold(:)) .GT. missing) ) THEN |
---|
736 | DO ji = 1, kjpindex |
---|
737 | IF ( ABS( pdqsold(ji)) .GT. missing ) THEN |
---|
738 | WRITE(numout,*) 'ERROR on ji = ', ji |
---|
739 | WRITE(numout,*) 'temp_sol(ji), pb(ji) :', temp_sol(ji), pb(ji) |
---|
740 | CALL ipslerr_p (3,'enerbil_begin', & |
---|
741 | & 'pdqsold too high ','','') |
---|
742 | ENDIF |
---|
743 | ENDDO |
---|
744 | ENDIF |
---|
745 | ENDIF |
---|
746 | |
---|
747 | !! 4. Computes the net radiation and the absorbed LW radiation absorbed at the surface. |
---|
748 | |
---|
749 | !! Long wave radiation absorbed by the surface is the product of emissivity and downwelling LW radiation |
---|
750 | !! \latexonly |
---|
751 | !! \input{enerbilbegin3.tex} |
---|
752 | !! \endlatexonly |
---|
753 | lwabs(:) = emis(:) * lwdown(:) |
---|
754 | |
---|
755 | !! Net radiation is calculated as: |
---|
756 | !! \latexonly |
---|
757 | !! \input{enerbilbegin4.tex} |
---|
758 | !! \endlatexonly |
---|
759 | netrad(:) = lwdown(:) + swnet (:) - (emis(:) * c_stefan * temp_sol(:)**4 + (un - emis(:)) * lwdown(:)) |
---|
760 | |
---|
761 | IF (printlev>=3) WRITE (numout,*) ' enerbil_begin done ' |
---|
762 | |
---|
763 | END SUBROUTINE enerbil_begin |
---|
764 | |
---|
765 | |
---|
766 | !! ============================================================================================================================= |
---|
767 | !! SUBROUTINE : enerbil_surftemp |
---|
768 | !! |
---|
769 | !>\BRIEF This routine computes the new surface static energy |
---|
770 | !! (psnew) and the saturated humidity at the surface (qsol_sat_new). |
---|
771 | !! |
---|
772 | !! DESCRIPTION : This is the key part of the enerbil module, for which |
---|
773 | !! the energy budget in the surface layer is solved and changes over the model timestep 'dt_sechiba' are |
---|
774 | !! quantified for the surface static energy, surface temperature, surface humidity, the 'air' (or lowest |
---|
775 | !! level atmospheric model) temperature, the 'air' (or lowest level atmospheric model) humidity, |
---|
776 | !! according to the method that is laid out by Dufresne \& Ghattas (2009) and Shultz et al. (2001). |
---|
777 | !! |
---|
778 | !! It computes the energy balance at the surface with an implicit scheme, that is connected to the |
---|
779 | !! Richtmyer and Morton algorithm of the PBL. By computing the surface temperature and surface humidity |
---|
780 | !! the routine also implicitly estimates the various fluxes which balance in order to give the new |
---|
781 | !! temperature. Thus once the surface temperature has been obtained all the fluxes need to be diagnosed. |
---|
782 | !! |
---|
783 | !! If ok_explicitsnow is used, the notion of skin layer in ORCHIDEE is abandoned and |
---|
784 | !! the first thin snow layer is adopted to solve the surface energy budget. |
---|
785 | !! Implicit method is still used for coupling to the atmosphere. |
---|
786 | !! In this new scheme, the snow temperature profile is simulatenously solved |
---|
787 | !! along with the surface snow temperature, and the details are referenced to Boone et al. (2010) |
---|
788 | !! |
---|
789 | !! MAIN OUTPUT VARIABLE(S) : psnew, qsol_sat_new, temp_sol_new, qair_new, epot_air_new |
---|
790 | !! |
---|
791 | !! REFERENCE(S) : |
---|
792 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
793 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
794 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
795 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
796 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
797 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
798 | !! interface avec la surface planetaire dans LMDZ, Technical note, available (22/12/11): |
---|
799 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
800 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
801 | !! sur le cycle de l'eau, PhD Thesis, available (22/12/11): |
---|
802 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pd |
---|
803 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
804 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
805 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
806 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
807 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
808 | !! Interscience Publishers |
---|
809 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
810 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
811 | !! |
---|
812 | !! FLOWCHART : None |
---|
813 | !! |
---|
814 | !_ ============================================================================================================================== |
---|
815 | |
---|
816 | |
---|
817 | SUBROUTINE enerbil_surftemp (kjpindex, zlev, emis, epot_air, & |
---|
818 | & petAcoef, petBcoef, qair, peqAcoef, peqBcoef, soilflx, rau, u, v, q_cdrag, vbeta,& |
---|
819 | & valpha, vbeta1, vbeta5, soilcap, lwdown, swnet, psnew, qsol_sat_new, temp_sol_new, & |
---|
820 | & qair_new, epot_air_new) |
---|
821 | |
---|
822 | |
---|
823 | |
---|
824 | !! 0. Variable and parameter declaration |
---|
825 | |
---|
826 | !! 0.1 Input variables |
---|
827 | |
---|
828 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
829 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
830 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: emis !! Emissivity (-) |
---|
831 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: epot_air !! Air potential energy (?? J) |
---|
832 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petAcoef !! PetAcoef (see note) |
---|
833 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petBcoef !! PetBcoef (see note) |
---|
834 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity (kg kg^{-1}) |
---|
835 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqAcoef !! PeqAcoef (see note) |
---|
836 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqBcoef !! PeqBcoef (see note) |
---|
837 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilflx !! Soil flux (W m^{-2}) |
---|
838 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: rau !! Air density (kg m^{-3}) |
---|
839 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u, v !! Wind velocity by directional components |
---|
840 | !! u (Eastwards) and v (Northwards) (m s^{-1}) |
---|
841 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: q_cdrag !! Surface drag (m s^{-1}) |
---|
842 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta !! Resistance coefficient (-) |
---|
843 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: valpha !! Resistance coefficient (-) |
---|
844 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta1 !! Snow resistance (-) |
---|
845 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta5 !! Floodplains resistance |
---|
846 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilcap !! Soil calorific capacity (J K^{-1]) |
---|
847 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: lwdown !! Down-welling long-wave flux (W m^{-2}) |
---|
848 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: swnet !! Net surface short-wave flux (W m^{-2}) |
---|
