1 | ! =============================================================================================================================== |
---|
2 | ! MODULE : condveg |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Initialise, compute and update the surface parameters emissivity, |
---|
10 | !! roughness and albedo. |
---|
11 | !! |
---|
12 | !! \n DESCRIPTION : The module uses 3 settings to control its flow:\n |
---|
13 | !! 1. :: rough_dyn to choose between two methods to calculate |
---|
14 | !! the roughness height. If set to false: the roughness height is calculated by the old formulation |
---|
15 | !! which does not distinguish between z0m and z0h and which does not vary with LAI |
---|
16 | !! If set to true: the grid average is calculated by the formulation proposed by Su et al. (2001) |
---|
17 | !! 2. :: impaze for choosing surface parameters. If set to false, the values for the |
---|
18 | !! soil albedo, emissivity and roughness height are set to default values which are read from |
---|
19 | !! the run.def. If set to true, the user imposes its own values, fixed for the grid point. This is useful if |
---|
20 | !! one performs site simulations, however, |
---|
21 | !! it is not recommended to do so for spatialized simulations. |
---|
22 | !! roughheight_scal imposes the roughness height in (m) , |
---|
23 | !! same for emis_scal (in %), albedo_scal (in %), zo_scal (in m) |
---|
24 | !! Note that these values are only used if 'impaze' is true.\n |
---|
25 | !! 3. :: alb_bare_model for choosing values of bare soil albedo. If set to TRUE bare |
---|
26 | !! soil albedo depends on soil wetness. If set to FALSE bare soil albedo is the mean |
---|
27 | !! values of wet and dry soil albedos.\n |
---|
28 | !! The surface fluxes are calculated between two levels: the atmospheric level reference and the effective roughness height |
---|
29 | !! defined as the difference between the mean height of the vegetation and the displacement height (zero wind |
---|
30 | !! level). Over bare soils, the zero wind level is equal to the soil roughness. Over vegetation, the zero wind level |
---|
31 | !! is increased by the displacement height |
---|
32 | !! which depends on the height of the vegetation. For a grid point composed of different types of vegetation, |
---|
33 | !! an effective surface roughness has to be calculated |
---|
34 | !! |
---|
35 | !! RECENT CHANGE(S): Added option rough_dyn and subroutine condveg_z0cdrag_dyn. Removed subroutine condveg_z0logz. June 2016. |
---|
36 | !! |
---|
37 | !! REFERENCES(S) : None |
---|
38 | !! |
---|
39 | !! SVN : |
---|
40 | !! $HeadURL$ |
---|
41 | !! $Date$ |
---|
42 | !! $Revision$ |
---|
43 | !! \n |
---|
44 | !_ ================================================================================================================================ |
---|
45 | |
---|
46 | MODULE condveg |
---|
47 | |
---|
48 | USE ioipsl |
---|
49 | USE xios_orchidee |
---|
50 | USE constantes |
---|
51 | USE constantes_soil |
---|
52 | USE pft_parameters |
---|
53 | USE qsat_moisture |
---|
54 | USE interpol_help |
---|
55 | USE mod_orchidee_para |
---|
56 | USE ioipsl_para |
---|
57 | USE sechiba_io |
---|
58 | USE grid |
---|
59 | |
---|
60 | IMPLICIT NONE |
---|
61 | |
---|
62 | PRIVATE |
---|
63 | PUBLIC :: condveg_main, condveg_initialize, condveg_finalize, condveg_clear |
---|
64 | |
---|
65 | ! |
---|
66 | ! Variables used inside condveg module |
---|
67 | ! |
---|
68 | LOGICAL, SAVE :: l_first_condveg=.TRUE. !! To keep first call's trace |
---|
69 | !$OMP THREADPRIVATE(l_first_condveg) |
---|
70 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_dry(:,:) !! Albedo values for the dry bare soil (unitless) |
---|
71 | !$OMP THREADPRIVATE(soilalb_dry) |
---|
72 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_wet(:,:) !! Albedo values for the wet bare soil (unitless) |
---|
73 | !$OMP THREADPRIVATE(soilalb_wet) |
---|
74 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_moy(:,:) !! Albedo values for the mean bare soil (unitless) |
---|
75 | !$OMP THREADPRIVATE(soilalb_moy) |
---|
76 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_bg(:,:) !! Albedo values for the background bare soil (unitless) |
---|
77 | !$OMP THREADPRIVATE(soilalb_bg) |
---|
78 | INTEGER, SAVE :: printlev_loc !! Output debug level |
---|
79 | !$OMP THREADPRIVATE(printlev_loc) |
---|
80 | |
---|
81 | CONTAINS |
---|
82 | |
---|
83 | !! ============================================================================================================================= |
---|
84 | !! SUBROUTINE : condveg_initialize |
---|
85 | !! |
---|
86 | !>\BRIEF Allocate module variables, read from restart file or initialize with default values |
---|
87 | !! |
---|
88 | !! DESCRIPTION : Allocate module variables, read from restart file or initialize with default values. |
---|
89 | !! condveg_snow is called to initialize corresponding variables. |
---|
90 | !! |
---|
91 | !! RECENT CHANGE(S) : None |
---|
92 | !! |
---|
93 | !! MAIN OUTPUT VARIABLE(S) |
---|
94 | !! |
---|
95 | !! REFERENCE(S) : None |
---|
96 | !! |
---|
97 | !! FLOWCHART : None |
---|
98 | !! \n |
---|
99 | !_ ============================================================================================================================== |
---|
100 | SUBROUTINE condveg_initialize (kjit, kjpindex, index, rest_id, & |
---|
101 | lalo, neighbours, resolution, contfrac, veget, veget_max, frac_nobio, totfrac_nobio, & |
---|
102 | zlev, snow, snow_age, snow_nobio, snow_nobio_age, & |
---|
103 | drysoil_frac, height, snowdz, snowrho, tot_bare_soil, & |
---|
104 | temp_air, pb, u, v, lai, & |
---|
105 | emis, albedo, z0m, z0h, roughheight, & |
---|
106 | frac_snow_veg,frac_snow_nobio) |
---|
107 | |
---|
108 | !! 0. Variable and parameter declaration |
---|
109 | !! 0.1 Input variables |
---|
110 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
111 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
112 | INTEGER(i_std),INTENT (in) :: rest_id !! _Restart_ file identifier |
---|
113 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map |
---|
114 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (in) :: lalo !! Geographical coordinates |
---|
115 | INTEGER(i_std),DIMENSION (kjpindex,NbNeighb), INTENT(in):: neighbours!! neighoring grid points if land |
---|
116 | REAL(r_std), DIMENSION (kjpindex,2), INTENT(in) :: resolution !! size in x an y of the grid (m) |
---|
117 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: contfrac ! Fraction of land in each grid box. |
---|
118 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget !! Fraction of vegetation types |
---|
119 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max !! Fraction of vegetation type |
---|
120 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of continental ice, lakes, ... |
---|
121 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! total fraction of continental ice+lakes+... |
---|
122 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer |
---|
123 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass [Kg/m^2] |
---|
124 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age |
---|
125 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass [Kg/m^2] on ice, lakes, ... |
---|
126 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_nobio_age !! Snow age on ice, lakes, ... |
---|
127 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
128 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: height !! Vegetation Height (m) |
---|
129 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowdz !! Snow depth at each snow layer |
---|
130 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowrho !! Snow density at each snow layer |
---|
131 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
132 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
133 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
134 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: u !! Horizontal wind speed, u direction |
---|
135 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: v !! Horizontal wind speed, v direction |
---|
136 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
137 | |
---|
138 | !! 0.2 Output variables |
---|
139 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: emis !! Emissivity |
---|
140 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo, vis(1) and nir(2) |
---|
141 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0m !! Roughness for momentum (m) |
---|
142 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0h !! Roughness for heat (m) |
---|
143 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: roughheight !! Effective height for roughness |
---|
144 | REAL(r_std),DIMENSION (kjpindex), INTENT(out) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
145 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Snow cover fraction on non-vegeted area |
---|
146 | |
---|
147 | !! 0.4 Local variables |
---|
148 | INTEGER :: ier |
---|
149 | REAL(r_std), DIMENSION(kjpindex,2) :: albedo_snow !! Snow albedo for visible and near-infrared range(unitless) |
---|
150 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
151 | !! range (unitless) |
---|
152 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
153 | ! !! range (unitless) |
---|
154 | !_ ================================================================================================================================ |
---|
155 | |
---|
156 | IF (.NOT. l_first_condveg) CALL ipslerr_p(3,'condveg_initialize','Error: initialization already done','','') |
---|
157 | l_first_condveg=.FALSE. |
---|
158 | |
---|
159 | !! Initialize local printlev |
---|
160 | printlev_loc=get_printlev('condveg') |
---|
161 | |
---|
162 | IF (printlev>=3) WRITE (numout,*) 'Start condveg_initialize' |
---|
163 | |
---|
164 | !! 1. Allocate module variables and read from restart or initialize |
---|
165 | |
---|
166 | IF (alb_bg_modis) THEN |
---|
167 | ! Allocate background soil albedo |
---|
168 | ALLOCATE (soilalb_bg(kjpindex,2),stat=ier) |
---|
169 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_bg','','') |
---|
170 | |
---|
171 | ! Read background albedo from restart file |
---|
172 | CALL ioconf_setatt_p('UNITS', '-') |
---|
173 | CALL ioconf_setatt_p('LONG_NAME','Background soil albedo for visible and near-infrared range') |
---|
174 | CALL restget_p (rest_id, 'soilalbedo_bg', nbp_glo, 2, 1, kjit, .TRUE., soilalb_bg, "gather", nbp_glo, index_g) |
---|
175 | |
---|
176 | ! Initialize by interpolating from file if the variable was not in restart file |
---|
177 | IF ( ALL(soilalb_bg(:,:) == val_exp) ) THEN |
---|
178 | CALL condveg_background_soilalb(kjpindex, lalo, neighbours, resolution, contfrac) |
---|
179 | ELSE |
---|
180 | ! Write diagnostics of the background albedo |
---|
181 | CALL xios_orchidee_send_field("soilalb_bg",soilalb_bg) |
---|
182 | END IF |
---|
183 | |
---|
184 | ELSE |
---|
185 | ! Allocate |
---|
186 | ! Dry soil albedo |
---|
187 | ALLOCATE (soilalb_dry(kjpindex,2),stat=ier) |
---|
188 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_dry','','') |
---|
189 | |
---|
190 | ! Wet soil albedo |
---|
191 | ALLOCATE (soilalb_wet(kjpindex,2),stat=ier) |
---|
192 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_wet','','') |
---|
193 | |
---|
194 | ! Mean soil albedo |
---|
195 | ALLOCATE (soilalb_moy(kjpindex,2),stat=ier) |
---|
196 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_moy','','') |
