1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : stomate_prescribe |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Initialize and update density, crown area. |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION: None |
---|
12 | !! |
---|
13 | !! RECENT CHANGE(S): None |
---|
14 | !! |
---|
15 | !! REFERENCE(S) : |
---|
16 | !! |
---|
17 | !! SVN : |
---|
18 | !! $HeadURL$ |
---|
19 | !! $Date$ |
---|
20 | !! $Revision$ |
---|
21 | !! \n |
---|
22 | !_ ================================================================================================================================ |
---|
23 | |
---|
24 | MODULE stomate_prescribe |
---|
25 | |
---|
26 | ! modules used: |
---|
27 | |
---|
28 | USE ioipsl_para |
---|
29 | USE stomate_data |
---|
30 | USE pft_parameters |
---|
31 | USE constantes |
---|
32 | USE function_library, ONLY: calculate_c0_alloc, biomass_to_lai |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | |
---|
36 | ! private & public routines |
---|
37 | |
---|
38 | PRIVATE |
---|
39 | PUBLIC prescribe,prescribe_clear |
---|
40 | |
---|
41 | ! first call |
---|
42 | LOGICAL, SAVE :: firstcall_prescribe = .TRUE. |
---|
43 | !$OMP THREADPRIVATE(firstcall_prescribe) |
---|
44 | |
---|
45 | CONTAINS |
---|
46 | |
---|
47 | ! ================================================================================================================================= |
---|
48 | !! SUBROUTINE : prescribe_clear |
---|
49 | !! |
---|
50 | !>\BRIEF : Set the firstcall_prescribe flag back to .TRUE. to prepare for the next simulation. |
---|
51 | !_================================================================================================================================= |
---|
52 | |
---|
53 | SUBROUTINE prescribe_clear |
---|
54 | firstcall_prescribe=.TRUE. |
---|
55 | END SUBROUTINE prescribe_clear |
---|
56 | |
---|
57 | |
---|
58 | !! ================================================================================================================================ |
---|
59 | !! SUBROUTINE : prescribe |
---|
60 | !! |
---|
61 | !>\BRIEF Works only with static vegetation and agricultural PFT. Initialize biomass, |
---|
62 | !! density, presence in the first call and update them in the following. |
---|
63 | !! |
---|
64 | !! DESCRIPTION (functional, design, flags): \n |
---|
65 | !! This module works only with static vegetation and agricultural PFT. |
---|
66 | !! In the first call, initialize density of individuals, biomass, |
---|
67 | !! and leaf age distribution to some reasonable value. In the following calls, |
---|
68 | !! these variables are updated. |
---|
69 | !! |
---|
70 | !! To fulfill these purposes, pipe model are used: |
---|
71 | !! \latexonly |
---|
72 | !! \input{prescribe1.tex} |
---|
73 | !! \input{prescribe2.tex} |
---|
74 | !! \endlatexonly |
---|
75 | !! |
---|
76 | !! RECENT CHANGE(S): None |
---|
77 | !! |
---|
78 | !! MAIN OUTPUT VARIABLES(S): ::ind, ::cn_ind, ::leaf_frac |
---|
79 | !! |
---|
80 | !! REFERENCES : |
---|
81 | !! - Krinner, G., N. Viovy, et al. (2005). "A dynamic global vegetation model |
---|
82 | !! for studies of the coupled atmosphere-biosphere system." Global |
---|
83 | !! Biogeochemical Cycles 19: GB1015, doi:1010.1029/2003GB002199. |
---|
84 | !! - Sitch, S., B. Smith, et al. (2003), Evaluation of ecosystem dynamics, |
---|
85 | !! plant geography and terrestrial carbon cycling in the LPJ dynamic |
---|
86 | !! global vegetation model, Global Change Biology, 9, 161-185. |
---|
87 | !! - McDowell, N., Barnard, H., Bond, B.J., Hinckley, T., Hubbard, R.M., Ishii, |
---|
88 | !! H., Köstner, B., Magnani, F. Marshall, J.D., Meinzer, F.C., Phillips, N., |
---|
89 | !! Ryan, M.G., Whitehead D. 2002. The relationship between tree height and leaf |
---|
90 | !! area: sapwood area ratio. Oecologia, 132:12â20. |
---|
91 | !! - Novick, K., Oren, R., Stoy, P., Juang, F.-Y., Siqueira, M., Katul, G. 2009. |
---|
92 | !! The relationship between reference canopy conductance and simplified hydraulic |
---|
93 | !! architecture. Advances in water resources 32, 809-819. |
---|
94 | !! |
---|
95 | !! FLOWCHART : None |
---|
96 | !! \n |
---|
97 | !_ ================================================================================================================================ |