849 | |
---|
850 | !! 0.2 Output variables |
---|
851 | |
---|
852 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: psnew !! New surface static energy (J kg^{-1}) |
---|
853 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: qsol_sat_new !! New saturated surface air moisture (kg kg^{-1}) |
---|
854 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol_new !! New soil temperature (K) |
---|
855 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: qair_new !! New air moisture (kg kg^{-1}) |
---|
856 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: epot_air_new !! New air temperature (K) |
---|
857 | |
---|
858 | |
---|
859 | !! 0.4 Local variables |
---|
860 | |
---|
861 | INTEGER(i_std) :: ji |
---|
862 | REAL(r_std),DIMENSION (kjpindex) :: zicp |
---|
863 | REAL(r_std) :: fevap |
---|
864 | REAL(r_std) :: sensfl_old, larsub_old, lareva_old, dtheta, sum_old, sum_sns |
---|
865 | REAL(r_std) :: zikt, zikq, netrad_sns, sensfl_sns, larsub_sns, lareva_sns |
---|
866 | REAL(r_std) :: speed |
---|
867 | |
---|
868 | !_ ================================================================================================================================ |
---|
869 | |
---|
870 | zicp = un / cp_air |
---|
871 | |
---|
872 | DO ji=1,kjpindex |
---|
873 | !! 1. Derivation of auxiliary variables |
---|
874 | |
---|
875 | !! \latexonly |
---|
876 | !! \input{enerbilsurftemp1.tex} |
---|
877 | !! \endlatexonly |
---|
878 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
879 | ! |
---|
880 | !! \latexonly |
---|
881 | !! \input{enerbilsurftemp2.tex} |
---|
882 | !! \endlatexonly |
---|
883 | zikt = 1/(rau(ji) * speed * q_cdrag(ji)) |
---|
884 | zikq = 1/(rau(ji) * speed * q_cdrag(ji)) |
---|
885 | |
---|
886 | !! 2. Computation of fluxes for the old surface conditions |
---|
887 | |
---|
888 | !! As a reference, we first calculate the sensible and latent heat for the 'old' timestep. |
---|
889 | |
---|
890 | !! 2.1 Sensible heat for the 'old' timestep |
---|
891 | !! This is equation (64) of (Dufresne & Ghattas, 2009), rewritten in terms of H_old. We make the |
---|
892 | !! approximation that (P_r/P)^{kappa}=1 and convert the A and B coefficients to the ORCHIDEE |
---|
893 | !! format (see introductory note, above). Also, the equation here is in terms of surface static |
---|
894 | !! energy, which is defined as per section 3.1, above. |
---|
895 | !! \latexonly |
---|
896 | !! \input{enerbilsurftemp3.tex} |
---|
897 | !! \endlatexonly |
---|
898 | sensfl_old = (petBcoef(ji) - psold(ji)) / (zikt - petAcoef(ji)) |
---|
899 | !! 2.2 Latent heat for the 'old' timestep |
---|
900 | !! This is equation (70) of (Dufresne & Ghattas, 2009), rewritten in terms of {\lambda E}_{old}. |
---|
901 | !! Again we convert the A and B coefficients from the LMDZ format to the ORCHIDEE format.\n |
---|
902 | !! There are two forms of the equation - first for the latent heat as a result of sublimination |
---|
903 | !! processes and then as a result of evaporative processes: |
---|
904 | !! \latexonly |
---|
905 | !! \input{enerbilsurftemp4.tex} |
---|
906 | !! \endlatexonly |
---|
907 | larsub_old = chalsu0 * vbeta1(ji) * (un - vbeta5(ji)) * & |
---|
908 | (peqBcoef(ji) - qsol_sat(ji)) / (zikq - vbeta1(ji) * (un - vbeta5(ji))* peqAcoef(ji)) |
---|
909 | !! \latexonly |
---|
910 | !! \input{enerbilsurftemp5.tex} |
---|
911 | !! \endlatexonly |
---|
912 | lareva_old = chalev0 * (un - vbeta1(ji)) * (un - vbeta5(ji)) * vbeta(ji) * & |
---|
913 | (peqBcoef(ji) - valpha(ji) * qsol_sat(ji)) / & |
---|
914 | (zikq - (un - vbeta1(ji)) * (un - vbeta5(ji)) * vbeta(ji) * peqAcoef(ji)) & |
---|
915 | + chalev0 * vbeta5(ji) * (peqBcoef(ji) - qsol_sat(ji)) / (zikq - vbeta5(ji) * peqAcoef(ji)) |
---|
916 | |
---|
917 | !! 3. Calculation of sensitivity terms |
---|
918 | |
---|
919 | !! We here calculate the sensitivity for the different fluxes to changes in dtheta, which is the |
---|
920 | !! change in the surface static energy over the model time step (dt_sechiba). |
---|
921 | |
---|
922 | !! 3.1 Net radiation sensitivity |
---|
923 | !! This is an explicit-implicit representation of the Stefan-Boltzmann law - the explicit terms |
---|
924 | !! are ${ps}_{old}^3$, and it is completed when multiplied by dtheta (defined above). |
---|
925 | !! \latexonly |
---|
926 | !! \input{enerbilsurftemp6.tex} |
---|
927 | !! \endlatexonly |
---|
928 | netrad_sns = zicp(ji) * quatre * emis(ji) * c_stefan * ((zicp(ji) * psold(ji))**3) |
---|
929 | |
---|
930 | !! 3.2 Sensible heat flux sensitivity |
---|
931 | !! This is the temperature sensitivity term N_1^h derived in equation (66) of (Dufresne & Ghattas, 2009), |
---|
932 | !! where we again assume that (P_r/P)^{kappa}=1, convert the A and B coefficients to the ORCHIDEE format, |
---|
933 | !! and rewrite in terms of surface static energy, rather than temperature (see section 3.1, above). |
---|
934 | !! \latexonly |
---|
935 | !! \input{enerbilsurftemp7.tex} |
---|
936 | !! \endlatexonly |
---|
937 | sensfl_sns = un / (zikt - petAcoef(ji)) |
---|
938 | !! 3.3 Latent heat flux sensitivity |
---|
939 | !! This is the humidity sensitivity term N_1^q derived in equation (72) of (Dufresne & Ghattas, 2009), where |
---|
940 | !! the A and B coefficients are written in the ORCHIDEE format. |
---|
941 | !! larsub_sns is the latent heat sensitivity for sublimination. The coefficient vbeta1 is the evaporation |
---|
942 | !! coefficient. It represents the relationship between the real and potential evaporation. It is derived |
---|
943 | !! in the module 'src_sechiba/diffuco_snow'. |
---|
944 | !! \latexonly |
---|
945 | !! \input{enerbilsurftemp8.tex} |
---|
946 | !! \endlatexonly |
---|
947 | larsub_sns = chalsu0 * vbeta1(ji) * (un - vbeta5(ji)) * zicp(ji) * & |
---|
948 | pdqsold(ji) / (zikq - vbeta1(ji) * (un - vbeta5(ji)) * peqAcoef(ji)) |
---|
949 | |
---|
950 | !! lareva_sns is the latent heat sensitivity for evaporation. vbeta1 (src_sechiba/diffuco_snow), |
---|
951 | !! vbeta (src_sechiba/diffuco_comb) and valpha (src_sechiba/diffuco_comb) are the evaporation |
---|
952 | !! coefficients. |
---|
953 | !! \latexonly |
---|
954 | !! \input{enerbilsurftemp9.tex} |
---|
955 | !! \endlatexonly |
---|
956 | lareva_sns = chalev0 * ((un - vbeta1(ji))*(un - vbeta5(ji)) * vbeta(ji) * valpha(ji) + vbeta5(ji)) * & |
---|
957 | & zicp(ji) * pdqsold(ji) / & |
---|
958 | (zikq - ((un - vbeta1(ji))*(un - vbeta5(ji)) * vbeta(ji) * valpha(ji) + vbeta5(ji))* peqAcoef(ji)) |
---|
959 | |
---|
960 | !! 4. Solution of the energy balance |
---|
961 | |
---|
962 | !! 4.1 We calculate the total flux for the 'old' timestep. |
---|
963 | !! \latexonly |
---|
964 | !! \input{enerbilsurftemp10.tex} |
---|
965 | !! \endlatexonly |
---|
966 | sum_old = netrad(ji) + sensfl_old + larsub_old + lareva_old + soilflx(ji) |
---|
967 | |
---|
968 | !! 4.2 We calculate the total sensitivity dtheta (the change in the |
---|
969 | !! surface static energy over the timestep. |
---|
970 | !! \latexonly |
---|
971 | !! \input{enerbilsurftemp11.tex} |
---|
972 | !! \endlatexonly |
---|