---|
197 | |
---|
198 | ! Read variables from restart file |
---|
199 | ! dry soil albedo |
---|
200 | CALL ioconf_setatt_p('UNITS', '-') |
---|
201 | CALL ioconf_setatt_p('LONG_NAME','Dry bare soil albedo') |
---|
202 | CALL restget_p (rest_id,'soilalbedo_dry' , nbp_glo, 2, 1, kjit, .TRUE., soilalb_dry, "gather", nbp_glo, index_g) |
---|
203 | |
---|
204 | ! wet soil albedo |
---|
205 | CALL ioconf_setatt_p('UNITS', '-') |
---|
206 | CALL ioconf_setatt_p('LONG_NAME','Wet bare soil albedo') |
---|
207 | CALL restget_p (rest_id, 'soilalbedo_wet', nbp_glo, 2, 1, kjit, .TRUE., soilalb_wet, "gather", nbp_glo, index_g) |
---|
208 | |
---|
209 | ! mean soil aledo |
---|
210 | CALL ioconf_setatt_p('UNITS', '-') |
---|
211 | CALL ioconf_setatt_p('LONG_NAME','Mean bare soil albedo') |
---|
212 | CALL restget_p (rest_id, 'soilalbedo_moy', nbp_glo, 2, 1, kjit, .TRUE., soilalb_moy, "gather", nbp_glo, index_g) |
---|
213 | |
---|
214 | |
---|
215 | ! Initialize the variables if not found in restart file |
---|
216 | IF ( ALL(soilalb_wet(:,:) == val_exp) .OR. & |
---|
217 | ALL(soilalb_dry(:,:) == val_exp) .OR. & |
---|
218 | ALL(soilalb_moy(:,:) == val_exp)) THEN |
---|
219 | ! One or more of the variables were not in the restart file. |
---|
220 | ! Call routine condveg_soilalb to calculate them. |
---|
221 | CALL condveg_soilalb(kjpindex, lalo, neighbours, resolution, contfrac) |
---|
222 | WRITE(numout,*) '---> val_exp ', val_exp |
---|
223 | WRITE(numout,*) '---> ALBEDO_wet VIS:', MINVAL(soilalb_wet(:,ivis)), MAXVAL(soilalb_wet(:,ivis)) |
---|
224 | WRITE(numout,*) '---> ALBEDO_wet NIR:', MINVAL(soilalb_wet(:,inir)), MAXVAL(soilalb_wet(:,inir)) |
---|
225 | WRITE(numout,*) '---> ALBEDO_dry VIS:', MINVAL(soilalb_dry(:,ivis)), MAXVAL(soilalb_dry(:,ivis)) |
---|
226 | WRITE(numout,*) '---> ALBEDO_dry NIR:', MINVAL(soilalb_dry(:,inir)), MAXVAL(soilalb_dry(:,inir)) |
---|
227 | WRITE(numout,*) '---> ALBEDO_moy VIS:', MINVAL(soilalb_moy(:,ivis)), MAXVAL(soilalb_moy(:,ivis)) |
---|
228 | WRITE(numout,*) '---> ALBEDO_moy NIR:', MINVAL(soilalb_moy(:,inir)), MAXVAL(soilalb_moy(:,inir)) |
---|
229 | ENDIF |
---|
230 | END IF |
---|
231 | |
---|
232 | ! z0m |
---|
233 | CALL ioconf_setatt_p('UNITS', '-') |
---|
234 | CALL ioconf_setatt_p('LONG_NAME','Roughness for momentum') |
---|
235 | CALL restget_p (rest_id, 'z0m', nbp_glo, 1, 1, kjit, .TRUE., z0m, "gather", nbp_glo, index_g) |
---|
236 | |
---|
237 | ! z0h |
---|
238 | CALL ioconf_setatt_p('UNITS', '-') |
---|
239 | CALL ioconf_setatt_p('LONG_NAME','Roughness for heat') |
---|
240 | CALL restget_p (rest_id, 'z0h', nbp_glo, 1, 1, kjit, .TRUE., z0h, "gather", nbp_glo, index_g) |
---|
241 | |
---|
242 | ! roughness height |
---|
243 | CALL ioconf_setatt_p('UNITS', '-') |
---|
244 | CALL ioconf_setatt_p('LONG_NAME','Roughness height') |
---|
245 | CALL restget_p (rest_id, 'roughheight', nbp_glo, 1, 1, kjit, .TRUE., roughheight, "gather", nbp_glo, index_g) |
---|
246 | |
---|
247 | |
---|
248 | !! Initialize emissivity |
---|
249 | IF ( impaze ) THEN |
---|
250 | ! Use parameter CONDVEG_EMIS from run.def |
---|
251 | emis(:) = emis_scal |
---|
252 | ELSE |
---|
253 | ! Set emissivity to 1. |
---|
254 | emis_scal = un |
---|
255 | emis(:) = emis_scal |
---|
256 | ENDIF |
---|
257 | |
---|
258 | |
---|
259 | !! 3. Calculate the fraction of snow on vegetation and nobio |
---|
260 | CALL condveg_frac_snow(kjpindex, snow, snow_nobio, snowrho, snowdz, & |
---|
261 | frac_snow_veg, frac_snow_nobio) |
---|
262 | |
---|
263 | !! 4. Calculate roughness height if it was not found in the restart file |
---|
264 | IF ( ALL(z0m(:) == val_exp) .OR. ALL(z0h(:) == val_exp) .OR. ALL(roughheight(:) == val_exp)) THEN |
---|
265 | !! Calculate roughness height |
---|
266 | ! Chooses between two methods to calculate the grid average of the roughness. |
---|
267 | ! If impaze set to true: The grid average is calculated by averaging the drag coefficients over PFT. |
---|
268 | ! If impaze set to false: The grid average is calculated by averaging the logarithm of the roughness length per PFT. |
---|
269 | IF ( impaze ) THEN |
---|
270 | ! Use parameter CONDVEG_Z0 and ROUGHHEIGHT from run.def |
---|
271 | z0m(:) = z0_scal |
---|
272 | z0h(:) = z0_scal |
---|
273 | roughheight(:) = roughheight_scal |
---|
274 | ELSE |
---|
275 | ! Caluculate roughness height |
---|
276 | IF( rough_dyn ) THEN |
---|
277 | CALL condveg_z0cdrag_dyn(kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
278 | & height, temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
279 | ELSE |
---|
280 | CALL condveg_z0cdrag(kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
281 | height, tot_bare_soil, z0m, z0h, roughheight) |
---|
282 | ENDIF |
---|
283 | END IF |
---|
284 | END IF |
---|
285 | |
---|
286 | !! 5. Calculate albedo |
---|
287 | CALL condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
288 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
289 | snow_nobio_age, snowdz, snowrho, & |
---|
290 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
291 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
292 | |
---|
293 | IF (printlev>=3) WRITE (numout,*) 'condveg_initialize done ' |
---|
294 | |
---|
295 | END SUBROUTINE condveg_initialize |
---|
296 | |
---|
297 | |
---|
298 | |
---|
299 | !! ============================================================================================================================== |
---|
300 | !! SUBROUTINE : condveg_main |
---|
301 | !! |
---|
302 | !>\BRIEF Calls the subroutines update the variables for current time step |
---|
303 | !! |
---|
304 | !! |
---|
305 | !! MAIN OUTPUT VARIABLE(S): emis (emissivity), albedo (albedo of |
---|
306 | !! vegetative PFTs in visible and near-infrared range), z0 (surface roughness height), |
---|
307 | !! roughheight (grid effective roughness height), soil type (fraction of soil types) |
---|
308 | !! |
---|
309 | !! |
---|
310 | !! REFERENCE(S) : None |
---|
311 | !! |
---|
312 | !! FLOWCHART : None |
---|
313 | !! |
---|
314 | !! REVISION(S) : None |
---|
315 | !! |
---|
316 | !_ ================================================================================================================================ |
---|
317 | |
---|
318 | SUBROUTINE condveg_main (kjit, kjpindex, index, rest_id, hist_id, hist2_id, & |
---|
319 | lalo, neighbours, resolution, contfrac, veget, veget_max, frac_nobio, totfrac_nobio, & |
---|
320 | zlev, snow, snow_age, snow_nobio, snow_nobio_age, & |
---|
321 | drysoil_frac, height, snowdz, snowrho, tot_bare_soil, & |
---|
322 | temp_air, pb, u, v, lai, & |
---|
323 | emis, albedo, z0m, z0h, roughheight, & |
---|
324 | frac_snow_veg, frac_snow_nobio ) |
---|
325 | |
---|
326 | !! 0. Variable and parameter declaration |
---|
327 | |
---|
328 | !! 0.1 Input variables |
---|
329 | |
---|
330 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
331 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
332 | INTEGER(i_std),INTENT (in) :: rest_id !! _Restart_ file identifier |
---|
333 | INTEGER(i_std),INTENT (in) :: hist_id !! _History_ file identifier |
---|
334 | INTEGER(i_std), OPTIONAL, INTENT (in) :: hist2_id !! _History_ file 2 identifier |
---|
335 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map |
---|
336 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (in) :: lalo !! Geographical coordinates |
---|
337 | INTEGER(i_std),DIMENSION (kjpindex,NbNeighb), INTENT(in):: neighbours!! neighoring grid points if land |
---|
338 | REAL(r_std), DIMENSION (kjpindex,2), INTENT(in) :: resolution !! size in x an y of the grid (m) |
---|
339 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: contfrac ! Fraction of land in each grid box. |
---|
340 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget !! Fraction of vegetation types |
---|
341 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max !! Fraction of vegetation type |
---|
342 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of continental ice, lakes, ... |
---|
343 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! total fraction of continental ice+lakes+... |
---|
344 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer |
---|
345 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass [Kg/m^2] |
---|
346 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age |
---|
347 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass [Kg/m^2] on ice, lakes, ... |
---|
348 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_nobio_age !! Snow age on ice, lakes, ... |
---|
349 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
350 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: height !! Vegetation Height (m) |
---|
351 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowdz !! Snow depth at each snow layer |
---|
352 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowrho !! Snow density at each snow layer |
---|
353 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
354 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
355 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
356 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: u !! Horizontal wind speed, u direction |
---|
357 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: v !! Horizontal wind speed, v direction |
---|
358 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
359 | |
---|
360 | !! 0.2 Output variables |
---|
361 | |
---|
362 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: emis !! Emissivity |
---|
363 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo, vis(1) and nir(2) |
---|
364 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0m !! Roughness for momentum (m) |
---|
365 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0h !! Roughness for heat (m) |
---|
366 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: roughheight !! Effective height for roughness |
---|
367 | REAL(r_std),DIMENSION (kjpindex), INTENT(out) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
368 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Snow cover fraction on non-vegeted area |
---|
369 | |
---|
370 | !! 0.3 Modified variables |
---|
371 | |
---|
372 | !! 0.4 Local variables |
---|
373 | REAL(r_std), DIMENSION(kjpindex,2) :: albedo_snow !! Snow albedo (unitless ratio) |
---|
374 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
375 | !! range (unitless) |
---|
376 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
377 | !! range (unitless) |
---|
378 | INTEGER(i_std) :: ji |
---|
379 | !_ ================================================================================================================================ |
---|
380 | |
---|
381 | !! 1. Calculate the fraction of snow on vegetation and nobio |
---|
382 | CALL condveg_frac_snow(kjpindex, snow, snow_nobio, snowrho, snowdz, & |
---|
383 | frac_snow_veg, frac_snow_nobio) |
---|
384 | |
---|
385 | !! 2. Calculate emissivity |
---|
386 | emis(:) = emis_scal |
---|
387 | |
---|
388 | !! 3. Calculate roughness height |
---|
389 | ! If TRUE read in prescribed values for roughness height |
---|
390 | IF ( impaze ) THEN |
---|
391 | |
---|
392 | DO ji = 1, kjpindex |
---|
393 | z0m(ji) = z0_scal |
---|
394 | z0h(ji) = z0_scal |
---|
395 | roughheight(ji) = roughheight_scal |
---|
396 | ENDDO |
---|
397 | |
---|
398 | ELSE |
---|
399 | ! Calculate roughness height |
---|
400 | IF ( rough_dyn ) THEN |
---|
401 | CALL condveg_z0cdrag_dyn (kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, height, & |