---|
98 | |
---|
99 | SUBROUTINE prescribe (npts, veget_max, veget, dt, PFTpresent, & |
---|
100 | everywhere, when_growthinit, biomass, leaf_frac, & |
---|
101 | ind, co2_to_bm, & |
---|
102 | KF, & |
---|
103 | senescence, age, npp_longterm, lm_lastyearmax, k_latosa_adapt) |
---|
104 | |
---|
105 | !! 0. Parameters and variables declaration |
---|
106 | |
---|
107 | !! 0.1 Input variables |
---|
108 | |
---|
109 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
110 | REAL(r_std), INTENT(in) :: dt !! time step (dt_days) |
---|
111 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: veget_max !! "maximal" coverage fraction of a PFT |
---|
112 | !! (LAI -> infinity) on ground. May sum to |
---|
113 | !! less than unity if the pixel has |
---|
114 | !! nobio area. (unitless; 0-1) |
---|
115 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: veget !! Fraction of vegetation type including |
---|
116 | !! non-biological fraction (unitless) |
---|
117 | |
---|
118 | !! 0.2 Output variables |
---|
119 | |
---|
120 | |
---|
121 | !! 0.3 Modified variables |
---|
122 | |
---|
123 | LOGICAL, DIMENSION(:,:), INTENT(inout) :: PFTpresent !! PFT present (0 or 1) |
---|
124 | LOGICAL, DIMENSION(:,:), INTENT(inout) :: senescence !! Flag for setting senescence stage (only |
---|
125 | !! for deciduous trees) |
---|
126 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: everywhere !! is the PFT everywhere in the grid box or |
---|
127 | !! very localized (after its introduction) (?) |
---|
128 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: when_growthinit !! how many days ago was the beginning of |
---|
129 | !! the growing season (days) |
---|
130 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: ind !! Density of individuals at the stand level |
---|
131 | !! @tex $(m^{-2})$ @endtex |
---|
132 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: npp_longterm !! "long term" net primary productivity |
---|
133 | !! @tex ($gC m^{-2} year^{-1}$) @endtex |
---|
134 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: age !! mean age (years) |
---|
135 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: lm_lastyearmax !! last year's maximum leaf mass for each PFT |
---|
136 | !! @tex ($gC m^{-2}$) @endtex |
---|
137 | REAL(r_std), DIMENSION(:,:,:,:), INTENT(inout) :: biomass !! Stand level biomass |
---|
138 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: co2_to_bm !! CO2 taken from the atmosphere to get C |
---|
139 | !! to create the seedlings |
---|
140 | !! @tex (gC.m^{-2}dt^{-1})$ @endtex |
---|
141 | REAL(r_std), DIMENSION(:,:,:), INTENT(inout) :: leaf_frac !! fraction of leaves in leaf age |
---|
142 | !! class (unitless;0-1) |
---|
143 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: KF !! Scaling factor to convert sapwood mass |
---|
144 | !! into leaf mass (m) - this variable is |
---|
145 | !! passed to other routines |
---|
146 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: k_latosa_adapt !! Leaf to sapwood area adapted for long |
---|
147 | !! term water stress (m) |
---|
148 | |
---|
149 | |
---|
150 | !! 0.4 Local variables |
---|
151 | |
---|
152 | REAL(r_std), DIMENSION(nvm) :: c0_alloc !! Root to sapwood tradeoff parameter |
---|
153 | INTEGER(i_std) :: ipts, ivm, ipar, k !! index (unitless) |
---|
154 | INTEGER(i_std) :: icir, iele, imbc !! index (unitless) |
---|
155 | INTEGER(i_std) :: deb,fin, imaxt !! index (unitless) |
---|
156 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements) :: sync_biomass !! Temporary stand level biomass |
---|
157 | !! @tex $(gC.m^{-2})$ @endtex |
---|
158 | REAL(r_std), DIMENSION(npts,nvm) :: sync_ind !! Temporary density of individuals at the |
---|
159 | !! stand level @tex $(m^{-2})$ @endtex |
---|
160 | REAL(r_std), DIMENSION(npts,nvm) :: k_latosa !! Height dependent base value to calculate |
---|
161 | !! KF (-) |
---|
162 | ! REAL(r_std), DIMENSION(nvm,nparts,nelements) :: bm_sapl !! Sapling biomass for the functional |
---|
163 | !! allocation with a dimension for the |
---|
164 | !! circumference classes |
---|
165 | !! @tex $(gC.ind^{-1})$ @endtex |
---|
166 | REAL(r_std), DIMENSION(npts,nvm) :: LF !! Scaling factor to convert sapwood mass |