973 | sum_sns = netrad_sns + sensfl_sns + larsub_sns + lareva_sns |
---|
974 | !! 4.3 Calculation of dtheta (change in surface static energy over the |
---|
975 | !! timestep. |
---|
976 | !! \latexonly |
---|
977 | !! \input{enerbilsurftemp12.tex} |
---|
978 | !! \endlatexonly |
---|
979 | |
---|
980 | dtheta = dt_sechiba * sum_old / (zicp(ji) * soilcap(ji) + dt_sechiba * sum_sns) |
---|
981 | |
---|
982 | !! 4.4 Determination of state variables for the 'new' timestep |
---|
983 | !! No we have dtheta, we can determine the surface static energy that |
---|
984 | !! corresponds to the 'new' timestep. |
---|
985 | !! \latexonly |
---|
986 | !! \input{enerbilsurftemp13.tex} |
---|
987 | !! \endlatexonly |
---|
988 | psnew(ji) = psold(ji) + dtheta |
---|
989 | |
---|
990 | !! The new surface saturated humidity can be calculated by equation (69) |
---|
991 | !! of (Dufresne & Ghattas, 2009), in which we substitute dtheta for the |
---|
992 | !! change between old and new temperature using the relationship from 3.1, |
---|
993 | !! above. |
---|
994 | !! \latexonly |
---|
995 | !! \input{enerbilsurftemp14.tex} |
---|
996 | !! \endlatexonly |
---|
997 | qsol_sat_new(ji) = qsol_sat(ji) + zicp(ji) * pdqsold(ji) * dtheta |
---|
998 | !! The new surface temperature is determined from the new surface static temperature, |
---|
999 | !! again by using the relationship in section 3.1. |
---|
1000 | !! \latexonly |
---|
1001 | !! \input{enerbilsurftemp15.tex} |
---|
1002 | !! \endlatexonly |
---|
1003 | temp_sol_new(ji) = psnew(ji) / cp_air |
---|
1004 | |
---|
1005 | !! 4.5 Calculation of new evaporation potential and new evaporation latent heat |
---|
1006 | !! flux (???) |
---|
1007 | !! \latexonly |
---|
1008 | !! \input{enerbilsurftemp16.tex} |
---|
1009 | !! \endlatexonly |
---|
1010 | epot_air_new(ji) = zikt * (sensfl_old - sensfl_sns * dtheta) + psnew(ji) |
---|
1011 | |
---|
1012 | !! \latexonly |
---|
1013 | !! \input{enerbilsurftemp17.tex} |
---|
1014 | !! \endlatexonly |
---|
1015 | fevap = (lareva_old - lareva_sns * dtheta) + (larsub_old - larsub_sns * dtheta) |
---|
1016 | |
---|
1017 | IF ( ABS(fevap) < EPSILON(un) ) THEN |
---|
1018 | |
---|
1019 | !! \latexonly |
---|
1020 | !! \input{enerbilsurftemp18.tex} |
---|
1021 | !! \endlatexonly |
---|
1022 | qair_new(ji) = qair(ji) |
---|
1023 | ELSE |
---|
1024 | !! \latexonly |
---|
1025 | !! \input{enerbilsurftemp19.tex} |
---|
1026 | !! \endlatexonly |
---|
1027 | qair_new(ji) = zikq * un / ( chalsu0 * vbeta1(ji) * (un - vbeta5(ji)) + & |
---|
1028 | & chalev0 * ((un - vbeta1(ji))*(un - vbeta5(ji)) * vbeta(ji) * valpha(ji) + vbeta5(ji)) ) & |
---|
1029 | & * fevap + qsol_sat_new(ji) |
---|
1030 | ENDIF |
---|
1031 | |
---|
1032 | ENDDO |
---|
1033 | |
---|
1034 | IF (printlev>=3) WRITE (numout,*) ' enerbil_surftemp done ' |
---|
1035 | |
---|
1036 | END SUBROUTINE enerbil_surftemp |
---|
1037 | |
---|
1038 | |
---|
1039 | !! ============================================================================================================================= |
---|
1040 | !! SUBROUTINE : enerbil_pottemp |
---|
1041 | !! |
---|
1042 | !>\BRIEF This subroutine computes the surface temperature and humidity should the surface been unstressed |
---|
1043 | !! |
---|
1044 | !! DESCRIPTION : |
---|
1045 | !! |
---|
1046 | !! MAIN OUTPUT VARIABLE(S) : |
---|
1047 | !! |
---|
1048 | !! REFERENCE(S) : |
---|
1049 | !! |
---|
1050 | !! FLOWCHART : None |
---|
1051 | !! |
---|
1052 | !_ ============================================================================================================================== |
---|
1053 | |
---|
1054 | SUBROUTINE enerbil_pottemp (kjpindex, zlev, emis, epot_air, & |
---|
1055 | & petAcoef, petBcoef, qair, peqAcoef, peqBcoef, soilflx, rau, u, v, q_cdrag, vbeta,& |
---|
1056 | & valpha, vbeta1, vbeta5, soilcap, lwdown, swnet, q_sol_pot, temp_sol_pot) |
---|
1057 | |
---|
1058 | ! interface |
---|
1059 | ! input scalar |
---|
1060 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
1061 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer |
---|
1062 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: emis !! Emissivity |
---|
1063 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: epot_air !! Air potential energy |
---|
1064 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petAcoef !! PetAcoef |
---|
1065 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: petBcoef !! PetBcoef |
---|
1066 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity |
---|
1067 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqAcoef !! PeqAcoef |
---|
1068 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: peqBcoef !! PeqBcoef |
---|
1069 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilflx !! Soil flux |
---|
1070 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: rau !! Density |
---|
1071 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u, v !! Wind |
---|
1072 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: q_cdrag !! |
---|
1073 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta !! Resistance coefficient |
---|
1074 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: valpha !! Resistance coefficient |
---|
1075 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta1 !! Snow resistance |
---|
1076 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta5 !! Floodplains resistance |
---|
1077 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilcap !! Soil calorific capacity |
---|
1078 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: lwdown !! Down-welling long-wave flux |
---|
1079 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: swnet !! Net surface short-wave flux |
---|
1080 | ! output fields |
---|
1081 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: q_sol_pot !! Potential surface air moisture |
---|
1082 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: temp_sol_pot !! Potential soil temperature |
---|
1083 | |
---|
1084 | |
---|
1085 | ! local declaration |
---|
1086 | INTEGER(i_std) :: ji |
---|
1087 | REAL(r_std),DIMENSION (kjpindex) :: zicp |
---|
1088 | REAL(r_std) :: fevap |
---|
1089 | REAL(r_std) :: sensfl_old, larsub_old, lareva_old, dtheta, sum_old, sum_sns |
---|
1090 | REAL(r_std) :: zikt, zikq, netrad_sns, sensfl_sns, larsub_sns, lareva_sns |
---|
1091 | REAL(r_std) :: speed |
---|
1092 | |
---|
1093 | !_ ============================================================================================================================== |
---|
1094 | |
---|
1095 | zicp = un / cp_air |
---|
1096 | ! |
---|
1097 | DO ji=1,kjpindex |
---|
1098 | |
---|
1099 | dtheta = zero |
---|
1100 | fevap = zero |
---|
1101 | |
---|
1102 | temp_sol_pot(ji) = temp_sol_pot(ji) + dtheta |
---|
1103 | |
---|
1104 | q_sol_pot(ji) = q_sol_pot(ji) + fevap |
---|
1105 | |
---|
1106 | ENDDO |
---|
1107 | |
---|
1108 | END SUBROUTINE enerbil_pottemp |
---|
1109 | |
---|
1110 | |
---|
1111 | !! ============================================================================================================================= |
---|
1112 | !! SUBROUTINE : enerbil_flux |