---|
402 | & temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
403 | ELSE |
---|
404 | CALL condveg_z0cdrag (kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
405 | height, tot_bare_soil, z0m, z0h, roughheight) |
---|
406 | ENDIF |
---|
407 | |
---|
408 | ENDIF |
---|
409 | |
---|
410 | |
---|
411 | !! 4. Calculate albedo |
---|
412 | CALL condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
413 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
414 | snow_nobio_age, snowdz, snowrho, & |
---|
415 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
416 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | !! 5. Output diagnostics |
---|
421 | IF (.NOT. impaze) THEN |
---|
422 | CALL xios_orchidee_send_field("soilalb_vis",alb_bare(:,1)) |
---|
423 | CALL xios_orchidee_send_field("soilalb_nir",alb_bare(:,2)) |
---|
424 | CALL xios_orchidee_send_field("vegalb_vis",alb_veget(:,1)) |
---|
425 | CALL xios_orchidee_send_field("vegalb_nir",alb_veget(:,2)) |
---|
426 | END IF |
---|
427 | CALL xios_orchidee_send_field("albedo_vis",albedo(:,1)) |
---|
428 | CALL xios_orchidee_send_field("albedo_nir",albedo(:,2)) |
---|
429 | CALL xios_orchidee_send_field("albedo_snow",(albedo_snow(:,1) + albedo_snow(:,2))/2) |
---|
430 | |
---|
431 | IF ( almaoutput ) THEN |
---|
432 | CALL histwrite_p(hist_id, 'Albedo', kjit, (albedo(:,1) + albedo(:,2))/2, kjpindex, index) |
---|
433 | CALL histwrite_p(hist_id, 'SAlbedo', kjit, (albedo_snow(:,1) + albedo_snow(:,2))/2, kjpindex, index) |
---|
434 | IF ( hist2_id > 0 ) THEN |
---|
435 | CALL histwrite_p(hist2_id, 'Albedo', kjit, (albedo(:,1) + albedo(:,2))/2, kjpindex, index) |
---|
436 | CALL histwrite_p(hist2_id, 'SAlbedo', kjit, (albedo_snow(:,1) + albedo_snow(:,2))/2, kjpindex, index) |
---|
437 | ENDIF |
---|
438 | ELSE |
---|
439 | IF (.NOT. impaze) THEN |
---|
440 | CALL histwrite_p(hist_id, 'soilalb_vis', kjit, alb_bare(:,1), kjpindex, index) |
---|
441 | CALL histwrite_p(hist_id, 'soilalb_nir', kjit, alb_bare(:,2), kjpindex, index) |
---|
442 | CALL histwrite_p(hist_id, 'vegalb_vis', kjit, alb_veget(:,1), kjpindex, index) |
---|
443 | CALL histwrite_p(hist_id, 'vegalb_nir', kjit, alb_veget(:,2), kjpindex, index) |
---|
444 | IF ( hist2_id > 0 ) THEN |
---|
445 | CALL histwrite_p(hist2_id, 'soilalb_vis', kjit, alb_bare(:,1), kjpindex, index) |
---|
446 | CALL histwrite_p(hist2_id, 'soilalb_nir', kjit, alb_bare(:,2), kjpindex, index) |
---|
447 | CALL histwrite_p(hist2_id, 'vegalb_vis', kjit, alb_veget(:,1), kjpindex, index) |
---|
448 | CALL histwrite_p(hist2_id, 'vegalb_nir', kjit, alb_veget(:,2), kjpindex, index) |
---|
449 | ENDIF |
---|
450 | END IF |
---|
451 | ENDIF |
---|
452 | |
---|
453 | IF (printlev>=3) WRITE (numout,*)' condveg_main done ' |
---|
454 | |
---|
455 | END SUBROUTINE condveg_main |
---|
456 | |
---|
457 | !! ============================================================================================================================= |
---|
458 | !! SUBROUTINE : condveg_finalize |
---|
459 | !! |
---|
460 | !>\BRIEF Write to restart file |
---|
461 | !! |
---|
462 | !! DESCRIPTION : This subroutine writes the module variables and variables calculated in condveg |
---|
463 | !! to restart file |
---|
464 | !! |
---|
465 | !! RECENT CHANGE(S) : None |
---|
466 | !! |
---|
467 | !! REFERENCE(S) : None |
---|
468 | !! |
---|
469 | !! FLOWCHART : None |
---|
470 | !! \n |
---|
471 | !_ ============================================================================================================================== |
---|
472 | SUBROUTINE condveg_finalize (kjit, kjpindex, rest_id, z0m, z0h, roughheight) |
---|
473 | |
---|
474 | !! 0. Variable and parameter declaration |
---|
475 | !! 0.1 Input variables |
---|
476 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
477 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
478 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier |
---|
479 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: z0m !! Roughness for momentum |
---|
480 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: z0h !! Roughness for heat |
---|
481 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: roughheight !! Grid effective roughness height (m) |
---|
482 | |
---|
483 | !_ ================================================================================================================================ |
---|
484 | |
---|
485 | CALL restput_p (rest_id, 'z0m', nbp_glo, 1, 1, kjit, z0m, 'scatter', nbp_glo, index_g) |
---|
486 | CALL restput_p (rest_id, 'z0h', nbp_glo, 1, 1, kjit, z0h, 'scatter', nbp_glo, index_g) |
---|
487 | CALL restput_p (rest_id, 'roughheight', nbp_glo, 1, 1, kjit, roughheight, 'scatter', nbp_glo, index_g) |
---|
488 | |
---|
489 | IF ( alb_bg_modis ) THEN |
---|
490 | CALL restput_p (rest_id, 'soilalbedo_bg', nbp_glo, 2, 1, kjit, soilalb_bg, 'scatter', nbp_glo, index_g) |
---|
491 | ELSE |
---|
492 | CALL restput_p (rest_id, 'soilalbedo_dry', nbp_glo, 2, 1, kjit, soilalb_dry, 'scatter', nbp_glo, index_g) |
---|
493 | CALL restput_p (rest_id, 'soilalbedo_wet', nbp_glo, 2, 1, kjit, soilalb_wet, 'scatter', nbp_glo, index_g) |
---|
494 | CALL restput_p (rest_id, 'soilalbedo_moy', nbp_glo, 2, 1, kjit, soilalb_moy, 'scatter', nbp_glo, index_g) |
---|
495 | END IF |
---|
496 | END SUBROUTINE condveg_finalize |
---|
497 | |
---|
498 | !! ============================================================================================================================== |
---|
499 | !! SUBROUTINE : condveg_clear |
---|
500 | !! |
---|
501 | !>\BRIEF Deallocate albedo variables |
---|
502 | !! |
---|
503 | !! DESCRIPTION : None |
---|
504 | !! |
---|
505 | !! RECENT CHANGE(S): None |
---|
506 | !! |
---|
507 | !! MAIN OUTPUT VARIABLE(S): None |
---|
508 | !! |
---|
509 | !! REFERENCES : None |
---|
510 | !! |
---|
511 | !! FLOWCHART : None |
---|
512 | !! \n |
---|
513 | !_ ================================================================================================================================ |
---|
514 | |
---|
515 | SUBROUTINE condveg_clear () |
---|
516 | |
---|
517 | l_first_condveg=.TRUE. |
---|
518 | |
---|
519 | ! Dry soil albedo |
---|
520 | IF (ALLOCATED (soilalb_dry)) DEALLOCATE (soilalb_dry) |
---|
521 | ! Wet soil albedo |
---|
522 | IF (ALLOCATED(soilalb_wet)) DEALLOCATE (soilalb_wet) |
---|
523 | ! Mean soil albedo |
---|
524 | IF (ALLOCATED(soilalb_moy)) DEALLOCATE (soilalb_moy) |
---|
525 | ! BG soil albedo |
---|
526 | IF (ALLOCATED(soilalb_bg)) DEALLOCATE (soilalb_bg) |
---|
527 | |
---|
528 | END SUBROUTINE condveg_clear |
---|
529 | |
---|
530 | !! ==============================================================================================================================\n |
---|
531 | !! SUBROUTINE : condveg_albedo |
---|
532 | !! |
---|
533 | !>\BRIEF Calculate albedo |
---|
534 | !! |
---|
535 | !! DESCRIPTION : The albedo is calculated for both the visible and near-infrared |
---|
536 | !! domain. First the mean albedo of the bare soil is calculated. Two options exist: |
---|
537 | !! either the soil albedo depends on soil wetness (drysoil_frac variable), or the soil albedo |
---|
538 | !! is set to a mean soil albedo value. |
---|
539 | !! The snow albedo scheme presented below belongs to prognostic albedo |
---|
540 | !! category, i.e. the snow albedo value at a time step depends on the snow albedo value |
---|
541 | !! at the previous time step. |
---|
542 | !! |
---|
543 | !! First, the following formula (described in Chalita and Treut 1994) is used to describe |
---|
544 | !! the change in snow albedo with snow age on each PFT and each non-vegetative surfaces, |
---|
545 | !! i.e. continental ice, lakes, etc.: \n |
---|
546 | !! \latexonly |
---|
547 | !! \input{SnowAlbedo.tex} |
---|
548 | !! \endlatexonly |
---|
549 | !! \n |
---|
550 | !! Where snowAge is snow age, tcstSnowa is a critical aging time (tcstSnowa=5 days) |
---|
551 | !! snowaIni and snowaIni+snowaDec corresponds to albedos measured for aged and |
---|
552 | !! fresh snow respectively, and their values for each PFT and each non-vegetative surfaces |
---|
553 | !! is precribed in in constantes_veg.f90.\n |
---|
554 | !! In order to estimate gridbox snow albedo, snow albedo values for each PFT and |
---|
555 | !! each non-vegetative surfaces with a grid box are weightedly summed up by their |
---|
556 | !! respective fractions.\n |
---|
557 | !! Secondly, the snow cover fraction is computed as: |
---|
558 | !! \latexonly |
---|
559 | !! \input{SnowFraction.tex} |
---|
560 | !! \endlatexonly |
---|
561 | !! \n |
---|
562 | !! Where fracSnow is the fraction of snow on total vegetative or total non-vegetative |
---|
563 | !! surfaces, snow is snow mass (kg/m^2) on total vegetated or total nobio surfaces.\n |
---|
564 | !! Finally, the surface albedo is then updated as the weighted sum of fracSnow, total |
---|
565 | !! vegetated fraction, total nobio fraction, gridbox snow albedo, and previous |
---|
566 | !! time step surface albedo. |
---|
567 | !! |
---|
568 | !! RECENT CHANGE(S): These calculations were previously done in condveg_albcalc and condveg_snow |
---|
569 | !! |
---|
570 | !! MAIN OUTPUT VARIABLE(S): :: albedo; surface albedo. :: albedo_snow; snow |
---|
571 | !! albedo |
---|
572 | !! |
---|
573 | !! REFERENCE(S) : |
---|
574 | !! Chalita, S. and H Le Treut (1994), The albedo of temperate and boreal forest and |
---|
575 | !! the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM, |
---|
576 | !! Climate Dynamics, 10 231-240. |
---|
577 | !! |
---|
578 | !! FLOWCHART : None |
---|
579 | !! \n |
---|
580 | !_ ================================================================================================================================ |
---|
581 | |
---|
582 | SUBROUTINE condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
583 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
584 | snow_nobio_age, snowdz, snowrho, & |
---|
585 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
586 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
587 | |
---|
588 | |
---|
589 | !! 0. Variable and parameter declarations |
---|
590 | |
---|
591 | !! 0.1 Input variables |
---|
592 | |
---|
593 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
594 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
595 | !! (m^2 m^{-2}) |
---|
596 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max |
---|
597 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
598 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, i.e. |
---|
599 | !! continental ice, lakes, etc. (unitless) |
---|
600 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, i.e. |
---|
601 | !! continental ice, lakes, etc. (unitless) |
---|
602 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass in vegetation (kg m^{-2}) |
---|
603 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass on continental ice, lakes, etc. (kg m^{-2}) |
---|
604 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age (days) |
---|
605 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio_age !! Snow age on continental ice, lakes, etc. (days) |
---|
606 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth at each snow layer |
---|
607 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowrho !! Snow density at each snow layer |
---|
608 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