---|
167 | !! into root mass (unitless) |
---|
168 | REAL(r_std), DIMENSION(npts,nvm) :: lstress_fac !! Light stress factor, based on total |
---|
169 | !! transmitted light (unitless, 0-1) |
---|
170 | REAL(r_std), DIMENSION(nparts) :: bm_init !! Biomass needed to initiate the next |
---|
171 | !! planting @tex $(gC m^{-2})$ @endtex |
---|
172 | REAL(r_std) :: nb_trees_i !! Number of trees in each twentith |
---|
173 | !! circumference quantile of the |
---|
174 | !! distribution (ind) |
---|
175 | REAL(r_std) :: excedent !! Number of trees after truncation to be |
---|
176 | !! reallocated to smaller quantiles of the |
---|
177 | !! distribution (ind) |
---|
178 | REAL(r_std) :: ave_tree_height !! The height of the ideal tree in each |
---|
179 | !! circumference class of the |
---|
180 | !! distribution (ind)...not saved since |
---|
181 | !! it should only be used for prescribing |
---|
182 | REAL(r_std), DIMENSION(npts,nvm,nmbcomp,nelements) :: check_intern !! Contains the components of the internal |
---|
183 | !! mass balance chech for this routine |
---|
184 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
185 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: closure_intern !! Check closure of internal mass balance |
---|
186 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
187 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: pool_start !! Start and end pool of this routine |
---|
188 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
189 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: pool_end !! Start and end pool of this routine |
---|
190 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
191 | REAL(r_std) :: delta_KF !! Difference between new and old estimate |
---|
192 | !! of KF while iterating |
---|
193 | REAL(r_std) :: min_height_init |
---|
194 | REAL(r_std) :: max_height_init |
---|
195 | REAL(r_std) :: sapwood_density |
---|
196 | REAL(r_std) :: dia_init |
---|
197 | REAL(r_std) :: wood_init |
---|
198 | INTEGER(i_std) :: iloop |
---|
199 | |
---|
200 | !++++ temp ++++ |
---|
201 | !!$ REAL(r_std), DIMENSION(npts,nvm,ncirc) :: height,dia,cn !! Tree height calculated from allometric |
---|
202 | !!$ !! relationships (m) |
---|
203 | REAL(r_std) :: cn_leaf,cn_root,cn_wood |
---|
204 | !! CN ratio of leaves, root and wood pool |
---|
205 | !! (gC/gN) |
---|
206 | !_ ================================================================================================================================ |
---|
207 | |
---|
208 | !! 1. Initialize biomass at first call |
---|
209 | |
---|
210 | !! 1.1.1 Initialize check for mass balance closure |
---|
211 | ! The mass balance is calculated at the end of this routine |
---|
212 | ! in section 4 |
---|
213 | ! Initial biomass pool |
---|
214 | pool_start(:,:,:) = zero |
---|
215 | DO ipar = 1,nparts |
---|
216 | DO iele = 1,nelements |
---|
217 | pool_start(:,:,iele) = pool_start(:,:,iele) + & |
---|
218 | (biomass(:,:,ipar,iele) * veget_max(:,:)) |
---|
219 | ENDDO |
---|
220 | ENDDO |
---|
221 | |
---|
222 | ! co2_to_bm is has as intent inout, the variable accumulates |
---|
223 | ! carbon over the course of a day. Use the difference between |
---|
224 | ! start and the end of this routine |
---|
225 | check_intern(:,:,iatm2land,icarbon) = - un * co2_to_bm(:,:) * veget_max(:,:) * dt |
---|
226 | |
---|
227 | ! Prescribe was taken out of the first call loop. Because of the firstcall here, |
---|
228 | ! nothing was done when the vegetation was killed in lpj_gap and the vegetation |
---|
229 | ! thus stayed dead forever. We want it to regrow. So instead, let's loop over |
---|
230 | ! every point and PFT. If there is supposed to be vegetation here (according to |
---|
231 | ! veget_max) but there isn't (according to ind), then we grow it. |
---|
232 | DO ivm = 2,nvm ! Loop over PFTs |
---|
233 | |
---|
234 | DO ipts = 1, npts ! Loop over pixels |
---|
235 | |
---|
236 | |
---|
237 | ! We are supposed to have vegetation, but we don't have any: prescribe some. |
---|
238 | IF((veget_max(ipts,ivm) .GT. min_stomate) .AND. (ind(ipts,ivm) .LE. min_stomate))THEN |
---|
239 | |
---|
240 | ! Initilaize tree level variables |
---|
241 | ind(ipts,ivm) = zero |