---|
1113 | !! |
---|
1114 | !>\BRIEF Computes the new soil temperature, net radiation and |
---|
1115 | !! latent and sensible heat flux for the new time step. |
---|
1116 | !! |
---|
1117 | !! DESCRIPTION : This routine diagnoses, based on the new soil temperature, |
---|
1118 | !! the net radiation, the total evaporation, the latent heat flux, the sensible heat flux and the |
---|
1119 | !! sublimination flux. It also diagnoses the potential evaporation used for the fluxes (evapot) and the potential |
---|
1120 | !! as defined by Penman & Monteith (Monteith, 1965) based on the correction term developed by Chris |
---|
1121 | !! Milly (1992). This Penman-Monteith formulation is required for the estimation of bare soil evaporation |
---|
1122 | !! when the 11 layer CWRR moisture scheme is used for the soil hydrology. |
---|
1123 | !! |
---|
1124 | !! MAIN OUTPUT VARIABLE(S) : qsurf, fluxsens, fluxlat, fluxsubli, vevapp, lwup, lwnet, |
---|
1125 | !! tsol_rad, netrad, evapot, evapot_corr |
---|
1126 | !! |
---|
1127 | !! REFERENCE(S) : |
---|
1128 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
1129 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
1130 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
1131 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
1132 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
1133 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
1134 | !! interface avec la surface planetaire dans LMDZ, Technical note, available (22/12/11): |
---|
1135 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
1136 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
1137 | !! sur le cycle de l'eau, PhD Thesis, available (22/12/11): |
---|
1138 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pdf |
---|
1139 | !! - Monteith, JL, 1965. Evaporation and Environment, paper presented at Symposium of the Society |
---|
1140 | !! for Experimental Biology |
---|
1141 | !! - Monteith & Unsworth, 2008. Principles of Environmental Physics (third edition), published Elsevier |
---|
1142 | !! ISBN 978-0-12-505103-3 |
---|
1143 | !! - Milly, P. C. D., 1992: Potential Evaporation and Soil Moisture in General Circulation Models. |
---|
1144 | !! Journal of Climate, 5, pp. 209â226. |
---|
1145 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
1146 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
1147 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
1148 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
1149 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
1150 | !! Interscience Publishers |
---|
1151 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
1152 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
1153 | !! |
---|
1154 | !! FLOWCHART : None |
---|
1155 | !! \n |
---|
1156 | !_ ============================================================================================================================== |
---|
1157 | |
---|
1158 | SUBROUTINE enerbil_flux (kjpindex, emis, temp_sol, rau, u, v, q_cdrag, vbeta, valpha, vbeta1, vbeta5, & |
---|
1159 | & qair, epot_air, psnew, qsurf, fluxsens, fluxlat, fluxsubli, vevapp, temp_sol_new, & |
---|
1160 | & lwdown, swnet, lwup, lwnet, pb, tsol_rad, netrad, evapot, evapot_corr,& |
---|
1161 | & precip_rain,snowdz,temp_air,pgflux, soilcap, temp_sol_add) |
---|
1162 | |
---|
1163 | !! 0. Variable and parameter declaration |
---|
1164 | |
---|
1165 | !! 0.1 Input variables |
---|
1166 | |
---|
1167 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
1168 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: emis !! Emissivity (-) |
---|
1169 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_sol !! Surface temperature (K) |
---|
1170 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: rau !! Density (kg m^{-3}) |
---|
1171 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u,v !! Wind velocity in components u and v (m s^{-1}) |
---|
1172 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: q_cdrag !! Surface drag (m s^{-1}) |
---|
1173 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta !! Resistance coefficient (-) |
---|
1174 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: valpha !! Resistance coefficient (-) |
---|
1175 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta1 !! Snow resistance (-) |
---|
1176 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta5 !! Flood resistance |
---|
1177 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity (kg kg^{-1}) |
---|
1178 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: epot_air !! Air potential energy (J) |
---|
1179 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: psnew !! New surface static energy (J kg^{-1}) |
---|
1180 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_sol_new !! New soil temperature (K) |
---|
1181 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: pb !! Lowest level pressure (hPa) |
---|
1182 | REAL(r_std), DIMENSION (kjpindex,nsnow), INTENT(in) :: snowdz !! Snow depth |
---|
1183 | REAL(r_std), DIMENSION (kjpindex),INTENT(in) :: precip_rain !! Rainfall |
---|
1184 | REAL(r_std), DIMENSION (kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
1185 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: lwdown !! Downward long wave radiation (W m^{-2}) |
---|
1186 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: swnet !! Net short wave radiation (W m^{-2}) |
---|
1187 | REAL(r_std), DIMENSION (kjpindex),INTENT(in) :: soilcap !! Soil calorific capacity including snow and soil (J K^{-1}) |
---|
1188 | |
---|
1189 | !! 0.2 Output variables |
---|
1190 | |
---|
1191 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: qsurf !! Surface specific humidity (kg kg^{-1}) |
---|
1192 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxsens !! Sensible heat flux (W m^{-2}) |
---|
1193 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxlat !! Latent heat flux (W m^{-2}) |
---|
1194 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fluxsubli !! Energy of sublimation (W m^{-2}) |
---|
1195 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapp !! Total of evaporation (mm day^{-1}) |
---|
1196 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: lwup !! Long-wave up radiation (W m^{-2}) |
---|
1197 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: lwnet !! Long-wave net radiation (W m^{-2}) |
---|
1198 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: tsol_rad !! Radiative surface temperature (W m^{-2}) |
---|
1199 | REAL(r_std), DIMENSION (kjpindex),INTENT(out) :: temp_sol_add !! Additional energy to melt snow for snow ablation case (K) |
---|
1200 | |
---|
1201 | |
---|
1202 | !! 0.3 Modified variables |
---|
1203 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: netrad !! Net radiation (W m^{-2}) |
---|
1204 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: evapot !! Soil Potential Evaporation (mm/tstep) |
---|
1205 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: evapot_corr !! Soil Potential Evaporation Correction (mm/tstep) |
---|
1206 | REAL(r_std), DIMENSION (kjpindex),INTENT(inout) :: pgflux !! Net energy into snowpack(W/m^2) |