609 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: frac_snow_veg !! Fraction of snow on vegetation (unitless ratio) |
---|
610 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_snow_nobio !! Fraction of snow on continental ice, lakes, etc. (unitless ratio) |
---|
611 | |
---|
612 | !! 0.2 Output variables |
---|
613 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo (unitless ratio) |
---|
614 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo_snow !! Snow albedo (unitless ratio) |
---|
615 | REAL(r_std), DIMENSION(kjpindex,2), INTENT(out) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
616 | !! range (unitless). Only calculated for .NOT. impaze |
---|
617 | REAL(r_std), DIMENSION(kjpindex,2), INTENT(out) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
618 | !! range (unitless). Only calculated for .NOT. impaze |
---|
619 | |
---|
620 | !! 0.3 Local variables |
---|
621 | INTEGER(i_std) :: ji, jv, jb,ks !! indices (unitless) |
---|
622 | REAL(r_std), DIMENSION(kjpindex,2) :: snowa_veg !! Albedo of snow covered area on vegetation |
---|
623 | !! (unitless ratio) |
---|
624 | REAL(r_std), DIMENSION(kjpindex,nnobio,2) :: snowa_nobio !! Albedo of snow covered area on continental ice, |
---|
625 | !! lakes, etc. (unitless ratio) |
---|
626 | REAL(r_std), DIMENSION(kjpindex) :: fraction_veg !! Total vegetation fraction (unitless ratio) |
---|
627 | REAL(r_std), DIMENSION(kjpindex) :: agefunc_veg !! Age dependency of snow albedo on vegetation |
---|
628 | !! (unitless) |
---|
629 | REAL(r_std), DIMENSION(kjpindex,nnobio) :: agefunc_nobio !! Age dependency of snow albedo on ice, |
---|
630 | !! lakes, .. (unitless) |
---|
631 | REAL(r_std) :: alb_nobio !! Albedo of continental ice, lakes, etc. |
---|
632 | !!(unitless ratio) |
---|
633 | REAL(r_std),DIMENSION (nvm,2) :: alb_leaf_tmp !! Variables for albedo values for all PFTs and |
---|
634 | REAL(r_std),DIMENSION (nvm,2) :: snowa_aged_tmp !! spectral domains (unitless) |
---|
635 | REAL(r_std),DIMENSION (nvm,2) :: snowa_dec_tmp |
---|
636 | !_ ================================================================================================================================ |
---|
637 | |
---|
638 | |
---|
639 | |
---|
640 | !! 1. Preliminary calculation without considering snow |
---|
641 | IF ( impaze ) THEN |
---|
642 | !! No caluculation, set default value |
---|
643 | albedo(:,ivis) = albedo_scal(ivis) |
---|
644 | albedo(:,inir) = albedo_scal(inir) |
---|
645 | |
---|
646 | ELSE |
---|
647 | !! Preliminary calculation without considering snow (previously done in condveg_albcalc) |
---|
648 | ! Assign values of leaf and snow albedo for visible and near-infrared range |
---|
649 | ! to local variable (constantes_veg.f90) |
---|
650 | alb_leaf_tmp(:,ivis) = alb_leaf_vis(:) |
---|
651 | alb_leaf_tmp(:,inir) = alb_leaf_nir(:) |
---|
652 | snowa_aged_tmp(:,ivis) = snowa_aged_vis(:) |
---|
653 | snowa_aged_tmp(:,inir) = snowa_aged_nir(:) |
---|
654 | snowa_dec_tmp(:,ivis) = snowa_dec_vis(:) |
---|
655 | snowa_dec_tmp(:,inir) = snowa_dec_nir(:) |
---|
656 | |
---|
657 | !! 1.1 Calculation and assignment of soil albedo |
---|
658 | |
---|
659 | DO ks = 1, 2! Loop over # of spectra |
---|
660 | |
---|
661 | ! If alb_bg_modis=TRUE, the background soil albedo map for the current simulated month is used |
---|
662 | ! If alb_bg_modis=FALSE and alb_bare_model=TRUE, the soil albedo calculation depends on soil moisture |
---|
663 | ! If alb_bg_modis=FALSE and alb_bare_model=FALSE, the mean soil albedo is used without the dependance on soil moisture |
---|
664 | ! see subroutines 'condveg_soilalb' and 'condveg_background_soilalb' |
---|
665 | IF ( alb_bg_modis ) THEN |
---|
666 | alb_bare(:,ks) = soilalb_bg(:,ks) |
---|
667 | ELSE |
---|
668 | IF ( alb_bare_model ) THEN |
---|
669 | alb_bare(:,ks) = soilalb_wet(:,ks) + drysoil_frac(:) * (soilalb_dry(:,ks) - soilalb_wet(:,ks)) |
---|
670 | ELSE |
---|
671 | alb_bare(:,ks) = soilalb_moy(:,ks) |
---|
672 | ENDIF |
---|
673 | ENDIF |
---|
674 | |
---|
675 | ! Soil albedo is weighed by fraction of bare soil |
---|
676 | albedo(:,ks) = tot_bare_soil(:) * alb_bare(:,ks) |
---|
677 | |
---|
678 | !! 1.2 Calculation of mean albedo of over the grid cell |
---|
679 | |
---|
680 | ! Calculation of mean albedo of over the grid cell and |
---|
681 | ! mean albedo of only vegetative PFTs over the grid cell |
---|
682 | alb_veget(:,ks) = zero |
---|
683 | |
---|
684 | DO jv = 2, nvm ! Loop over # of PFTs |
---|
685 | |
---|
686 | ! Mean albedo of grid cell for visible and near-infrared range |
---|
687 | albedo(:,ks) = albedo(:,ks) + veget(:,jv)*alb_leaf_tmp(jv,ks) |
---|
688 | |
---|
689 | ! Mean albedo of vegetation for visible and near-infrared range |
---|
690 | alb_veget(:,ks) = alb_veget(:,ks) + veget(:,jv)*alb_leaf_tmp(jv,ks) |
---|
691 | ENDDO ! Loop over # of PFTs |
---|
692 | |
---|
693 | ENDDO |
---|
694 | END IF |
---|
695 | |
---|
696 | |
---|
697 | !! 2. Calculate snow albedos on both total vegetated and total nobio surfaces |
---|
698 | |
---|
699 | ! The snow albedo could be either prescribed (in condveg_init.f90) or |
---|
700 | ! calculated following Chalita and Treut (1994). |
---|
701 | ! Check if the precribed value fixed_snow_albedo exists |
---|
702 | IF (ABS(fixed_snow_albedo - undef_sechiba) .GT. EPSILON(undef_sechiba)) THEN |
---|
703 | snowa_veg(:,:) = fixed_snow_albedo |
---|
704 | snowa_nobio(:,:,:) = fixed_snow_albedo |
---|
705 | ELSE ! calculated following Chalita and Treut (1994) |
---|
706 | |
---|
707 | !! 2.1 Calculate age dependence |
---|
708 | |
---|
709 | ! On vegetated surfaces |
---|
710 | DO ji = 1, kjpindex |
---|
711 | agefunc_veg(ji) = EXP(-snow_age(ji)/tcst_snowa) |
---|
712 | ENDDO |
---|
713 | |
---|
714 | ! On non-vegtative surfaces |
---|
715 | DO jv = 1, nnobio ! Loop over # nobio types |
---|
716 | DO ji = 1, kjpindex |
---|
717 | agefunc_nobio(ji,jv) = EXP(-snow_nobio_age(ji,jv)/tcst_snowa) |
---|
718 | ENDDO |
---|
719 | ENDDO |
---|
720 | |
---|
721 | !! 2.1 Calculate snow albedo |
---|
722 | ! For vegetated surfaces |
---|
723 | fraction_veg(:) = un - totfrac_nobio(:) |
---|
724 | snowa_veg(:,:) = zero |
---|
725 | IF (ok_dgvm) THEN |
---|
726 | DO jb = 1, 2 |
---|
727 | DO ji = 1, kjpindex |
---|
728 | IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
729 | snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
730 | tot_bare_soil(ji)/fraction_veg(ji) * ( snowa_aged_tmp(1,jb)+snowa_dec_tmp(1,jb)*agefunc_veg(ji) ) |
---|
731 | END IF |
---|
732 | END DO |
---|
733 | END DO |
---|
734 | |
---|
735 | DO jb = 1, 2 |
---|
736 | DO jv = 2, nvm |
---|
737 | DO ji = 1, kjpindex |
---|
738 | IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
739 | snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
740 | veget(ji,jv)/fraction_veg(ji) * ( snowa_aged_tmp(jv,jb)+snowa_dec_tmp(jv,jb)*agefunc_veg(ji) ) |
---|
741 | ENDIF |
---|
742 | ENDDO |
---|
743 | ENDDO |
---|
744 | ENDDO |
---|
745 | ELSE |
---|
746 | DO jb = 1, 2 |
---|
747 | DO jv = 1, nvm |
---|
748 | DO ji = 1, kjpindex |
---|
749 | IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
750 | snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
751 | veget_max(ji,jv)/fraction_veg(ji) * ( snowa_aged_tmp(jv,jb)+snowa_dec_tmp(jv,jb)*agefunc_veg(ji) ) |
---|
752 | ENDIF |
---|
753 | ENDDO |
---|
754 | ENDDO |
---|
755 | ENDDO |
---|
756 | ENDIF |
---|
757 | ! |
---|
758 | ! snow albedo on other surfaces |
---|
759 | ! |
---|
760 | DO jb = 1, 2 |
---|
761 | DO jv = 1, nnobio |
---|
762 | DO ji = 1, kjpindex |
---|
763 | snowa_nobio(ji,jv,jb) = ( snowa_aged_tmp(1,jb) + snowa_dec_tmp(1,jb) * agefunc_nobio(ji,jv) ) |
---|
764 | ENDDO |
---|
765 | ENDDO |
---|
766 | ENDDO |
---|
767 | ENDIF |
---|
768 | |
---|
769 | !! 3. Update surface albedo |
---|
770 | |
---|
771 | ! Update surface albedo using the weighted sum of previous time step surface albedo, |
---|
772 | ! total vegetated fraction, total nobio fraction, snow cover fraction (both vegetated and |
---|
773 | ! non-vegetative surfaces), and snow albedo (both vegetated and non-vegetative surfaces). |
---|
774 | ! Although both visible and near-infrared surface albedo are presented, their calculations |
---|
775 | ! are the same. |
---|
776 | DO jb = 1, 2 |
---|
777 | |
---|
778 | albedo(:,jb) = ( fraction_veg(:) ) * & |
---|
779 | ( (un-frac_snow_veg(:)) * albedo(:,jb) + & |
---|
780 | ( frac_snow_veg(:) ) * snowa_veg(:,jb) ) |
---|
781 | DO jv = 1, nnobio ! Loop over # nobio surfaces |
---|
782 | |
---|
783 | IF ( jv .EQ. iice ) THEN |
---|
784 | alb_nobio = alb_ice(jb) |
---|
785 | ELSE |
---|
786 | WRITE(numout,*) 'jv=',jv |
---|
787 | WRITE(numout,*) 'DO NOT KNOW ALBEDO OF THIS SURFACE TYPE' |
---|
788 | CALL ipslerr_p(3,'condveg_snow','DO NOT KNOW ALBEDO OF THIS SURFACE TYPE','','') |
---|
789 | ENDIF |
---|
790 | |
---|
791 | albedo(:,jb) = albedo(:,jb) + & |
---|
792 | ( frac_nobio(:,jv) ) * & |
---|
793 | ( (un-frac_snow_nobio(:,jv)) * alb_nobio + & |
---|
794 | ( frac_snow_nobio(:,jv) ) * snowa_nobio(:,jv,jb) ) |
---|
795 | ENDDO |
---|
796 | |
---|
797 | END DO |
---|
798 | |
---|
799 | ! Calculate snow albedo |
---|
800 | DO jb = 1, 2 |
---|
801 | albedo_snow(:,jb) = fraction_veg(:) * frac_snow_veg(:) * snowa_veg(:,jb) |
---|
802 | DO jv = 1, nnobio |
---|
803 | albedo_snow(:,jb) = albedo_snow(:,jb) + & |
---|
804 | frac_nobio(:,jv) * frac_snow_nobio(:,jv) * snowa_nobio(:,jv,jb) |
---|
805 | ENDDO |
---|
806 | ENDDO |
---|
807 | |
---|
808 | IF (printlev>=3) WRITE (numout,*) ' condveg_albedo done ' |
---|
809 | |
---|
810 | END SUBROUTINE condveg_albedo |
---|
811 | |
---|
812 | |
---|
813 | |
---|
814 | !! ============================================================================================================================== |
---|
815 | !! SUBROUTINE : condveg_frac_snow |
---|
816 | !! |
---|
817 | !>\BRIEF This subroutine calculates the fraction of snow on vegetation and nobio |
---|
818 | !! |
---|
819 | !! DESCRIPTION |
---|
820 | !! |
---|
821 | !! RECENT CHANGE(S): These calculations were previously done in condveg_snow. |
---|
822 | !! |
---|
823 | !! REFERENCE(S) : |
---|
824 | !! |
---|
825 | !! FLOWCHART : None |
---|
826 | !! \n |
---|
827 | !_ ================================================================================================================================ |
---|
828 | |
---|
829 | SUBROUTINE condveg_frac_snow(kjpindex, snow, snow_nobio, snowrho, snowdz, & |
---|
830 | frac_snow_veg, frac_snow_nobio) |
---|
831 | !! 0. Variable and parameter declaration |
---|
832 | !! 0.1 Input variables |
---|
833 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
834 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass in vegetation (kg m^{-2}) |
---|
835 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass on continental ice, lakes, etc. (kg m^{-2}) |
---|
836 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowrho !! Snow density at each snow layer |
---|
837 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth at each snow layer |
---|
838 | |
---|
839 | !! 0.2 Output variables |
---|
840 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: frac_snow_veg !! Fraction of snow on vegetation (unitless ratio) |
---|
841 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Fraction of snow on continental ice, lakes, etc. |
---|
842 | |
---|
843 | !! 0.3 Local variables |
---|
844 | REAL(r_std), DIMENSION(kjpindex) :: snowrho_ave !! Average snow density |
---|