---|
242 | biomass(ipts,ivm,:,:) = zero |
---|
243 | |
---|
244 | ! Assume that there is no memory for k_latosa between |
---|
245 | ! different generations (this is probably true when trees |
---|
246 | ! are planted but seems less likely for natural regeneration |
---|
247 | ! Allowing for memory has caused problems with the LAI from |
---|
248 | ! the second generation onwards |
---|
249 | k_latosa_adapt(ipts,ivm) = k_latosa_min(ivm) |
---|
250 | |
---|
251 | ! Write output |
---|
252 | WRITE(numout,*) 'Prescribe (stomate_prescribe.f90):' |
---|
253 | WRITE(numout,*) ' > Imposing initial biomass for prescribed trees, '// & |
---|
254 | 'initial reserve mass for prescribed grasses.' |
---|
255 | WRITE(numout,*) ' > Declaring prescribed PFTs present.' |
---|
256 | WRITE(numout,*) ' > Grid point: ',ipts,' PFT Type: ',ivm |
---|
257 | |
---|
258 | !! 2. Calculate the vegetation characteristics of a newly established vegetation |
---|
259 | |
---|
260 | !! 2.1 Stress factors |
---|
261 | |
---|
262 | ! Note that light and water stress have an opposite effect on KF. Waterstress |
---|
263 | ! will decrease KF because more C should be allocated to the roots. Light |
---|
264 | ! stress will increase KF because more C should be allocated to the leaves. |
---|
265 | |
---|
266 | ! We will need the c0_alloc, it only depends on PFT and the effective |
---|
267 | ! longiveties |
---|
268 | c0_alloc(ivm) = calculate_c0_alloc(ipts, ivm, tau_root(ivm), & |
---|
269 | tau_sap(ivm)) |
---|
270 | |
---|
271 | ! Lightstress varies from 0 to 1 and is calculated from the canopy structure (veget) |
---|
272 | ! Given that there is no vegetation at this point, the lightstress cannot be calculated |
---|
273 | ! and is set to 1. However as soon as we grow a canopy it will experience light stress |
---|
274 | ! and so KF should be adjusted. If this is not done, we can't prescribe tall vegetation |
---|
275 | ! which is a useful feature to speed up optimisation and testing. We will have iterate |
---|
276 | ! over light stress and KF to prescribe vegetation that is in balance with its |
---|
277 | ! light environment. |
---|
278 | lstress_fac(ipts,ivm) = un |
---|
279 | |
---|
280 | ! Initial vegetation has to be prescribed only when the vegetation is static |
---|
281 | IF ( ( .NOT. ok_dgvm ) .AND. & |
---|
282 | ( veget_max(ipts,ivm) .GT. min_stomate ) ) THEN |
---|
283 | |
---|
284 | !! 2.2 Initialize woody PFT's |
---|
285 | ! Use veget_max to check whether the PFT is present. If the PFT is present but it has no |
---|
286 | ! biomass, prescribe its biomass (gC m-{2}). |
---|
287 | IF ( is_tree(ivm) .AND. & |
---|
288 | ( veget_max(ipts,ivm) .GT. min_stomate ) .AND. & |
---|
289 | ( SUM( biomass(ipts,ivm,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
290 | |
---|
291 | ! PFT is present so it needs to be initialized |
---|
292 | IF (veget_max(ipts,ivm) .GT. min_stomate) THEN |
---|
293 | |
---|
294 | ! The forest stand starts with the number of individuals as prescribed in constantes_mtc.f90 |
---|
295 | ! This number is defined per hectare whereas these calculations are per m2 |
---|
296 | ind(ipts,ivm) = nmaxtrees(ivm) * ha_to_m2 |
---|
297 | |
---|
298 | !! 2.3 Initialize height distribution |
---|
299 | ! Initializing height distribution...I've taken this from the circumference initilization of Valentin |
---|
300 | ! we want ncirc bins between height_init_min and height_init_max |
---|
301 | min_height_init = height_init_min(ivm) |
---|
302 | max_height_init = height_init_max(ivm) |
---|
303 | |
---|
304 | !! 2.4 Calculate height distribution |
---|
305 | |
---|
306 | !! 2.4.1 Height distribution of a high stand |
---|
307 | ! Deterministic initial distribution following a truncated exponential law |
---|
308 | ! if they are coppices, we handle this differently |
---|
309 | |
---|
310 | |
---|
311 | ! this array is going to be used to create the sapling for this class so that we can create |
---|
312 | ! the total amount of biomass |
---|
313 | ! in this class...after this we will always calculate the height/circ/diam/whatever |
---|
314 | ! from the biomass in the class |
---|
315 | ave_tree_height=(0.5_r_std)*& |
---|
316 | (max_height_init+min_height_init) |