---|
1207 | |
---|
1208 | !! 0.4 Local variables |
---|
1209 | |
---|
1210 | INTEGER(i_std) :: ji |
---|
1211 | REAL(r_std),DIMENSION (kjpindex) :: grad_qsat |
---|
1212 | REAL(r_std) :: correction |
---|
1213 | REAL(r_std) :: speed !! Speed (m s^{-1}), |
---|
1214 | REAL(r_std) :: qc !! Surface drag coefficient (??) |
---|
1215 | LOGICAL,DIMENSION (kjpindex) :: warning_correction |
---|
1216 | REAL(r_std), DIMENSION (kjpindex) :: zgflux |
---|
1217 | REAL(r_std), DIMENSION (kjpindex) :: qsol_sat_tmp |
---|
1218 | REAL(r_std), DIMENSION (kjpindex) :: zerocelcius |
---|
1219 | REAL(r_std), DIMENSION (kjpindex) :: PHPSNOW |
---|
1220 | REAL(r_std), DIMENSION (kjpindex) :: lwup_tmp |
---|
1221 | REAL(r_std), DIMENSION (kjpindex) :: netrad_tmp |
---|
1222 | REAL(r_std), DIMENSION (kjpindex) :: fluxsens_tmp |
---|
1223 | REAL(r_std), DIMENSION (kjpindex) :: fluxlat_tmp |
---|
1224 | |
---|
1225 | !_ ================================================================================================================================ |
---|
1226 | |
---|
1227 | zerocelcius(:) = tp_00 |
---|
1228 | CALL qsatcalc (kjpindex, zerocelcius, pb, qsol_sat_tmp) |
---|
1229 | |
---|
1230 | DO ji=1,kjpindex |
---|
1231 | !! 1. Determination of 'housekeeping' variables |
---|
1232 | |
---|
1233 | !! The horizontal wind speed is calculated from the velocities along each axis using Pythagorus' theorem. |
---|
1234 | !! \latexonly |
---|
1235 | !! \input{enerbilflux1.tex} |
---|
1236 | !! \endlatexonly |
---|
1237 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
1238 | |
---|
1239 | !! From definition, the surface drag coefficient is defined: |
---|
1240 | !! \latexonly |
---|
1241 | !! \input{enerbilflux2.tex} |
---|
1242 | !! \endlatexonly |
---|
1243 | qc = speed * q_cdrag(ji) |
---|
1244 | |
---|
1245 | !! 2. Calculation of the net upward flux of longwave radiation |
---|
1246 | |
---|
1247 | !! We first of all calculate the radiation as a result of the Stefan-Boltzmann equation, |
---|
1248 | !! which is the sum of the calculated values at the surface temperature at the 'old' |
---|
1249 | !! temperature and the value that corresponds to the difference between the old temperature |
---|
1250 | !! and the temperature at the 'new' timestep. |
---|
1251 | !! \latexonly |
---|
1252 | !! \input{enerbilflux3.tex} |
---|
1253 | !! \endlatexonly |
---|
1254 | lwup(ji) = emis(ji) * c_stefan * temp_sol(ji)**4 + & |
---|
1255 | & quatre * emis(ji) * c_stefan * temp_sol(ji)**3 * & |
---|
1256 | & (temp_sol_new(ji) - temp_sol(ji)) |
---|
1257 | |
---|
1258 | !! We then add to this value that from the reflected longwave radiation: |
---|
1259 | !! \latexonly |
---|
1260 | !! \input{enerbilflux4.tex} |
---|
1261 | !! \endlatexonly |
---|
1262 | lwup(ji) = lwup(ji) + (un - emis(ji)) * lwdown(ji) |
---|
1263 | |
---|
1264 | !! The radiative surface temperature is calculated by inverting the Stefan-Boltzmann relation: |
---|
1265 | !! \latexonly |
---|
1266 | !! \input{enerbilflux5.tex} |
---|
1267 | !! \endlatexonly |
---|
1268 | !! The implicit solution computes an emitted long-wave flux which is a limited Taylor expansion |
---|
1269 | !! of the future surface temperature around the current values. Thus the long-wave flux does not |
---|
1270 | !! correspond to the new surface temperature but some intermediate value. So we need to deduce the |
---|
1271 | !! radiative surface temperature to which this flux corresponds. |
---|
1272 | !! |
---|
1273 | tsol_rad(ji) = (lwup(ji)/ (emis(ji) * c_stefan)) **(1./quatre) |
---|
1274 | |
---|
1275 | !! qsurf (the surface specific humidity) is a simple diagnostic which will be used by the |
---|
1276 | !! GCM to compute the dependence of of the surface layer stability on moisture. |
---|
1277 | !! \latexonly |
---|
1278 | !! \input{enerbilflux6.tex} |
---|
1279 | !! \endlatexonly |
---|
1280 | qsurf(ji) = (vbeta1(ji) * (un - vbeta5(ji)) + vbeta5(ji)) * qsol_sat_new(ji) + & |
---|
1281 | & (un - vbeta1(ji))*(un - vbeta5(ji)) * vbeta(ji) * valpha(ji) * qsol_sat_new(ji) |
---|
1282 | |
---|
1283 | !! \latexonly |
---|
1284 | !! \input{enerbilflux7.tex} |
---|
1285 | !! \endlatexonly |
---|
1286 | qsurf(ji) = MAX(qsurf(ji), qair(ji)) |
---|
1287 | |
---|
1288 | !! Net downward radiation is the sum of the down-welling less the up-welling long wave flux, plus |
---|
1289 | !! the short wave radiation. |
---|
1290 | !! \latexonly |
---|
1291 | !! \emissivity absorbed lw radiationinput{enerbilflux8.tex} |
---|
1292 | !! \endlatexonly |
---|
1293 | netrad(ji) = lwdown(ji) + swnet(ji) - lwup(ji) |
---|
1294 | |
---|
1295 | !! 'vevapp' is the sum of the total evaporative processes (snow plus non-snow processes). |
---|
1296 | !! \latexonly |
---|
1297 | !! \input{enerbilflux9.tex} |
---|
1298 | !! \endlatexonly |
---|
1299 | vevapp(ji) = dt_sechiba * rau(ji) * qc * (vbeta1(ji) * (un - vbeta5(ji)) + vbeta5(ji)) * & |
---|
1300 | & (qsol_sat_new(ji) - qair(ji)) + & |
---|
1301 | & dt_sechiba * rau(ji) * qc * (un - vbeta1(ji))*(un-vbeta5(ji)) * vbeta(ji) * & |
---|
1302 | & (valpha(ji) * qsol_sat_new(ji) - qair(ji)) |
---|
1303 | |
---|
1304 | !! The total latent heat flux is the sum of the snow plus non-snow processes. |
---|
1305 | !! \latexonly |
---|
1306 | !! \input{enerbilflux10.tex} |
---|
1307 | !! \endlatexonly |
---|
1308 | fluxlat(ji) = chalsu0 * rau(ji) * qc * vbeta1(ji) * (un - vbeta5(ji)) * & |
---|
1309 | & (qsol_sat_new(ji) - qair(ji)) + & |
---|
1310 | & chalev0 * rau(ji) * qc * vbeta5(ji) *& |
---|
1311 | & (qsol_sat_new(ji) - qair(ji)) + & |
---|
1312 | & chalev0 * rau(ji) * qc * (un - vbeta1(ji)) * (un - vbeta5(ji)) * vbeta(ji) * & |
---|
1313 | & (valpha(ji) * qsol_sat_new(ji) - qair(ji)) |
---|
1314 | |
---|
1315 | !! The sublimination flux concerns is calculated using vbeta1, the snow resistance. |
---|
1316 | !! \latexonly |
---|
1317 | !! \input{enerbilflux11.tex} |
---|
1318 | !! \endlatexonly |
---|
1319 | fluxsubli(ji) = chalsu0 * rau(ji) * qc * vbeta1(ji) * (un - vbeta5(ji)) * & |
---|
1320 | & (qsol_sat_new(ji) - qair(ji)) |
---|
1321 | |
---|
1322 | !! The sensible heat flux is a factor of the difference between the new surface static energy |
---|
1323 | !! and the potential energy of air. |
---|
1324 | !! \latexonly |
---|
1325 | !! \input{enerbilflux12.tex} |
---|
1326 | !! \endlatexonly |
---|
1327 | fluxsens(ji) = rau(ji) * qc * (psnew(ji) - epot_air(ji)) |
---|
1328 | |
---|
1329 | !! This is the net longwave downwards radiation. |
---|
1330 | !! \latexonly |
---|
1331 | !! \input{enerbilflux13.tex} |
---|
1332 | !! \endlatexonly |
---|
1333 | lwnet(ji) = lwdown(ji) - lwup(ji) |
---|
1334 | |
---|
1335 | !! Diagnoses the potential evaporation used for the fluxes (evapot) |
---|
1336 | !! \latexonly |
---|
1337 | !! \input{enerbilflux14.tex} |
---|
1338 | !! \endlatexonly |
---|
1339 | evapot(ji) = MAX(zero, dt_sechiba * rau(ji) * qc * (qsol_sat_new(ji) - qair(ji))) |
---|
1340 | |
---|
1341 | !! From definition we can say: |
---|
1342 | !! \latexonly |
---|
1343 | !! \input{enerbilflux15.tex} |
---|