845 | REAL(r_std), DIMENSION(kjpindex) :: snowdepth !! Snow depth |
---|
846 | REAL(r_std), DIMENSION(kjpindex) :: snowrho_snowdz !! Snow rho time snowdz |
---|
847 | INTEGER(i_std) :: jv |
---|
848 | |
---|
849 | !! Calculate snow cover fraction for both total vegetated and total non-vegetative surfaces. |
---|
850 | IF (ok_explicitsnow) THEN |
---|
851 | snowdepth=sum(snowdz,2) |
---|
852 | snowrho_snowdz=sum(snowrho*snowdz,2) |
---|
853 | WHERE(snowdepth(:) .LT. min_sechiba) |
---|
854 | frac_snow_veg(:) = 0. |
---|
855 | ELSEWHERE |
---|
856 | snowrho_ave(:)=snowrho_snowdz(:)/snowdepth(:) |
---|
857 | frac_snow_veg(:) = tanh(snowdepth(:)/(0.025*(snowrho_ave(:)/50.))) |
---|
858 | END WHERE |
---|
859 | ELSE |
---|
860 | frac_snow_veg(:) = MIN(MAX(snow(:),zero)/(MAX(snow(:),zero)+snowcri_alb*sn_dens/100.0),un) |
---|
861 | END IF |
---|
862 | |
---|
863 | DO jv = 1, nnobio |
---|
864 | frac_snow_nobio(:,jv) = MIN(MAX(snow_nobio(:,jv),zero)/(MAX(snow_nobio(:,jv),zero)+snowcri_alb*sn_dens/100.0),un) |
---|
865 | ENDDO |
---|
866 | |
---|
867 | IF (printlev>=3) WRITE (numout,*) ' condveg_frac_snow done ' |
---|
868 | |
---|
869 | END SUBROUTINE condveg_frac_snow |
---|
870 | |
---|
871 | |
---|
872 | !! ============================================================================================================================== |
---|
873 | !! SUBROUTINE : condveg_soilalb |
---|
874 | !! |
---|
875 | !>\BRIEF This subroutine calculates the albedo of soil (without snow). |
---|
876 | !! |
---|
877 | !! DESCRIPTION This subroutine reads the soil colour maps in 1 x 1 deg resolution |
---|
878 | !! from the Henderson-Sellers & Wilson database. These values are interpolated to |
---|
879 | !! the model's resolution and transformed into |
---|
880 | !! dry and wet albedos.\n |
---|
881 | !! |
---|
882 | !! If the soil albedo is calculated without the dependence of soil moisture, the |
---|
883 | !! soil colour values are transformed into mean soil albedo values.\n |
---|
884 | !! |
---|
885 | !! The calculations follow the assumption that the grid of the data is regular and |
---|
886 | !! it covers the globe. The calculation for the model grid are based on the borders |
---|
887 | !! of the grid of the resolution. |
---|
888 | !! |
---|
889 | !! RECENT CHANGE(S): None |
---|
890 | !! |
---|
891 | !! CALCULATED MODULE VARIABLE(S): soilalb_dry for visible and near-infrared range, |
---|
892 | !! soilalb_wet for visible and near-infrared range, |
---|
893 | !! soilalb_moy for visible and near-infrared range |
---|
894 | !! |
---|
895 | !! REFERENCE(S) : |
---|
896 | !! -Wilson, M.F., and A. Henderson-Sellers, 1985: A global archive of land cover and |
---|
897 | !! soils data for use in general circulation climate models. J. Clim., 5, 119-143. |
---|
898 | !! |
---|
899 | !! FLOWCHART : None |
---|
900 | !! \n |
---|
901 | !_ ================================================================================================================================ |
---|
902 | |
---|
903 | SUBROUTINE condveg_soilalb(nbpt, lalo, neighbours, resolution, contfrac) |
---|
904 | |
---|
905 | USE interpweight |
---|
906 | |
---|
907 | IMPLICIT NONE |
---|
908 | |
---|
909 | |
---|
910 | !! 0. Variable and parameter declaration |
---|
911 | |
---|
912 | !! 0.1 Input variables |
---|
913 | |
---|
914 | INTEGER(i_std), INTENT(in) :: nbpt !! Number of points for which the data needs to be |
---|
915 | !! interpolated (unitless) |
---|
916 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (degree) |
---|
917 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
918 | !! (1=N, 2=E, 3=S, 4=W) |
---|
919 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid cell in X and Y (km) |
---|
920 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid cell (unitless) |
---|
921 | |
---|
922 | !! 0.4 Local variables |
---|
923 | |
---|
924 | CHARACTER(LEN=80) :: filename !! Filename of soil colour map |
---|
925 | INTEGER(i_std) :: i, ib, ip, nbexp !! Indices |
---|
926 | INTEGER :: ALLOC_ERR !! Help varialbe to count allocation error |
---|
927 | REAL(r_std), DIMENSION(nbpt) :: asoilcol !! Availability of the soilcol interpolation |
---|
928 | REAL(r_std), DIMENSION(:), ALLOCATABLE :: variabletypevals !! Values for all the types of the variable |
---|
929 | !! (variabletypevals(1) = -un, not used) |
---|
930 | REAL(r_std), DIMENSION(:,:), ALLOCATABLE :: soilcolrefrac !! soilcol fractions re-dimensioned |
---|
931 | REAL(r_std) :: vmin, vmax !! min/max values to use for the |
---|
932 | !! renormalization |
---|
933 | CHARACTER(LEN=80) :: variablename !! Variable to interpolate |
---|
934 | CHARACTER(LEN=80) :: lonname, latname !! lon, lat names in input file |
---|
935 | CHARACTER(LEN=50) :: fractype !! method of calculation of fraction |
---|
936 | !! 'XYKindTime': Input values are kinds |
---|
937 | !! of something with a temporal |
---|
938 | !! evolution on the dx*dy matrix' |
---|
939 | LOGICAL :: nonegative !! whether negative values should be removed |
---|
940 | CHARACTER(LEN=50) :: maskingtype !! Type of masking |
---|
941 | !! 'nomask': no-mask is applied |
---|
942 | !! 'mbelow': take values below maskvals(1) |
---|
943 | !! 'mabove': take values above maskvals(1) |
---|
944 | !! 'msumrange': take values within 2 ranges; |
---|
945 | !! maskvals(2) <= SUM(vals(k)) <= maskvals(1) |
---|
946 | !! maskvals(1) < SUM(vals(k)) <= maskvals(3) |
---|
947 | !! (normalized by maskvals(3)) |
---|
948 | !! 'var': mask values are taken from a |
---|
949 | !! variable inside the file (>0) |
---|
950 | REAL(r_std), DIMENSION(3) :: maskvals !! values to use to mask (according to |
---|
951 | !! `maskingtype') |
---|
952 | CHARACTER(LEN=250) :: namemaskvar !! name of the variable to use to mask |
---|
953 | CHARACTER(LEN=250) :: msg |
---|
954 | INTEGER :: fopt |
---|
955 | INTEGER(i_std), DIMENSION(:), ALLOCATABLE :: vecpos |
---|
956 | INTEGER(i_std), DIMENSION(:), ALLOCATABLE :: solt |
---|
957 | |
---|
958 | !_ ================================================================================================================================ |
---|
959 | !! 1. Open file and allocate memory |
---|
960 | |
---|
961 | ! Open file with soil colours |
---|
962 | |
---|
963 | !Config Key = SOILALB_FILE |
---|
964 | !Config Desc = Name of file from which the bare soil albedo |
---|
965 | !Config Def = soils_param.nc |
---|
966 | !Config If = NOT(IMPOSE_AZE) |
---|
967 | !Config Help = The name of the file to be opened to read the soil types from |
---|
968 | !Config which we derive then the bare soil albedos. This file is 1x1 |
---|
969 | !Config deg and based on the soil colors defined by Wilson and Henderson-Seller. |
---|
970 | !Config Units = [FILE] |
---|
971 | ! |
---|
972 | filename = 'soils_param.nc' |
---|
973 | CALL getin_p('SOILALB_FILE',filename) |
---|
974 | |
---|
975 | |
---|
976 | ALLOCATE(soilcolrefrac(nbpt, classnb), STAT=ALLOC_ERR) |
---|
977 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable soilcolrefrac','','') |
---|
978 | ALLOCATE(vecpos(classnb), STAT=ALLOC_ERR) |
---|
979 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable vecpos','','') |
---|
980 | ALLOCATE(solt(classnb), STAT=ALLOC_ERR) |
---|
981 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable solt','','') |
---|
982 | |
---|
983 | ! Assigning values to vmin, vmax |
---|
984 | vmin = 1.0 |
---|
985 | vmax = classnb |
---|
986 | |
---|
987 | ALLOCATE(variabletypevals(classnb),STAT=ALLOC_ERR) |
---|
988 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variabletypevals','','') |
---|
989 | variabletypevals = -un |
---|
990 | |
---|
991 | !! Variables for interpweight |
---|
992 | ! Type of calculation of cell fractions |
---|
993 | fractype = 'default' |
---|
994 | ! Name of the longitude and latitude in the input file |
---|
995 | lonname = 'nav_lon' |
---|
996 | latname = 'nav_lat' |
---|
997 | ! Should negative values be set to zero from input file? |
---|
998 | nonegative = .FALSE. |
---|
999 | ! Type of mask to apply to the input data (see header for more details) |
---|
1000 | maskingtype = 'mabove' |
---|
1001 | ! Values to use for the masking |
---|
1002 | maskvals = (/ min_sechiba, undef_sechiba, undef_sechiba /) |
---|
1003 | ! Name of the variable with the values for the mask in the input file (only if maskkingtype='var') (here not used) |
---|
1004 | namemaskvar = '' |
---|
1005 | |
---|
1006 | ! Interpolate variable soilcolor |
---|
1007 | variablename = 'soilcolor' |
---|
1008 | IF (printlev_loc >= 2) WRITE(numout,*) "condveg_soilalb: Start interpolate " & |
---|
1009 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1010 | CALL interpweight_2D(nbpt, classnb, variabletypevals, lalo, resolution, neighbours, & |
---|
1011 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1012 | maskvals, namemaskvar, 0, 0, -1, fractype, & |
---|
1013 | -1., -1., soilcolrefrac, asoilcol) |
---|
1014 | IF (printlev_loc >= 5) WRITE(numout,*)' condveg_soilalb after interpweight_2D' |
---|
1015 | |
---|
1016 | ! Check how many points with soil information are found |
---|
1017 | nbexp = 0 |
---|
1018 | |
---|
1019 | soilalb_dry(:,:) = zero |
---|
1020 | soilalb_wet(:,:) = zero |
---|
1021 | soilalb_moy(:,:) = zero |
---|
1022 | IF (printlev_loc >= 5) THEN |
---|
1023 | WRITE(numout,*)' condveg_soilalb before starting loop nbpt:', nbpt |
---|
1024 | WRITE(numout,*)' condveg_soilalb initial values classnb: ',classnb |
---|
1025 | WRITE(numout,*)' condveg_soilalb vis_dry. SUM:',SUM(vis_dry),' vis_dry= ',vis_dry |
---|
1026 | WRITE(numout,*)' condveg_soilalb nir_dry. SUM:',SUM(nir_dry),' nir_dry= ',nir_dry |
---|
1027 | WRITE(numout,*)' condveg_soilalb vis_wet. SUM:',SUM(vis_wet),' vis_wet= ',vis_wet |
---|
1028 | WRITE(numout,*)' condveg_soilalb nir_wet. SUM:',SUM(nir_wet),' nir_wet= ',nir_wet |
---|
1029 | END IF |
---|
1030 | |
---|
1031 | DO ib=1,nbpt ! Loop over domain size |
---|
1032 | |
---|
1033 | ! vecpos: List of positions where textures were not zero |
---|
1034 | ! vecpos(1): number of not null textures found |
---|
1035 | vecpos = interpweight_ValVecR(soilcolrefrac(ib,:),classnb,zero,'neq') |
---|
1036 | fopt = vecpos(1) |
---|
1037 | IF (fopt == classnb) THEN |
---|
1038 | ! All textures are not zero |
---|
1039 | solt(:) = (/(i,i=1,classnb)/) |
---|
1040 | ELSE IF (fopt == 0) THEN |
---|
1041 | WRITE(numout,*)' condveg_soilalb: for point=', ib, ' no soil class!' |
---|
1042 | ELSE |
---|
1043 | DO ip = 1,fopt |
---|
1044 | solt(ip) = vecpos(ip+1) |
---|
1045 | END DO |
---|
1046 | END IF |
---|
1047 | |
---|
1048 | !! 3. Compute the average bare soil albedo parameters |
---|
1049 | |
---|
1050 | IF ( (fopt .EQ. 0) .OR. (asoilcol(ib) .LT. min_sechiba)) THEN |
---|
1051 | ! Initialize with mean value if no points were interpolated or if no data was found |
---|
1052 | nbexp = nbexp + 1 |
---|
1053 | soilalb_dry(ib,ivis) = (SUM(vis_dry)/classnb + SUM(vis_wet)/classnb)/deux |
---|
1054 | soilalb_dry(ib,inir) = (SUM(nir_dry)/classnb + SUM(nir_wet)/classnb)/deux |
---|
1055 | soilalb_wet(ib,ivis) = (SUM(vis_dry)/classnb + SUM(vis_wet)/classnb)/deux |
---|
1056 | soilalb_wet(ib,inir) = (SUM(nir_dry)/classnb + SUM(nir_wet)/classnb)/deux |
---|
1057 | soilalb_moy(ib,ivis) = SUM(albsoil_vis)/classnb |
---|
1058 | soilalb_moy(ib,inir) = SUM(albsoil_nir)/classnb |
---|
1059 | ELSE |
---|
1060 | ! If points were interpolated |
---|
1061 | DO ip=1, fopt |
---|
1062 | IF ( solt(ip) .LE. classnb) THEN |