---|
317 | |
---|
318 | ! I am changing this so that our lowest class is min_height_init and our biggest class |
---|
319 | ! is max_height_init. With this change, we can use the same code the redistribute |
---|
320 | ! the trees if the biomass in one of our height classes is equal to zero later on due to mortality or |
---|
321 | ! thinning. |
---|
322 | !+++ This caused some strange behavior, so change it back for now. |
---|
323 | ! ave_tree_height(icir)=min_height_init+REAL(icir-1,r_std)/REAL(ncirc-1,r_std)*& |
---|
324 | ! (max_height_init-min_height_init) |
---|
325 | |
---|
326 | |
---|
327 | IF (printlev>=4) THEN |
---|
328 | WRITE(numout,*)"min initial height ",min_height_init,'max initial height ',max_height_init |
---|
329 | ENDIF |
---|
330 | |
---|
331 | ! ENDIF ! check FM type |
---|
332 | |
---|
333 | !! 2.4.2 Circumference distribution of a coppice |
---|
334 | ! I'm not see why this should be any different than a standard prescribe. |
---|
335 | ! Ideally, the plantings should be stems 20-25 cm long stuck into the soil, |
---|
336 | ! but the allocation scheme will have the same issues with this that it does |
---|
337 | ! with planting a small sapling, i.e. it won't like it. The stems do not |
---|
338 | ! follow standard allocation rules. Then again, neither do coppices. |
---|
339 | |
---|
340 | !!$ IF (forest_managed(ipts,ivm) == ifm_src) THEN |
---|
341 | !!$ CALL ipslerr(3,'stomate_prescribe.f90','Problem with SRC','','') |
---|
342 | !!$ ENDIF |
---|
343 | |
---|
344 | !! 2.5 Allocation factors |
---|
345 | ! Sapwood to root ratio |
---|
346 | ! Following Magnani et al. 2000 "In order to decreases hydraulic resistance, |
---|
347 | ! the investment of carbon in fine roots or sapwood yields to the plant very |
---|
348 | ! different returns, both because of different hydraulic conductivities and |
---|
349 | ! because of the strong impact of plant height on shoot resistance. On the |
---|
350 | ! other hand, fine roots and sapwood have markedly different longevities and |
---|
351 | ! the cost of production, discounted for turnover, will differ accordingly. |
---|
352 | ! Optimal growth under hydraulic constraints requires that the ratio of marginal |
---|
353 | ! hydraulic returns to marginal annual cost for carbon investment in either roots |
---|
354 | ! or sapwood be the same (Bloom, Chapin & Mooney 1985; Case & Fair 1989). This |
---|
355 | ! is formalized in equation (13) and further derived to obtain equation (17) |
---|
356 | ! in Magnani et al 2000. The latter is implemented here. |
---|
357 | ! Pipe_density is given in gC/m-3, convert to kg/m-3. And apply equation (17) |
---|
358 | ! in Magnani et al 2000. Note that c0_alloc was calculated at the start of this |
---|
359 | ! routine. The calculation itself is done in function_library |
---|
360 | |
---|
361 | ! Calculate leaf area to sapwood area |
---|
362 | ! To be consistent with the hydraulic limitations and pipe theory, |
---|
363 | ! k_latosa is calculated from equation (18) in Magnani et al. |
---|
364 | ! To do so, total hydraulic resistance and tree height need to known. This |
---|
365 | ! poses a problem as the resistance depends on the leaf area and the leaf |
---|
366 | ! area on the resistance. There is no independent equation and equations 12 |
---|
367 | ! and 18 depend on each other and substitution would be circular. Hence |
---|
368 | ! prescribed k_latosa values were obtained from observational records |
---|
369 | ! and are given in mtc_parameters.f90. |
---|
370 | |
---|
371 | ! The relationship between height and k_latosa as reported in McDowell |
---|
372 | ! et al 2002 and Novick et al 2009 is implemented to adjust k_latosa for |
---|
373 | ! the height of the stand. This did NOT result in a realistic model behavior |
---|
374 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * & |
---|
375 | !!$ (k_latosa_max(ivm) - (latosa_height(ivm) * & |
---|
376 | !!$ (SUM( nb_trees_i(:) * ave_tree_height(:) ) / SUM( nb_trees_i(:) )))) |
---|
377 | |
---|
378 | ! Alternatively, k_latosa is also reported to be a function of diameter |
---|
379 | ! (i.e. stand thinning, Simonin et al 2006, Tree Physiology, 26:493-503). |
---|