1344 | !! \endlatexonly |
---|
1345 | tair(ji) = epot_air(ji) / cp_air |
---|
1346 | |
---|
1347 | |
---|
1348 | !! To calculate net energy flux into the snowpack |
---|
1349 | IF (ok_explicitsnow) THEN |
---|
1350 | PHPSNOW(ji) = precip_rain(ji)*(4.218E+3)*(MAX(tp_00,temp_air(ji))-tp_00)/dt_sechiba ! (w/m2) |
---|
1351 | pgflux(ji) = netrad(ji) - fluxsens(ji) - fluxlat(ji) + PHPSNOW(ji) |
---|
1352 | ENDIF |
---|
1353 | |
---|
1354 | |
---|
1355 | !! To get the extra energy used to melt the snowpack |
---|
1356 | IF (ok_explicitsnow .AND. temp_sol_new (ji) > tp_00 .AND. & |
---|
1357 | SUM(snowdz(ji,:)) .GT. zero .AND. soilcap(ji) .GT. zero) THEN |
---|
1358 | |
---|
1359 | lwup_tmp(ji) = emis(ji) * c_stefan * temp_sol(ji)**4 + & |
---|
1360 | quatre * emis(ji) * c_stefan * temp_sol(ji)**3 * (tp_00 - temp_sol(ji)) |
---|
1361 | |
---|
1362 | lwup_tmp(ji) = lwup_tmp(ji) + (un - emis(ji)) * lwdown(ji) |
---|
1363 | netrad_tmp(ji) = lwdown(ji) + swnet(ji) - lwup_tmp(ji) |
---|
1364 | fluxsens_tmp(ji) = rau(ji) * qc * cp_air * (tp_00 - epot_air(ji)/cp_air) |
---|
1365 | fluxlat_tmp(ji) = chalsu0 * rau(ji) * qc * vbeta1(ji) * (un-vbeta5(ji)) * & |
---|
1366 | & (qsol_sat_tmp(ji) - qair(ji)) + & |
---|
1367 | & chalev0 * rau(ji) * qc * vbeta5(ji) *& |
---|
1368 | & (qsol_sat_tmp(ji) - qair(ji)) + & |
---|
1369 | & chalev0 * rau(ji) * qc * (un - vbeta1(ji)) * (un-vbeta5(ji))* vbeta(ji) * & |
---|
1370 | & (valpha(ji) * qsol_sat_tmp(ji) - qair(ji)) |
---|
1371 | |
---|
1372 | zgflux(ji) = netrad_tmp(ji) - fluxsens_tmp(ji) - fluxlat_tmp(ji)+PHPSNOW(ji) |
---|
1373 | |
---|
1374 | temp_sol_add(ji) = -(pgflux(ji) - zgflux(ji))*dt_sechiba/soilcap(ji) |
---|
1375 | |
---|
1376 | pgflux(ji) = zgflux(ji) |
---|
1377 | |
---|
1378 | ELSE |
---|
1379 | |
---|
1380 | temp_sol_add(ji) = zero |
---|
1381 | |
---|
1382 | ENDIF |
---|
1383 | |
---|
1384 | ENDDO |
---|
1385 | |
---|
1386 | !! 3. Define qsat_air with the subroutine src_parameter: |
---|
1387 | |
---|
1388 | CALL qsatcalc(kjpindex, tair, pb, qsat_air) |
---|
1389 | |
---|
1390 | CALL dev_qsatcalc(kjpindex, tair, pb, grad_qsat) |
---|
1391 | |
---|
1392 | ! grad_qsat(:)= (qsol_sat_new(:)- qsat_air(:)) / ((psnew(:) - epot_air(:)) / cp_air) ! * dt_sechiba |
---|
1393 | |
---|
1394 | warning_correction(:)=.FALSE. |
---|
1395 | DO ji=1,kjpindex |
---|
1396 | |
---|
1397 | !! \latexonly |
---|
1398 | !! \input{enerbilflux16.tex} |
---|
1399 | !! \endlatexonly |
---|
1400 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
1401 | |
---|
1402 | !! \latexonly |
---|
1403 | !! \input{enerbilflux17.tex} |
---|
1404 | !! \endlatexonly |
---|
1405 | qc = speed * q_cdrag(ji) |
---|
1406 | |
---|
1407 | !! Derive the potential as defined by Penman & Monteith (Monteith, 1965) based on the correction |
---|
1408 | !! term developed by Chris Milly (1992). |
---|
1409 | IF ((evapot(ji) .GT. zero) .AND. ((psnew(ji) - epot_air(ji)) .NE. zero )) THEN |
---|
1410 | ! |
---|
1411 | !! \latexonly |
---|
1412 | !! \input{enerbilflux18.tex} |
---|
1413 | !! \endlatexonly |
---|
1414 | correction = (quatre * emis(ji) * c_stefan * tair(ji)**3 + rau(ji) * qc * cp_air + & |
---|
1415 | & chalev0 * rau(ji) * qc * grad_qsat(ji) * vevapp(ji) / evapot(ji) ) |
---|
1416 | |
---|
1417 | !! \latexonly |
---|
1418 | !! \input{enerbilflux19.tex} |
---|
1419 | !! \endlatexonly |
---|
1420 | IF (ABS(correction) .GT. min_sechiba) THEN |
---|
1421 | correction = chalev0 * rau(ji) * qc * grad_qsat(ji) * (un - vevapp(ji)/evapot(ji)) / correction |
---|
1422 | ELSE |
---|
1423 | warning_correction(ji)=.TRUE. |
---|
1424 | ENDIF |
---|
1425 | ELSE |
---|
1426 | correction = zero |
---|
1427 | ENDIF |
---|
1428 | correction = MAX (zero, correction) |
---|
1429 | |
---|
1430 | !! \latexonly |
---|
1431 | !! \input{enerbilflux20.tex} |
---|
1432 | !! \endlatexonly |
---|
1433 | evapot_corr(ji) = evapot(ji) / (un + correction) |
---|
1434 | |
---|
1435 | ENDDO |
---|
1436 | IF ( ANY(warning_correction) ) THEN |
---|
1437 | DO ji=1,kjpindex |
---|
1438 | IF ( warning_correction(ji) ) THEN |
---|
1439 | WRITE(numout,*) ji,"Denominateur de la correction de milly nul! Aucune correction appliquee" |
---|
1440 | ENDIF |
---|
1441 | ENDDO |
---|
1442 | ENDIF |
---|
1443 | IF (printlev>=3) WRITE (numout,*) ' enerbil_flux done ' |
---|
1444 | |
---|
1445 | END SUBROUTINE enerbil_flux |
---|
1446 | |
---|
1447 | |
---|
1448 | !! =========================================================================================================================== |
---|
1449 | !! SUBROUTINE : enerbil_evapveg |
---|
1450 | !! |
---|
1451 | !>\BRIEF Splits total evaporation loss into individual process |
---|
1452 | !! components and calculates the assimilation. |
---|
1453 | !! |
---|
1454 | !! DESCRIPTION : Based on the estimation of the fluxes in enerbil_flux, |
---|
1455 | !! this routine splits the total evaporation into transpiration interception loss from vegetation, |
---|
1456 | !! bare soil evaporation and snow sublimation. It then calculates the assimilation. |
---|
1457 | !! |
---|
1458 | !! MAIN OUTPUT VARIABLE(S) : vevapsno, vevapnu, transpir, vevapwet |
---|
1459 | !! |
---|
1460 | !! REFERENCE(S) : |
---|
1461 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
1462 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
1463 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
1464 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
1465 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
1466 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
1467 | !! interface avec la surface planetaire dans LMDZ, Technical note, available (22/12/11): |
---|
1468 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
1469 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
1470 | !! sur le cycle de l'eau, PhD Thesis, available (22/12/11): |
---|
1471 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pdf |
---|
1472 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
1473 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
1474 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
1475 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
1476 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
1477 | !! Interscience Publishers |
---|
1478 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
1479 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
1480 | !! |
---|
1481 | !! FLOWCHART : None |
---|
1482 | !! \n |
---|
1483 | !_ ============================================================================================================================== |
---|
1484 | |
---|
1485 | SUBROUTINE enerbil_evapveg (kjpindex, vbeta1, vbeta2, vbeta3, vbeta3pot, vbeta4, vbeta5, & |
---|
1486 | & rau, u, v, q_cdrag, qair, humrel, vevapsno, vevapnu , vevapflo, vevapwet, & |
---|
1487 | & transpir, transpot, evapot) |
---|
1488 | |
---|
1489 | !! 0. Variable and parameter declaration |
---|
1490 | |
---|
1491 | !! 0.1 Input variables |
---|
1492 | |
---|
1493 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
1494 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta1 !! Snow resistance (-) |