---|
1063 | ! Set to zero if the value is below min_sechiba |
---|
1064 | IF (soilcolrefrac(ib,solt(ip)) < min_sechiba) soilcolrefrac(ib,solt(ip)) = zero |
---|
1065 | |
---|
1066 | soilalb_dry(ib,ivis) = soilalb_dry(ib,ivis) + vis_dry(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1067 | soilalb_dry(ib,inir) = soilalb_dry(ib,inir) + nir_dry(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1068 | soilalb_wet(ib,ivis) = soilalb_wet(ib,ivis) + vis_wet(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1069 | soilalb_wet(ib,inir) = soilalb_wet(ib,inir) + nir_wet(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1070 | soilalb_moy(ib,ivis) = soilalb_moy(ib,ivis) + albsoil_vis(solt(ip))* & |
---|
1071 | soilcolrefrac(ib,solt(ip)) |
---|
1072 | soilalb_moy(ib,inir) = soilalb_moy(ib,inir) + albsoil_nir(solt(ip))* & |
---|
1073 | soilcolrefrac(ib,solt(ip)) |
---|
1074 | ELSE |
---|
1075 | msg = 'The file contains a soil color class which is incompatible with this program' |
---|
1076 | CALL ipslerr_p(3,'condveg_soilalb',TRIM(msg),'','') |
---|
1077 | ENDIF |
---|
1078 | ENDDO |
---|
1079 | ENDIF |
---|
1080 | |
---|
1081 | ENDDO |
---|
1082 | |
---|
1083 | IF ( nbexp .GT. 0 ) THEN |
---|
1084 | WRITE(numout,*) 'condveg_soilalb _______' |
---|
1085 | WRITE(numout,*) 'condveg_soilalb: The interpolation of the bare soil albedo had ', nbexp |
---|
1086 | WRITE(numout,*) 'condveg_soilalb: points without data. This are either coastal points or' |
---|
1087 | WRITE(numout,*) 'condveg_soilalb: ice covered land.' |
---|
1088 | WRITE(numout,*) 'condveg_soilalb: The problem was solved by using the average of all soils' |
---|
1089 | WRITE(numout,*) 'condveg_soilalb: in dry and wet conditions' |
---|
1090 | WRITE(numout,*) 'condveg_soilalb: Use the diagnostic output field asoilcol to see location of these points' |
---|
1091 | ENDIF |
---|
1092 | |
---|
1093 | DEALLOCATE (soilcolrefrac) |
---|
1094 | DEALLOCATE (variabletypevals) |
---|
1095 | |
---|
1096 | ! Write diagnostics |
---|
1097 | CALL xios_orchidee_send_field("asoilcol",asoilcol) |
---|
1098 | |
---|
1099 | |
---|
1100 | IF (printlev_loc >= 3) WRITE(numout,*)' condveg_soilalb ended' |
---|
1101 | |
---|
1102 | END SUBROUTINE condveg_soilalb |
---|
1103 | |
---|
1104 | |
---|
1105 | !! ============================================================================================================================== |
---|
1106 | !! SUBROUTINE : condveg_background_soilalb |
---|
1107 | !! |
---|
1108 | !>\BRIEF This subroutine reads the albedo of bare soil |
---|
1109 | !! |
---|
1110 | !! DESCRIPTION This subroutine reads the background albedo map in 0.5 x 0.5 deg resolution |
---|
1111 | !! derived from JRCTIP product to be used as bare soil albedo. These values are then interpolated |
---|
1112 | !! to the model's resolution.\n |
---|
1113 | !! |
---|
1114 | !! RECENT CHANGE(S): None |
---|
1115 | !! |
---|
1116 | !! MAIN OUTPUT VARIABLE(S): soilalb_bg for visible and near-infrared range |
---|
1117 | !! |
---|
1118 | !! REFERENCES : None |
---|
1119 | !! |
---|
1120 | !! FLOWCHART : None |
---|
1121 | !! \n |
---|
1122 | !_ ================================================================================================================================ |
---|
1123 | |
---|
1124 | SUBROUTINE condveg_background_soilalb(nbpt, lalo, neighbours, resolution, contfrac) |
---|
1125 | |
---|
1126 | USE interpweight |
---|
1127 | |
---|
1128 | IMPLICIT NONE |
---|
1129 | |
---|
1130 | !! 0. Variable and parameter declaration |
---|
1131 | |
---|
1132 | !! 0.1 Input variables |
---|
1133 | |
---|
1134 | INTEGER(i_std), INTENT(in) :: nbpt !! Number of points for which the data needs to be |
---|
1135 | !! interpolated (unitless) |
---|
1136 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (degree) |
---|
1137 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
1138 | !! (1=N, 2=E, 3=S, 4=W) |
---|
1139 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid cell in X and Y (km) |
---|
1140 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid cell (unitless) |
---|
1141 | |
---|
1142 | !! 0.4 Local variables |
---|
1143 | |
---|
1144 | CHARACTER(LEN=80) :: filename !! Filename of background albedo |
---|
1145 | REAL(r_std), DIMENSION(nbpt) :: aalb_bg !! Availability of the interpolation |
---|
1146 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: lat_lu, lon_lu !! Latitudes and longitudes read from input file |
---|
1147 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lat_rel, lon_rel !! Help variable to read file data and allocate memory |
---|
1148 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: mask_lu !! Help variable to read file data and allocate memory |
---|
1149 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: mask |
---|
1150 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: soilalbedo_bg !! Help variable to read file data and allocate memory |
---|
1151 | INTEGER :: ALLOC_ERR !! Help varialbe to count allocation error |
---|
1152 | REAL(r_std) :: vmin, vmax !! min/max values to use for the |
---|
1153 | !! renormalization |
---|
1154 | CHARACTER(LEN=80) :: variablename !! Variable to interpolate |
---|
1155 | CHARACTER(LEN=250) :: maskvname !! Variable to read the mask from |
---|
1156 | !! the file |
---|
1157 | CHARACTER(LEN=80) :: lonname, latname !! lon, lat names in input file |
---|
1158 | CHARACTER(LEN=50) :: fractype !! method of calculation of fraction |
---|
1159 | !! 'XYKindTime': Input values are kinds |
---|
1160 | !! of something with a temporal |
---|
1161 | !! evolution on the dx*dy matrix' |
---|
1162 | LOGICAL :: nonegative !! whether negative values should be removed |
---|
1163 | CHARACTER(LEN=50) :: maskingtype !! Type of masking |
---|
1164 | !! 'nomask': no-mask is applied |
---|
1165 | !! 'mbelow': take values below maskvals(1) |
---|
1166 | !! 'mabove': take values above maskvals(1) |
---|
1167 | !! 'msumrange': take values within 2 ranges; |
---|
1168 | !! maskvals(2) <= SUM(vals(k)) <= maskvals(1) |
---|
1169 | !! maskvals(1) < SUM(vals(k)) <= maskvals(3) |
---|
1170 | !! (normalized by maskedvals(3)) |
---|
1171 | !! 'var': mask values are taken from a |
---|
1172 | !! variable inside the file (>0) |
---|
1173 | REAL(r_std), DIMENSION(3) :: maskvals !! values to use to mask (according to |
---|
1174 | !! `maskingtype') |
---|
1175 | CHARACTER(LEN=250) :: namemaskvar !! name of the variable to use to mask |
---|
1176 | REAL(r_std) :: albbg_norefinf !! No value |
---|
1177 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: albbg_default !! Default value |
---|
1178 | |
---|
1179 | !_ ================================================================================================================================ |
---|
1180 | |
---|
1181 | !! 1. Open file and allocate memory |
---|
1182 | |
---|
1183 | ! Open file with background albedo |
---|
1184 | |
---|
1185 | !Config Key = ALB_BG_FILE |
---|
1186 | !Config Desc = Name of file from which the background albedo is read |
---|
1187 | !Config Def = alb_bg.nc |
---|
1188 | !Config If = |
---|
1189 | !Config Help = The name of the file to be opened to read background albedo |
---|
1190 | !Config Units = [FILE] |
---|
1191 | ! |
---|
1192 | filename = 'alb_bg.nc' |
---|
1193 | CALL getin_p('ALB_BG_FILE',filename) |
---|
1194 | |
---|
1195 | |
---|
1196 | ALLOCATE(albbg_default(2), STAT=ALLOC_ERR) |
---|
1197 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'condveg_background_soilalb','Pb in allocation for albbg_default','','') |
---|
1198 | |
---|
1199 | ! For this case there are not types/categories. We have 'only' a continuos field |
---|
1200 | ! Assigning values to vmin, vmax |
---|
1201 | |
---|
1202 | vmin = 0. |
---|
1203 | vmax = 9999. |
---|
1204 | |
---|
1205 | !! Variables for interpweight |
---|
1206 | ! Type of calculation of cell fractions (not used here) |
---|
1207 | fractype = 'default' |
---|
1208 | ! Name of the longitude and latitude in the input file |
---|
1209 | lonname = 'longitude' |
---|
1210 | latname = 'latitude' |
---|
1211 | ! Default value when no value is get from input file |
---|
1212 | albbg_default(ivis) = 0.129 |
---|
1213 | albbg_default(inir) = 0.247 |
---|
1214 | ! Reference value when no value is get from input file (not used here) |
---|
1215 | albbg_norefinf = undef_sechiba |
---|
1216 | ! Should negative values be set to zero from input file? |
---|
1217 | nonegative = .FALSE. |
---|
1218 | ! Type of mask to apply to the input data (see header for more details) |
---|
1219 | maskingtype = 'var' |
---|
1220 | ! Values to use for the masking (here not used) |
---|
1221 | maskvals = (/ undef_sechiba, undef_sechiba, undef_sechiba /) |
---|
1222 | ! Name of the variable with the values for the mask in the input file (only if maskkingtype='var') |
---|
1223 | namemaskvar = 'mask' |
---|
1224 | |
---|
1225 | ! There is a variable for each chanel 'infrared' and 'visible' |
---|
1226 | ! Interpolate variable bg_alb_vis |
---|
1227 | variablename = 'bg_alb_vis' |
---|
1228 | IF (printlev_loc >= 2) WRITE(numout,*) "condveg_background_soilalb: Start interpolate " & |
---|
1229 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1230 | CALL interpweight_2Dcont(nbpt, 0, 0, lalo, resolution, neighbours, & |
---|
1231 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1232 | maskvals, namemaskvar, -1, fractype, albbg_default(inir), albbg_norefinf, & |
---|
1233 | soilalb_bg(:,ivis), aalb_bg) |
---|
1234 | IF (printlev_loc >= 5) WRITE(numout,*)" condveg_background_soilalb after InterpWeight2Dcont for '" // & |
---|
1235 | TRIM(variablename) // "'" |
---|
1236 | |
---|
1237 | ! Interpolate variable bg_alb_nir in the same file |
---|
1238 | variablename = 'bg_alb_nir' |
---|
1239 | IF (printlev_loc >= 2) WRITE(numout,*) "condveg_background_soilalb: Start interpolate " & |
---|
1240 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1241 | CALL interpweight_2Dcont(nbpt, 0, 0, lalo, resolution, neighbours, & |
---|
1242 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1243 | maskvals, namemaskvar, -1, fractype, albbg_default(inir), albbg_norefinf, & |
---|
1244 | soilalb_bg(:,inir), aalb_bg) |
---|
1245 | IF (printlev_loc >= 5) WRITE(numout,*)" condveg_background_soilalb after InterpWeight2Dcont for '" // & |
---|
1246 | TRIM(variablename) // "'" |
---|
1247 | |
---|
1248 | IF (ALLOCATED(albbg_default)) DEALLOCATE(albbg_default) |
---|
1249 | |
---|
1250 | IF (printlev_loc >= 3) WRITE(numout,*)' condveg_background_soilalb ended' |
---|
1251 | |
---|
1252 | ! Write diagnostics |
---|
1253 | CALL xios_orchidee_send_field("soilalb_bg",soilalb_bg) |
---|
1254 | |
---|
1255 | END SUBROUTINE condveg_background_soilalb |
---|
1256 | |
---|
1257 | |
---|
1258 | !! ============================================================================================================================== |
---|
1259 | !! SUBROUTINE : condveg_z0cdrag |
---|
1260 | !! |
---|
1261 | !>\BRIEF Computation of grid average of roughness length by calculating |
---|
1262 | !! the drag coefficient. |
---|
1263 | !! |
---|
1264 | !! DESCRIPTION : This routine calculates the mean roughness height and mean |
---|
1265 | !! effective roughness height over the grid cell. The mean roughness height (z0) |
---|
1266 | !! is computed by averaging the drag coefficients \n |
---|
1267 | !! |
---|
1268 | !! \latexonly |
---|
1269 | !! \input{z0cdrag1.tex} |
---|