380 | ! Here the relationship with thinning was interpreted as a realtionship with |
---|
381 | ! light stress. Note that light stress cannot be calculated at this time in |
---|
382 | ! the model because there is no canopy (that's why we are in prescribe!) and |
---|
383 | ! so there is no lightstress. lstress was therefore set to one (see above). |
---|
384 | ! We prefered this redundancy in the code because it makes it clear that |
---|
385 | ! k_latosa is calculated in the same way in prescribe.f90 and growth_fun_all.f90 |
---|
386 | ! +++CHECK+++ |
---|
387 | ! How do we want to deal with waterstress |
---|
388 | !!$ k_latosa(ipts,ivm) = k_latosa_min(ivm) + & |
---|
389 | !!$ (wstress_fac(ipts,ivm) * lstress_fac(ipts,ivm) * & |
---|
390 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm))) |
---|
391 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * (k_latosa_min(ivm) + & |
---|
392 | !!$ (lstress_fac(ipts,ivm) * & |
---|
393 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
394 | k_latosa(ipts,ivm) = (k_latosa_adapt(ipts,ivm) + & |
---|
395 | (lstress_fac(ipts,ivm) * & |
---|
396 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
397 | ! ++++++++++++ |
---|
398 | |
---|
399 | |
---|
400 | ! Also k_latosa has been reported to be a function of CO2 concentration |
---|
401 | ! (Atwell et al. 2003, Tree Physiology, 23:13-21 and Pakati et al. 2000, |
---|
402 | ! Global Change Biology, 6:889-897). This effect is not accounted for in |
---|
403 | ! the current code |
---|
404 | |
---|
405 | ! Calculate conversion coefficient for sapwood area to leaf area |
---|
406 | ! (1) The scaling parameter between leaf and sapwood mass is derived from |
---|
407 | ! LA_ind = k_latosa * SA_ind, where LA_ind = leaf area of an individual, SA_ind is the |
---|
408 | ! sapwood area of an individual and k_latosa a pipe-model parameter |
---|
409 | ! (2) LA_ind = Cl * sla |
---|
410 | ! (3) Cs = SA_ind * height * wooddensity * tree_ff |
---|
411 | ! Substitute (2) and (3) in (1) |
---|
412 | ! Cl = Cs * k1 / (wooddensity * sla * tree_ff * height) |
---|
413 | ! Cl = Cs*KF/height, where KF is in (m) |
---|
414 | ! KF is passed to the allocation routine and it is saved in the restart file. |
---|
415 | KF(ipts,ivm) = k_latosa(ipts,ivm) / ( sla(ivm) * pipe_density(ivm) * tree_ff(ivm)) |
---|
416 | |
---|
417 | ! Initialize delta_KF to get the DO WHILE started |
---|
418 | delta_KF = un |
---|
419 | |
---|
420 | iloop=0 |
---|
421 | DO WHILE (delta_KF .GT. max_delta_KF) |
---|
422 | |
---|
423 | ! If there is a WHILE loop, there always needs to be a check on the number |
---|
424 | ! of loops to make sure we don't get stuck in an infinite loop. This |
---|
425 | ! number is completely arbitrary. |
---|
426 | iloop=iloop+1 |
---|
427 | IF(iloop > 1000)THEN |
---|
428 | WRITE(numout,*) 'Taking too long to converge the delta_KF loop in prescribe!' |
---|
429 | WRITE(numout,*) 'iloop,delta_KF,max_delta_KF,ivm,ipts: ',& |
---|
430 | iloop,delta_KF,max_delta_KF,ivm,ipts |
---|
431 | CALL ipslerr_p (3,'stomate_prescribe',& |
---|
432 | 'Taking too long to converge the delta_KF','','') |
---|
433 | |
---|
434 | ENDIF |
---|
435 | |
---|
436 | !! 2.6 Create saplings for each height class |
---|
437 | ! Now we create the saplings for each class, based on the height |
---|
438 | |
---|
439 | ! The assumption we make is that we plant trees of 2 to 3 years old rather than |
---|
440 | ! growing trees from seeds. The allometric relationship between height and |
---|
441 | ! diameter is derived from mature tree and likely unrealistic for saplings. |
---|
442 | ! The height of the saplings is prescribed and determines the reserves which are |
---|
443 | ! especially important for deciduous species which need to survive on their |
---|
444 | ! reserves for the first year (new phenology scheme requires annual mean values |
---|
445 | ! to get started) |
---|
446 | dia_init = ( ave_tree_height / pipe_tune2(ivm) ) ** ( 1. / pipe_tune3(ivm) ) |
---|
447 | wood_init = ( ave_tree_height * pi / 4. * (dia_init) ** 2. ) * & |
---|
448 | pipe_density(ivm) * tree_ff(ivm) |
---|
449 | |
---|
450 | ! The woody biomass is contained in four components. Thus, wood_init = isapabove + |
---|
451 | ! isapbelow + iheartabove + iheartbelow. Given that isapbelow = isapbelow and |