---|
1495 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta4 !! Bare soil resistance (-) |
---|
1496 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: vbeta5 !! Floodplains resistance |
---|
1497 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: rau !! Density (kg m^{-3}) |
---|
1498 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u, v !! Wind velocity in directions u and v (m s^{-1}) |
---|
1499 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: q_cdrag !! Surface drag (m s^{-1}) |
---|
1500 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: qair !! Lowest level specific humidity (kg kg^{-1}) |
---|
1501 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: evapot !! Soil Potential Evaporation (mm/tstep) |
---|
1502 | REAL(r_std),DIMENSION (kjpindex, nvm), INTENT (in) :: humrel !! Soil moisture stress (within range 0 to 1) |
---|
1503 | !!$ DS 15022011 humrel was used in a previous version of Orchidee, developped by Nathalie. Need to be discussed if it should be introduce again |
---|
1504 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta2 !! Interception resistance (-) |
---|
1505 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta3 !! Vegetation resistance (-) |
---|
1506 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: vbeta3pot !! Vegetation resistance for potential transpiration |
---|
1507 | |
---|
1508 | !! 0.2 Output variables |
---|
1509 | |
---|
1510 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapsno !! Snow evaporation (mm day^{-1}) |
---|
1511 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapnu !! Bare soil evaporation (mm day^{-1}) |
---|
1512 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: vevapflo !! Floodplains evaporation |
---|
1513 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: transpir !! Transpiration (mm day^{-1}) |
---|
1514 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: transpot !! Potential Transpiration |
---|
1515 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (out) :: vevapwet !! Interception (mm day^{-1}) |
---|
1516 | |
---|
1517 | !! 0.3 Modified variables |
---|
1518 | |
---|
1519 | !! 0.4 Local variables |
---|
1520 | |
---|
1521 | INTEGER(i_std) :: ji, jv |
---|
1522 | REAL(r_std), DIMENSION(kjpindex) :: xx |
---|
1523 | REAL(r_std), DIMENSION(kjpindex) :: vbeta2sum, vbeta3sum |
---|
1524 | REAL(r_std) :: speed !! Speed (m s^{-1}) |
---|
1525 | |
---|
1526 | !_ ============================================================================================================================== |
---|
1527 | ! initialisation: utile pour calculer l'evaporation des floodplains dans lesquelles il y a de la vegetation |
---|
1528 | vbeta2sum(:) = 0. |
---|
1529 | vbeta3sum(:) = 0. |
---|
1530 | DO jv = 1, nvm |
---|
1531 | vbeta2sum(:) = vbeta2sum(:) + vbeta2(:,jv) |
---|
1532 | vbeta3sum(:) = vbeta3sum(:) + vbeta3(:,jv) |
---|
1533 | ENDDO |
---|
1534 | |
---|
1535 | !! 1. Compute vevapsno (evaporation from snow) and vevapnu (bare soil evaporation) |
---|
1536 | |
---|
1537 | DO ji=1,kjpindex |
---|
1538 | |
---|
1539 | !! \latexonly |
---|
1540 | !! \input{enerbilevapveg1.tex} |
---|
1541 | !! \endlatexonly |
---|
1542 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
1543 | |
---|
1544 | |
---|
1545 | !! 1.1 Snow sublimation |
---|
1546 | !! \latexonly |
---|
1547 | !! \input{enerbilevapveg2.tex} |
---|
1548 | !! \endlatexonly |
---|
1549 | vevapsno(ji) = (un - vbeta5(ji)) * vbeta1(ji) * dt_sechiba * rau(ji) * speed * q_cdrag(ji) * (qsol_sat_new(ji) - qair(ji)) |
---|
1550 | |
---|
1551 | !! 1.2 Bare soil evaporation |
---|
1552 | !! \latexonly |
---|
1553 | !! \input{enerbilevapveg3.tex} |
---|
1554 | !! \endlatexonly |
---|
1555 | vevapnu(ji) = (un - vbeta1(ji)) * (un-vbeta5(ji)) * vbeta4(ji) * dt_sechiba * rau(ji) * speed * q_cdrag(ji) & |
---|
1556 | & * (qsol_sat_new(ji) - qair(ji)) |
---|
1557 | ! |
---|
1558 | ! 1.3 floodplains evaporation - transpiration et interception prioritaires dans les floodplains |
---|
1559 | ! |
---|
1560 | vevapflo(ji) = vbeta5(ji) * (1 - vbeta2sum(ji) - vbeta3sum(ji)) & |
---|
1561 | & * dt_sechiba * rau(ji) * speed * q_cdrag(ji) * (qsol_sat_new(ji) - qair(ji)) |
---|
1562 | |
---|
1563 | END DO |
---|
1564 | |
---|
1565 | !! 2. Compute transpir (transpiration) and vevapwet (interception) |
---|
1566 | |
---|
1567 | !! Preliminaries |
---|
1568 | DO ji = 1, kjpindex |
---|
1569 | |
---|
1570 | !! \latexonly |
---|
1571 | !! \input{enerbilevapveg4.tex} |
---|
1572 | !! \endlatexonly |
---|
1573 | speed = MAX(min_wind, SQRT (u(ji)*u(ji) + v(ji)*v(ji))) |
---|
1574 | |
---|
1575 | !! \latexonly |
---|
1576 | !! \input{enerbilevapveg5.tex} |
---|
1577 | !! \endlatexonly |
---|
1578 | xx(ji) = dt_sechiba * (un-vbeta1(ji)) * (qsol_sat_new(ji)-qair(ji)) * rau(ji) * speed * q_cdrag(ji) |
---|
1579 | |
---|
1580 | ENDDO |
---|
1581 | |
---|
1582 | DO jv=1,nvm |
---|
1583 | DO ji=1,kjpindex |
---|
1584 | |
---|
1585 | !! 2.1 Calculate interception loss |
---|
1586 | !! \latexonly |
---|
1587 | !! \input{enerbilevapveg6.tex} |
---|
1588 | !! \endlatexonly |
---|
1589 | vevapwet(ji,jv) = xx(ji) * vbeta2(ji,jv) |
---|
1590 | ! |
---|
1591 | !! 2.2 Calculate transpiration |
---|
1592 | !! \latexonly |
---|
1593 | !! \input{enerbilevapveg7.tex} |
---|
1594 | !! \endlatexonly |
---|
1595 | transpir (ji,jv) = xx(ji) * vbeta3(ji,jv) |
---|
1596 | |
---|
1597 | transpot(ji,jv) = xx(ji) * vbeta3pot(ji,jv) |
---|
1598 | |
---|
1599 | END DO |
---|
1600 | END DO |
---|
1601 | |
---|
1602 | |
---|
1603 | |
---|
1604 | IF (printlev>=3) WRITE (numout,*) ' enerbil_evapveg done ' |
---|
1605 | |
---|
1606 | END SUBROUTINE enerbil_evapveg |
---|
1607 | |
---|
1608 | |
---|
1609 | !! ============================================================================================================================= |
---|
1610 | !! SUBROUTINE : enerbil_fusion |
---|
1611 | !! |
---|
1612 | !>\BRIEF Computes new soil temperature due to |
---|
1613 | !! ice and snow melt. |
---|
1614 | !! |
---|
1615 | !! DESCRIPTION : This routine computes new soil temperature due to |
---|
1616 | !! ice and snow melt. It is the second part of main routine for enerbil module, and is called every |
---|
1617 | !! time step. |
---|
1618 | !! |
---|
1619 | !! MAIN OUTPUT VARIABLE(S) : temp_sol_new, fusion |
---|
1620 | !! |
---|
1621 | !! REFERENCE(S) : |
---|
1622 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
1623 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
1624 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
1625 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
1626 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
1627 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
1628 | !! interface avec la surface planetaire dans LMDZ. Technical note, available (22/12/11): |
---|
1629 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
1630 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
1631 | !! sur le cycle de l'eau. PhD Thesis, available (22/12/11): |
---|
1632 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pdf |
---|