1270 | !! \endlatexonly |
---|
1271 | !! \n |
---|
1272 | !! |
---|
1273 | !! where C is the drag coefficient at the height of the vegetation, kappa is the |
---|
1274 | !! von Karman constant, z (Ztmp) is the height at which the fluxes are estimated and z0 the roughness height. |
---|
1275 | !! The reference level for z needs to be high enough above the canopy to avoid |
---|
1276 | !! singularities of the LOG. This height is set to minimum 10m above ground. |
---|
1277 | !! The drag coefficient increases with roughness height to represent the greater |
---|
1278 | !! turbulence generated by rougher surfaces. |
---|
1279 | !! The roughenss height is obtained by the inversion of the drag coefficient equation.\n |
---|
1280 | !! |
---|
1281 | !! The roughness height for the non-vegetative surfaces is calculated in a second step. |
---|
1282 | !! In order to calculate the transfer coefficients the |
---|
1283 | !! effective roughness height is calculated. This effective value is the difference |
---|
1284 | !! between the height of the vegetation and the zero plane displacement height.\nn |
---|
1285 | !! |
---|
1286 | !! RECENT CHANGE(S): None |
---|
1287 | !! |
---|
1288 | !! MAIN OUTPUT VARIABLE(S): :: roughness height(z0) and grid effective roughness height(roughheight) |
---|
1289 | !! |
---|
1290 | !! REFERENCE(S) : None |
---|
1291 | !! |
---|
1292 | !! FLOWCHART : None |
---|
1293 | !! \n |
---|
1294 | !_ ================================================================================================================================ |
---|
1295 | |
---|
1296 | SUBROUTINE condveg_z0cdrag (kjpindex,veget,veget_max,frac_nobio,totfrac_nobio,zlev, height, tot_bare_soil, & |
---|
1297 | & z0m, z0h, roughheight) |
---|
1298 | |
---|
1299 | !! 0. Variable and parameter declaration |
---|
1300 | |
---|
1301 | !! 0.1 Input variables |
---|
1302 | |
---|
1303 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
1304 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
1305 | !! (m^2 m^{-2}) |
---|
1306 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget_max !! PFT "Maximal" coverage fraction of a PFT |
---|
1307 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1308 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, |
---|
1309 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1310 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, |
---|
1311 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1312 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
1313 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: height !! Vegetation height (m) |
---|
1314 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
1315 | |
---|
1316 | !! 0.2 Output variables |
---|
1317 | |
---|
1318 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0m !! Roughness height for momentum (m) |
---|
1319 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0h !! Roughness height for heat (m) |
---|
1320 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: roughheight !! Grid effective roughness height (m) |
---|
1321 | |
---|
1322 | !! 0.3 Modified variables |
---|
1323 | |
---|
1324 | !! 0.4 Local variables |
---|
1325 | |
---|
1326 | INTEGER(i_std) :: jv !! Loop index over PFTs (unitless) |
---|
1327 | REAL(r_std), DIMENSION(kjpindex) :: sumveg !! Fraction of bare soil (unitless) |
---|
1328 | REAL(r_std), DIMENSION(kjpindex) :: ztmp !! Max height of the atmospheric level (m) |
---|
1329 | REAL(r_std), DIMENSION(kjpindex) :: ave_height !! Average vegetation height (m) |
---|
1330 | REAL(r_std), DIMENSION(kjpindex) :: d_veg !! PFT coverage of vegetative PFTs |
---|
1331 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1332 | REAL(r_std), DIMENSION(kjpindex) :: zhdispl !! Zero plane displacement height (m) |
---|
1333 | REAL(r_std) :: z0_nobio !! Roughness height of non-vegetative fraction (m), |
---|
1334 | !! i.e. continental ice, lakes, etc. |
---|
1335 | |
---|
1336 | !_ ================================================================================================================================ |
---|
1337 | |
---|
1338 | !! 1. Preliminary calculation |
---|
1339 | |
---|
1340 | ! Set maximal height of first layer |
---|
1341 | ztmp(:) = MAX(10., zlev(:)) |
---|
1342 | |
---|
1343 | ! Calculate roughness for non-vegetative surfaces |
---|
1344 | ! with the von Karman constant |
---|
1345 | z0m(:) = tot_bare_soil(:) * (ct_karman/LOG(ztmp(:)/z0_bare))**2 |
---|
1346 | z0h(:) = tot_bare_soil(:) * (ct_karman/LOG(ztmp(:)/(z0_bare/ratio_z0m_z0h(1))))**2 |
---|
1347 | ! Fraction of bare soil |
---|
1348 | sumveg(:) = tot_bare_soil(:) |
---|
1349 | |
---|
1350 | ! Set average vegetation height to zero |
---|
1351 | ave_height(:) = zero |
---|
1352 | |
---|
1353 | !! 2. Calculate the mean roughness height |
---|
1354 | |
---|
1355 | ! Calculate the mean roughness height of |
---|
1356 | ! vegetative PFTs over the grid cell |
---|
1357 | DO jv = 2, nvm |
---|
1358 | |
---|
1359 | ! In the case of forest, use parameter veget_max because |
---|
1360 | ! tree trunks influence the roughness even when there are no leaves |
---|
1361 | IF ( is_tree(jv) ) THEN |
---|
1362 | ! In the case of grass, use parameter veget because grasses |
---|
1363 | ! only influence the roughness during the growing season |
---|
1364 | d_veg(:) = veget_max(:,jv) |
---|
1365 | ELSE |
---|
1366 | ! grasses only have an influence if they are really there! |
---|
1367 | d_veg(:) = veget(:,jv) |
---|
1368 | ENDIF |
---|
1369 | |
---|
1370 | ! Calculate the average roughness over the grid cell: |
---|
1371 | ! The unitless drag coefficient is per vegetative PFT |
---|
1372 | ! calculated by use of the von Karman constant, the height |
---|
1373 | ! of the first layer and the roughness. The roughness |
---|
1374 | ! is calculated as the vegetation height per PFT |
---|
1375 | ! multiplied by the roughness parameter 'z0_over_height= 1/16'. |
---|
1376 | ! If this scaled value is lower than 0.01 then the value for |
---|
1377 | ! the roughness of bare soil (0.01) is used. |
---|
1378 | ! The sum over all PFTs gives the average roughness |
---|
1379 | ! per grid cell for the vegetative PFTs. |
---|
1380 | z0m(:) = z0m(:) + d_veg(:) * (ct_karman/LOG(ztmp(:)/MAX(height(:,jv)*z0_over_height(jv),z0_bare)))**2 |
---|
1381 | z0h(:) = z0h(:) + d_veg(:) * (ct_karman/LOG(ztmp(:)/(MAX(height(:,jv)*z0_over_height(jv),z0_bare)/ratio_z0m_z0h(jv))))**2 |
---|
1382 | |
---|
1383 | ! Sum of bare soil and fraction vegetated fraction |
---|
1384 | sumveg(:) = sumveg(:) + d_veg(:) |
---|
1385 | |
---|
1386 | ! Weigh height of vegetation with maximal cover fraction |
---|
1387 | ave_height(:) = ave_height(:) + veget_max(:,jv)*height(:,jv) |
---|
1388 | |
---|
1389 | ENDDO |
---|
1390 | |
---|
1391 | !! 3. Calculate the mean roughness height of vegetative PFTs over the grid cell |
---|
1392 | |
---|
1393 | ! Search for pixels with vegetated part to normalise |
---|
1394 | ! roughness height |
---|
1395 | WHERE ( sumveg(:) .GT. zero ) |
---|
1396 | z0m(:) = z0m(:) / sumveg(:) |
---|
1397 | z0h(:) = z0h(:) / sumveg(:) |
---|
1398 | ENDWHERE |
---|
1399 | ! Calculate fraction of roughness for vegetated part |
---|
1400 | z0m(:) = (un - totfrac_nobio(:)) * z0m(:) |
---|
1401 | z0h(:) = (un - totfrac_nobio(:)) * z0h(:) |
---|
1402 | |
---|
1403 | DO jv = 1, nnobio ! Loop over # of non-vegative surfaces |
---|
1404 | |
---|
1405 | ! Set rougness for ice |
---|
1406 | IF ( jv .EQ. iice ) THEN |
---|
1407 | z0_nobio = z0_ice |
---|
1408 | ELSE |
---|
1409 | WRITE(numout,*) 'jv=',jv |
---|
1410 | WRITE(numout,*) 'DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE' |
---|
1411 | CALL ipslerr_p(3,'condveg_z0cdrag','DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE','','') |
---|
1412 | ENDIF |
---|
1413 | |
---|
1414 | ! Sum of vegetative roughness length and non-vegetative |
---|
1415 | ! roughness length |
---|
1416 | z0m(:) = z0m(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio))**2 |
---|
1417 | z0h(:) = z0h(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio/ratio_z0m_z0h(1)))**2 |
---|
1418 | |
---|
1419 | ENDDO ! Loop over # of non-vegative surfaces |
---|
1420 | |
---|
1421 | !! 4. Calculate the zero plane displacement height and effective roughness length |
---|
1422 | |
---|
1423 | ! Take the exponential of the roughness |
---|
1424 | z0m(:) = ztmp(:) / EXP(ct_karman/SQRT(z0m(:))) |
---|
1425 | z0h(:) = ztmp(:) / EXP(ct_karman/SQRT(z0h(:))) |
---|
1426 | |
---|
1427 | ! Compute the zero plane displacement height which |
---|
1428 | ! is an equivalent height for the absorption of momentum |
---|
1429 | zhdispl(:) = ave_height(:) * height_displacement |
---|
1430 | |
---|
1431 | ! In order to calculate the fluxes we compute what we call the grid effective roughness height. |
---|
1432 | ! This is the height over which the roughness acts. It combines the |
---|
1433 | ! zero plane displacement height and the vegetation height. |
---|
1434 | roughheight(:) = ave_height(:) - zhdispl(:) |
---|
1435 | |
---|
1436 | END SUBROUTINE condveg_z0cdrag |
---|
1437 | |
---|
1438 | |
---|
1439 | !! ============================================================================================================================== |
---|
1440 | !! SUBROUTINE : condveg_z0cdrag_dyn |
---|
1441 | !! |
---|
1442 | !>\BRIEF Computation of grid average of roughness length by calculating |
---|
1443 | !! the drag coefficient based on formulation proposed by Su et al. (2001). |
---|
1444 | !! |
---|
1445 | !! DESCRIPTION : This routine calculates the mean roughness height and mean |
---|
1446 | !! effective roughness height over the grid cell. The mean roughness height (z0) |
---|
1447 | !! is computed by averaging the drag coefficients \n |
---|
1448 | !! |
---|
1449 | !! \latexonly |
---|
1450 | !! \input{z0cdrag1.tex} |
---|
1451 | !! \endlatexonly |
---|
1452 | !! \n |
---|
1453 | !! |
---|
1454 | !! where C is the drag coefficient at the height of the vegetation, kappa is the |
---|
1455 | !! von Karman constant, z (Ztmp) is the height at which the fluxes are estimated and z0 the roughness height. |
---|
1456 | !! The reference level for z needs to be high enough above the canopy to avoid |
---|
1457 | !! singularities of the LOG. This height is set to minimum 10m above ground. |
---|
1458 | !! The drag coefficient increases with roughness height to represent the greater |
---|
1459 | !! turbulence generated by rougher surfaces. |
---|
1460 | !! The roughenss height is obtained by the inversion of the drag coefficient equation.\n |
---|
1461 | !! In the formulation of Su et al. (2001), one distinguishes the roughness height for |
---|
1462 | !! momentum (z0m) and the one for heat (z0h). |
---|
1463 | !! z0m is computed as a function of LAI (z0m increases with LAI) and z0h is computed |
---|
1464 | !! with a so-called kB-1 term (z0m/z0h=exp(kB-1)) |
---|
1465 | !! |
---|
1466 | !! RECENT CHANGE(S): Written by N. Vuichard (2016) |
---|
1467 | !! |
---|
1468 | !! MAIN OUTPUT VARIABLE(S): :: roughness height(z0) and grid effective roughness height(roughheight) |
---|
1469 | !! |
---|
1470 | !! REFERENCE(S) : |
---|
1471 | !! - Su, Z., Schmugge, T., Kustas, W.P., Massman, W.J., 2001. An Evaluation of Two Models for |
---|
1472 | !! Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere. J. Appl. |
---|
1473 | !! Meteorol. 40, 1933â1951. doi:10.1175/1520-0450(2001) |
---|