---|
452 | ! iheartabove = iheartbelow = bm_sapl_heartabove*isapabove. If bm_sapl_heartbelow = |
---|
453 | ! bm_sapl_heartabove = 0.2, then isapabove = wood_init/2.4 |
---|
454 | bm_sapl(ivm,isapabove,icarbon) = wood_init / (2. + bm_sapl_heartabove + bm_sapl_heartbelow) |
---|
455 | bm_sapl(ivm,isapbelow,icarbon) = bm_sapl(ivm,isapabove,icarbon) |
---|
456 | bm_sapl(ivm,iheartabove,icarbon) = bm_sapl_heartabove * bm_sapl(ivm,isapabove,icarbon) |
---|
457 | bm_sapl(ivm,iheartbelow,icarbon) = bm_sapl_heartbelow * bm_sapl(ivm,isapbelow,icarbon) |
---|
458 | |
---|
459 | ! Use the allometric relationships to calculate initial leaf and root mass |
---|
460 | bm_sapl(ivm,ileaf,icarbon) = ( bm_sapl(ivm,isapabove,icarbon) + & |
---|
461 | bm_sapl(ivm,isapbelow,icarbon) ) * KF(ipts,ivm) / ave_tree_height |
---|
462 | !+++CHECK+++ |
---|
463 | !How do we want to deal with water stress? wstress is accounted for through c0 |
---|
464 | !!$ bm_sapl(ivm,iroot,icarbon) = bm_sapl(ivm,ileaf,icarbon) / ( KF(ipts,ivm) * c0_alloc(ivm) ) |
---|
465 | bm_sapl(ivm,iroot,icarbon) = bm_sapl(ivm,ileaf,icarbon) / & |
---|
466 | ( KF(ipts,ivm) * c0_alloc(ivm) ) |
---|
467 | !+++++++++++ |
---|
468 | |
---|
469 | ! Write initial values |
---|
470 | IF (printlev>=4) THEN |
---|
471 | WRITE(numout,*) ' Circumference class: ',icir,' PFT type: ',ivm |
---|
472 | WRITE(numout,*) ' root to sapwood tradeoff p :', c0_alloc(ivm) |
---|
473 | WRITE(numout,*) 'height_init, dia_init, wood_init, ', & |
---|
474 | ave_tree_height , dia_init, wood_init |
---|
475 | WRITE(numout,*) 'pipe_density, ',pipe_density(ivm) |
---|
476 | ENDIF |
---|
477 | |
---|
478 | !++++++ CHECK ++++++ |
---|
479 | ! The carbohydrate reserves do not seem to be set before this line. This |
---|
480 | ! is a problem since it then uses an unitililized value. Therefore, I |
---|
481 | ! will initilize it. |
---|
482 | ! Should this really be zero? If so the code below is nonesensical and icarbres |
---|
483 | ! could be omitted. nonesensical code = 2 * (bm_sapl(ivm,icir,icarbres,icarbon) + & |
---|
484 | ! bm_sapl(ivm,icir,ileaf,icarbon) + bm_sapl(ivm,icir,iroot,icarbon)) |
---|
485 | bm_sapl(ivm,icarbres,icarbon)=zero |
---|
486 | !++++++++++++++++++ |
---|
487 | |
---|
488 | ! Pools that are defined in the same way for trees and grasses |
---|
489 | bm_sapl(ivm,ifruit,icarbon) = zero |
---|
490 | |
---|
491 | !+++CHECK+++ |
---|
492 | ! There is an inconsistency in the calculation - most pools are in gN |
---|
493 | ! but leaves is in gC. The correction is proposed, that implies that |
---|
494 | ! the parameter labile_reserve will need to be tuned |
---|
495 | !!$ bm_sapl(ivm,ilabile,icarbon) = labile_to_total * & |
---|
496 | !!$ (bm_sapl(ivm,ileaf,icarbon) / cn_leaf_prescribed(ivm) + & |
---|
497 | !!$ fcn_root(ivm) * bm_sapl(ivm,iroot,icarbon) + fcn_wood(ivm) * & |
---|
498 | !!$ (bm_sapl(ivm,isapabove,icarbon) + bm_sapl(ivm,isapbelow,icarbon) + & |
---|
499 | !!$ bm_sapl(ivm,icarbres,icarbon))) |
---|
500 | |
---|
501 | bm_sapl(ivm,ilabile,icarbon) = labile_to_total * (bm_sapl(ivm,ileaf,icarbon) + & |
---|
502 | fcn_root(ivm) * bm_sapl(ivm,iroot,icarbon) + fcn_wood(ivm) * & |
---|
503 | (bm_sapl(ivm,isapabove,icarbon) + bm_sapl(ivm,isapbelow,icarbon) + & |
---|
504 | bm_sapl(ivm,icarbres,icarbon))) |
---|
505 | !+++++++++++ |
---|
506 | |
---|
507 | ! Avoid deciduous PFTs to have leaves out at establishment |
---|
508 | ! Whether the saplings have leaves or don't have leaves the first year doesn't really matter |
---|
509 | ! Either the approach is correct in the northern hemisphere or in the southern hemisphere. Note |
---|
510 | ! that the resource limitation approach starts with the sapling having leaves. |
---|
511 | ! Anyhow, a spin-up is needed to avoid issues with the initial conditions |
---|
512 | IF ( pheno_type(ivm) .NE. 1 ) THEN |
---|
513 | |
---|
514 | ! Not evergreen. Deciduous PFTs now need to survive an extra year before bud burst. To |
---|
515 | ! ensure survival there are several options: (a) either the height of the initial |
---|
516 | ! vegetation is increased (this results in more reserves) or (b) the reserves could be |
---|
517 | ! increased. The second option may result in numerical issues further down |