1633 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
1634 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
1635 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
1636 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
1637 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
1638 | !! Interscience Publishers |
---|
1639 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
1640 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
1641 | !! |
---|
1642 | !! FLOWCHART : None |
---|
1643 | !! \n |
---|
1644 | !_ ============================================================================================================================== |
---|
1645 | |
---|
1646 | SUBROUTINE enerbil_fusion (kjpindex, tot_melt, soilcap, & |
---|
1647 | temp_sol_new, fusion) |
---|
1648 | |
---|
1649 | |
---|
1650 | !! 0. Variable and parameter declaration |
---|
1651 | |
---|
1652 | !! 0.1 Input variables |
---|
1653 | |
---|
1654 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
1655 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: tot_melt !! Total melt (??) |
---|
1656 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: soilcap !! Soil heat capacity (J K^{-1]) |
---|
1657 | |
---|
1658 | !! 0.2 Output variables |
---|
1659 | |
---|
1660 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: fusion !! Fusion (??) |
---|
1661 | |
---|
1662 | !! 0.3 Modified variables |
---|
1663 | |
---|
1664 | REAL(r_std),DIMENSION (kjpindex), INTENT (inout) :: temp_sol_new !! New soil temperature (K) |
---|
1665 | |
---|
1666 | !! 0.4 Local variables |
---|
1667 | INTEGER(i_std) :: ji !! (-) |
---|
1668 | |
---|
1669 | !_ ============================================================================================================================== |
---|
1670 | |
---|
1671 | !! Initialisation |
---|
1672 | IF (printlev>=3) WRITE (numout,*) ' enerbil_fusion start ', MINVAL(soilcap), MINLOC(soilcap),& |
---|
1673 | & MAXVAL(soilcap), MAXLOC(soilcap) |
---|
1674 | |
---|
1675 | !! 1. Calculate new soil temperature due to ice and snow melt |
---|
1676 | |
---|
1677 | IF (.NOT. ok_explicitsnow) THEN |
---|
1678 | !! Surface temperature is reduced if there is snow melt |
---|
1679 | |
---|
1680 | DO ji=1,kjpindex |
---|
1681 | !! \latexonly |
---|
1682 | !! \input{enerbilfusion1.tex} |
---|
1683 | !! \endlatexonly |
---|
1684 | fusion(ji) = tot_melt(ji) * chalfu0 / dt_sechiba |
---|
1685 | |
---|
1686 | !! \latexonly |
---|
1687 | !! \input{enerbilfusion2.tex} |
---|
1688 | !! \endlatexonly |
---|
1689 | temp_sol_new(ji) = temp_sol_new(ji) - ((tot_melt(ji) * chalfu0) / soilcap(ji)) |
---|
1690 | END DO |
---|
1691 | ENDIF |
---|
1692 | |
---|
1693 | IF (printlev>=3) WRITE (numout,*) ' enerbil_fusion done ' |
---|
1694 | |
---|
1695 | END SUBROUTINE enerbil_fusion |
---|
1696 | |
---|
1697 | |
---|
1698 | !! ============================================================================================================================= |
---|
1699 | !! SUBROUTINE : enerbil_t2mdiag |
---|
1700 | !! |
---|
1701 | !> BRIEF This routine diagnoses the air temperature at 2 |
---|
1702 | !! metres above ground. |
---|
1703 | !! |
---|
1704 | !! DESCRIPTION : The 2 metre above ground air temperature is currently |
---|
1705 | !! set to be the same as the general air temperaturem, as the surface model currently simulates the |
---|
1706 | !! above ground atmosphere as a uniform box (and the lowest layer of the LMDZ atmospheric model). |
---|
1707 | !! |
---|
1708 | !! MAIN OUTPUT VARIABLE(S) : t2mdiag |
---|
1709 | !! |
---|
1710 | !! REFERENCE(S) : |
---|
1711 | !! - Best, MJ, Beljaars, A, Polcher, J & Viterbo, P, 2004. A proposed structure for coupling tiled |
---|
1712 | !! surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, pp.1271-1278 |
---|
1713 | !! - de Noblet-Ducoudré, N, Laval, K & Perrier, A, 1993. SECHIBA, a new set of parameterisations |
---|
1714 | !! of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General |
---|
1715 | !! Circulation Model. Journal of Climate, 6, pp.248-273 |
---|
1716 | !! - Dufresne, J-L & Ghattas, J, 2009. Description du schéma de la couche limite turbulente et la |
---|
1717 | !! interface avec la surface planetaire dans LMDZ, Technical note, available from: |
---|
1718 | !! http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/pbl_surface.pdf |
---|
1719 | !! - Guimberteau, M, 2010. Modélisation de l'hydrologie continentale et influences de l'irrigation |
---|
1720 | !! sur le cycle de l'eau, PhD Thesis, available from: |
---|
1721 | !! http://www.sisyphe.upmc.fr/~guimberteau/docs/manuscrit_these.pdf |
---|
1722 | !! - Polcher, J. McAvaney, B, Viterbo, P, Gaertner, MA, Hahmann, A, Mahfouf, J-F, Noilhan, J |
---|
1723 | !! Phillips, TJ, Pitman, AJ, Schlosser, CA, Schulz, J-P, Timbal, B, Verseghy, D & |
---|
1724 | !! Xue, Y, 1998. A proposal for a general interface between land surface schemes and |
---|
1725 | !! general circulation models. Global and Planetary Change, 19, pp.261-276 |
---|
1726 | !! - Richtmeyer, RD, Morton, KW, 1967. Difference Methods for Initial-Value Problems. |
---|
1727 | !! Interscience Publishers\n |
---|
1728 | !! - Schulz, Jan-Peter, Lydia DÃŒmenil, Jan Polcher, 2001: On the Land SurfaceâAtmosphere |
---|
1729 | !! Coupling and Its Impact in a Single-Column Atmospheric Model. J. Appl. Meteor., 40, 642â663. |
---|
1730 | !! |
---|
1731 | !! FLOWCHART : None |
---|
1732 | !! \n |
---|
1733 | !_ ============================================================================================================================== |
---|
1734 | |
---|
1735 | SUBROUTINE enerbil_t2mdiag (kjpindex, temp_air, t2mdiag) |
---|
1736 | |
---|
1737 | !! 0. Variable and parameter declaration |
---|
1738 | |
---|
1739 | !! 0.1 Input variables |
---|
1740 | |
---|
1741 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size (-) |
---|
1742 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: temp_air !! Air temperature (K) |
---|
1743 | |
---|
1744 | !! 0.2 Output variables |
---|
1745 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: t2mdiag !! 2-metre temperature (K) |
---|
1746 | |
---|
1747 | !! 0.3 Modified variables |
---|
1748 | |
---|
1749 | !! 0.4 Local variables |
---|
1750 | |
---|
1751 | !_ ============================================================================================================================== |
---|
1752 | |
---|
1753 | !! The 2 metre air temperature is assumed to be the same of the value of temp_air - the atmospheric air |
---|
1754 | !! temperature, which also taken as the temperature at the lowest level of the LMDZ. 't2mdiag' is just |
---|
1755 | !! a value used for diagnostic purposes, admd it is no applied amywhere else. |
---|
1756 | !! \latexonly |
---|
1757 | !! \input{enerbilt2mdiag1.tex} |
---|
1758 | !! \endlatexonly |
---|
1759 | t2mdiag(:) = temp_air(:) |
---|
1760 | |
---|
1761 | IF (printlev>=3) WRITE (numout,*) ' enerbil_t2mdiag done ' |
---|
1762 | |
---|
1763 | END SUBROUTINE enerbil_t2mdiag |
---|
1764 | |
---|
1765 | |
---|
1766 | |
---|
1767 | END MODULE enerbil |
---|