1474 | !! - Ershadi, A., McCabe, M.F., Evans, J.P., Wood, E.F., 2015. Impact of model structure and parameterization |
---|
1475 | !! on Penman-Monteith type evaporation models. J. Hydrol. 525, 521â535. doi:10.1016/j.jhydrol.2015.04.008 |
---|
1476 | !! |
---|
1477 | !! FLOWCHART : None |
---|
1478 | !! \n |
---|
1479 | !_ ================================================================================================================================ |
---|
1480 | |
---|
1481 | SUBROUTINE condveg_z0cdrag_dyn (kjpindex,veget,veget_max,frac_nobio,totfrac_nobio,zlev, height, & |
---|
1482 | & temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
1483 | |
---|
1484 | !! 0. Variable and parameter declaration |
---|
1485 | |
---|
1486 | !! 0.1 Input variables |
---|
1487 | |
---|
1488 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
1489 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
1490 | !! (m^2 m^{-2}) |
---|
1491 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget_max !! PFT "Maximal" coverage fraction of a PFT |
---|
1492 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1493 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, |
---|
1494 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1495 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, |
---|
1496 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1497 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
1498 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: height !! Vegetation height (m) |
---|
1499 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: temp_air !! 2m air temperature (K) |
---|
1500 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
1501 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u !! Lowest level wind speed in direction u |
---|
1502 | !! @tex $(m.s^{-1})$ @endtex |
---|
1503 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: v !! Lowest level wind speed in direction v |
---|
1504 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
1505 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
1506 | !! 0.2 Output variables |
---|
1507 | |
---|
1508 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0m !! Roughness height for momentum (m) |
---|
1509 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0h !! Roughness height for heat (m) |
---|
1510 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: roughheight !! Grid effective roughness height (m) |
---|
1511 | |
---|
1512 | !! 0.3 Modified variables |
---|
1513 | |
---|
1514 | !! 0.4 Local variables |
---|
1515 | |
---|
1516 | INTEGER(i_std) :: jv !! Loop index over PFTs (unitless) |
---|
1517 | REAL(r_std), DIMENSION(kjpindex) :: sumveg !! Fraction of bare soil (unitless) |
---|
1518 | REAL(r_std), DIMENSION(kjpindex) :: ztmp !! Max height of the atmospheric level (m) |
---|
1519 | REAL(r_std), DIMENSION(kjpindex) :: ave_height !! Average vegetation height (m) |
---|
1520 | REAL(r_std), DIMENSION(kjpindex) :: zhdispl !! Zero plane displacement height (m) |
---|
1521 | REAL(r_std) :: z0_nobio !! Roughness height of non-vegetative fraction (m), |
---|
1522 | !! i.e. continental ice, lakes, etc. |
---|
1523 | REAL(r_std), DIMENSION(kjpindex) :: z0m_pft !! Roughness height for momentum for a specific PFT |
---|
1524 | REAL(r_std), DIMENSION(kjpindex) :: z0h_pft !! Roughness height for heat for a specific PFT |
---|
1525 | REAL(r_std), DIMENSION(kjpindex) :: eta !! Ratio of friction velocity to the wind speed at the canopy top - See Ershadi et al. (2015) |
---|
1526 | REAL(r_std), DIMENSION(kjpindex) :: eta_ec !! Within-canopy wind speed profile estimation coefficient - See Ershadi et al. (2015) |
---|
1527 | REAL(r_std), DIMENSION(kjpindex) :: Ct_star !! Heat transfer coefficient of the soil - see Su et al. (2001) |
---|
1528 | REAL(r_std), DIMENSION(kjpindex) :: kBs_m1 !! Canopy model of Brutsaert (1982) for a bare soil surface - used in the calculation of kB_m1 (see Ershadi et al. (2015)) |
---|
1529 | REAL(r_std), DIMENSION(kjpindex) :: kB_m1 !! kB**-1: Term used in the calculation of z0h where B-1 is the inverse Stanton number (see Ershadi et al. (2015)) |
---|
1530 | REAL(r_std), DIMENSION(kjpindex) :: fc !! fractional canopy coverage |
---|
1531 | REAL(r_std), DIMENSION(kjpindex) :: fs !! fractional soil coverage |
---|
1532 | REAL(r_std), DIMENSION(kjpindex) :: Reynolds !! Reynolds number |
---|
1533 | REAL(r_std), DIMENSION(kjpindex) :: wind !! wind Speed (m) |
---|
1534 | REAL(r_std), DIMENSION(kjpindex) :: u_star !! friction velocity |
---|
1535 | REAL(r_std), DIMENSION(kjpindex) :: z0_ground !! z0m value used for ground surface |
---|
1536 | !_ ================================================================================================================================ |
---|
1537 | |
---|
1538 | !! 1. Preliminary calculation |
---|
1539 | |
---|
1540 | ! Set maximal height of first layer |
---|
1541 | ztmp(:) = MAX(10., zlev(:)) |
---|
1542 | |
---|
1543 | z0_ground(:) = (1.-frac_snow_veg(:))*z0_bare + frac_snow_veg(:)*z0_bare/10. |
---|
1544 | |
---|
1545 | ! Calculate roughness for non-vegetative surfaces |
---|
1546 | ! with the von Karman constant |
---|
1547 | z0m(:) = veget_max(:,1) * (ct_karman/LOG(ztmp(:)/z0_ground(:)))**2 |
---|
1548 | |
---|
1549 | wind(:) = SQRT(u(:)*u(:)+v(:)*v(:)) |
---|
1550 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG(zlev(:)/z0_ground(:)) |
---|
1551 | Reynolds(:) = z0_ground(:) * u_star(:) & |
---|
1552 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1553 | |
---|
1554 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1555 | |
---|
1556 | z0h(:) = veget_max(:,1) * (ct_karman/LOG(ztmp(:)/(z0_ground(:)/ exp(kBs_m1(:))) ))**2 |
---|
1557 | |
---|
1558 | |
---|
1559 | ! Fraction of bare soil |
---|
1560 | sumveg(:) = veget_max(:,1) |
---|
1561 | |
---|
1562 | ! Set average vegetation height to zero |
---|
1563 | ave_height(:) = zero |
---|
1564 | |
---|
1565 | !! 2. Calculate the mean roughness height |
---|
1566 | |
---|
1567 | ! Calculate the mean roughness height of |
---|
1568 | ! vegetative PFTs over the grid cell |
---|
1569 | DO jv = 2, nvm |
---|
1570 | |
---|
1571 | WHERE(veget_max(:,jv) .GT. zero) |
---|
1572 | ! Calculate the average roughness over the grid cell: |
---|
1573 | ! The unitless drag coefficient is per vegetative PFT |
---|
1574 | ! calculated by use of the von Karman constant, the height |
---|
1575 | ! of the first layer and the roughness. The roughness |
---|
1576 | ! is calculated as the vegetation height per PFT |
---|
1577 | ! multiplied by the roughness parameter 'z0_over_height= 1/16'. |
---|
1578 | ! If this scaled value is lower than 0.01 then the value for |
---|
1579 | ! the roughness of bare soil (0.01) is used. |
---|
1580 | ! The sum over all PFTs gives the average roughness |
---|
1581 | ! per grid cell for the vegetative PFTs. |
---|
1582 | eta(:) = c1 - c2 * exp(-c3 * Cdrag_foliage * lai(:,jv)) |
---|
1583 | |
---|
1584 | z0m_pft(:) = (height(:,jv)*(1-height_displacement)*(exp(-ct_karman/eta(:))-exp(-ct_karman/(c1-c2)))) & |
---|
1585 | + z0_ground(:) |
---|
1586 | |
---|
1587 | z0m(:) = z0m(:) + veget_max(:,jv) * (ct_karman/LOG(ztmp(:)/z0m_pft(:)))**2 |
---|
1588 | |
---|
1589 | fc(:) = veget(:,jv)/veget_max(:,jv) |
---|
1590 | fs(:) = 1. - fc(:) |
---|
1591 | |
---|
1592 | eta_ec(:) = ( Cdrag_foliage * lai(:,jv)) / (2 * eta(:)*eta(:)) |
---|
1593 | wind(:) = SQRT(u(:)*u(:)+v(:)*v(:)) |
---|
1594 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG((zlev(:)+(height(:,jv)*(1-height_displacement)))/z0m_pft(:)) |
---|
1595 | Reynolds(:) = z0_ground(:) * u_star(:) & |
---|
1596 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1597 | |
---|
1598 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1599 | Ct_star(:) = Prandtl**(-2./3.) * SQRT(1./Reynolds(:)) |
---|
1600 | |
---|
1601 | WHERE(lai(:,jv) .GT. min_sechiba) |
---|
1602 | kB_m1(:) = (ct_karman * Cdrag_foliage) / (4 * Ct * eta(:) * (1 - exp(-eta_ec(:)/2.))) * fc(:)**2. & |
---|
1603 | + 2*fc(:)*fs(:) * (ct_karman * eta(:) * z0m_pft(:) / height(:,jv)) / Ct_star(:) & |
---|
1604 | + kBs_m1(:) * fs(:)**2. |
---|
1605 | ELSEWHERE |
---|
1606 | kB_m1(:) = kBs_m1(:) * fs(:)**2. |
---|
1607 | ENDWHERE |
---|
1608 | |
---|
1609 | z0h_pft(:) = z0m_pft(:) / exp(kB_m1(:)) |
---|
1610 | |
---|
1611 | z0h(:) = z0h(:) + veget_max(:,jv) * (ct_karman/LOG(ztmp(:)/z0h_pft(:)))**2 |
---|
1612 | |
---|
1613 | ! Sum of bare soil and fraction vegetated fraction |
---|
1614 | sumveg(:) = sumveg(:) + veget_max(:,jv) |
---|
1615 | |
---|
1616 | ! Weigh height of vegetation with maximal cover fraction |
---|
1617 | ave_height(:) = ave_height(:) + veget_max(:,jv)*height(:,jv) |
---|
1618 | |
---|
1619 | ENDWHERE |
---|
1620 | ENDDO |
---|
1621 | |
---|
1622 | !! 3. Calculate the mean roughness height of vegetative PFTs over the grid cell |
---|
1623 | |
---|
1624 | ! Search for pixels with vegetated part to normalise |
---|
1625 | ! roughness height |
---|
1626 | WHERE ( sumveg(:) .GT. zero ) |
---|
1627 | z0h(:) = z0h(:) / sumveg(:) |
---|
1628 | z0m(:) = z0m(:) / sumveg(:) |
---|
1629 | ENDWHERE |
---|
1630 | |
---|
1631 | ! Calculate fraction of roughness for vegetated part |
---|
1632 | z0h(:) = (un - totfrac_nobio(:)) * z0h(:) |
---|
1633 | z0m(:) = (un - totfrac_nobio(:)) * z0m(:) |
---|
1634 | |
---|
1635 | DO jv = 1, nnobio ! Loop over # of non-vegative surfaces |
---|
1636 | |
---|
1637 | ! Set rougness for ice |
---|
1638 | IF ( jv .EQ. iice ) THEN |
---|
1639 | z0_nobio = z0_ice |
---|
1640 | ELSE |
---|
1641 | WRITE(numout,*) 'jv=',jv |
---|
1642 | WRITE(numout,*) 'DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE' |
---|
1643 | CALL ipslerr_p(3,'condveg_z0cdrag_dyn','DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE','','') |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | ! Sum of vegetative roughness length and non-vegetative roughness length |
---|
1647 | ! Note that z0m could be made dependent of frac_snow_nobio |
---|
1648 | z0m(:) = z0m(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio))**2 |
---|
1649 | |
---|
1650 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG(zlev(:)/z0_nobio) |
---|
1651 | Reynolds(:) = z0_nobio * u_star(:) & |
---|
1652 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1653 | |
---|
1654 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1655 | |
---|
1656 | z0h(:) = z0h(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/(z0_nobio/ exp(kBs_m1(:))) ))**2 |
---|
1657 | ENDDO ! Loop over # of non-vegative surfaces |
---|
1658 | |
---|
1659 | !! 4. Calculate the zero plane displacement height and effective roughness length |
---|
1660 | ! Take the exponential of the roughness |
---|
1661 | z0h(:) = ztmp(:) / EXP(ct_karman/SQRT(z0h(:))) |
---|
1662 | z0m(:) = ztmp(:) / EXP(ct_karman/SQRT(z0m(:))) |
---|
1663 | |
---|
1664 | ! Compute the zero plane displacement height which |
---|
1665 | ! is an equivalent height for the absorption of momentum |
---|
1666 | zhdispl(:) = ave_height(:) * height_displacement |
---|
1667 | |
---|
1668 | ! In order to calculate the fluxes we compute what we call the grid effective roughness height. |
---|
1669 | ! This is the height over which the roughness acts. It combines the |
---|
1670 | ! zero plane displacement height and the vegetation height. |
---|
1671 | roughheight(:) = ave_height(:) - zhdispl(:) |
---|
1672 | |
---|
1673 | END SUBROUTINE condveg_z0cdrag_dyn |
---|
1674 | |
---|
1675 | |
---|
1676 | END MODULE condveg |
---|