---|
518 | ! the code as the optimal reserve level is calculated from the other biomass pools. |
---|
519 | ! Also some initial tests showed that higher results simply resulted in more respiration. |
---|
520 | ! Use taller trees to start with. |
---|
521 | bm_sapl(ivm,icarbres,icarbon) = (bm_sapl(ivm,icarbres,icarbon) + & |
---|
522 | bm_sapl(ivm,ileaf,icarbon) + bm_sapl(ivm,iroot,icarbon)) |
---|
523 | bm_sapl(ivm,ileaf,icarbon) = zero |
---|
524 | bm_sapl(ivm,iroot,icarbon) = zero |
---|
525 | |
---|
526 | ! When deciduous trees have no leaves they are senescent |
---|
527 | senescence(ipts,ivm) = .TRUE. |
---|
528 | |
---|
529 | ELSE |
---|
530 | |
---|
531 | ! Initilize carbohydrate reserves for evergreen PFTs |
---|
532 | bm_sapl(ivm,icarbres,icarbon) = zero |
---|
533 | |
---|
534 | ! Evergreen trees never go into senescence |
---|
535 | senescence(ipts,ivm) = .FALSE. |
---|
536 | |
---|
537 | ENDIF |
---|
538 | |
---|
539 | IF (printlev>=4) THEN |
---|
540 | WRITE(numout,*) ' sapling biomass (gC):',icir,ivm,ipts |
---|
541 | WRITE(numout,*) ' leaves: (::bm_sapl(ivm,ileaf,icarbon))',& |
---|
542 | bm_sapl(ivm,ileaf,icarbon) |
---|
543 | WRITE(numout,*) ' sap above ground: (::bm_sapl(ivm,ispabove,icarbon)):',& |
---|
544 | bm_sapl(ivm,isapabove,icarbon) |
---|
545 | WRITE(numout,*) ' sap below ground: (::bm_sapl(ivm,isapbelow,icarbon))',& |
---|
546 | bm_sapl(ivm,isapbelow,icarbon) |
---|
547 | WRITE(numout,*) ' heartwood above ground: (::bm_sapl(ivm,iheartabove,icarbon))',& |
---|
548 | bm_sapl(ivm,iheartabove,icarbon) |
---|
549 | WRITE(numout,*) ' heartwood below ground: (::bm_sapl(ivm,iheartbelow,icarbon))',& |
---|
550 | bm_sapl(ivm,iheartbelow,icarbon) |
---|
551 | WRITE(numout,*) ' roots: (::bm_sapl(ivm,iroot,icarbon))',& |
---|
552 | bm_sapl(ivm,iroot,icarbon) |
---|
553 | WRITE(numout,*) ' fruits: (::bm_sapl(ivm,ifruit,icarbon))',& |
---|
554 | bm_sapl(ivm,ifruit,icarbon) |
---|
555 | WRITE(numout,*) ' carbohydrate reserve: (::bm_sapl(ivm,icarbres,icarbon))',& |
---|
556 | bm_sapl(ivm,icarbres,icarbon) |
---|
557 | WRITE(numout,*) ' labile reserve: (::bm_sapl(ivm,ilabile,icarbon))',& |
---|
558 | bm_sapl(ivm,ilabile,icarbon) |
---|
559 | ENDIF |
---|
560 | |
---|
561 | |
---|
562 | cn_leaf=cn_leaf_init(ivm) |
---|
563 | cn_wood=cn_leaf/fcn_wood(ivm) |
---|
564 | cn_root=cn_leaf/fcn_root(ivm) |
---|
565 | |
---|
566 | DO k=1,nparts |
---|
567 | IF (k.EQ.ileaf) THEN |
---|
568 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_leaf |
---|
569 | ELSE IF (k.LT.iroot) THEN |
---|
570 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_wood |
---|
571 | ELSE |
---|
572 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_root |
---|
573 | ENDIF |
---|
574 | ENDDO |
---|
575 | |
---|
576 | |
---|
577 | IF (printlev>=4) THEN |
---|
578 | WRITE(numout,*)'Initial distribution, method 2',ivm |
---|
579 | WRITE(numout,*)'Average trees height (m): ',ave_tree_height |
---|
580 | ENDIF |
---|
581 | |
---|
582 | !! 2.7 Determine the biomass |
---|
583 | ! I do this based on the biomass in each sapling and the number of trees in each |
---|
584 | ! circumference class...we need the biomass in an average tree |
---|
585 | biomass(ipts,ivm,:,:)= & |
---|
586 | bm_sapl(ivm,:,:)*ind(ipts,ivm) |
---|
587 | |
---|
588 | ! The light stress should be calculated making use of Pgap so it accounts for LAI |
---|
589 | ! crown dimensions and tree distribution. However, this would be computationally |
---|
590 | ! expensive so we just use a first order estimate based on light attenuation model |
---|
591 | ! by Lambert-Beer. When LAI is low, a lot of light reaches the forest floor and so |
---|
592 | ! KF should increase to make use of the available light by growing leaves |
---|
593 | lstress_fac = exp(-biomass_to_lai(biomass(ipts,ivm,ileaf,icarbon),ivm) * 0.5) |
---|
594 | ! Causing large differences between first and second prescribe |
---|
595 | delta_KF = ABS (KF(ipts,ivm) - ((k_latosa_adapt(ipts,ivm) + & |
---|
596 | (lstress_fac(ipts,ivm) * (k_latosa_max(ivm)-k_latosa_min(ivm))))) / & |
---|
597 | ( sla(ivm) * tree_ff(ivm) * pipe_density(ivm) )) |
---|
598 | KF(ipts,ivm) = ((k_latosa_adapt(ipts,ivm) + & |
---|
599 | (lstress_fac(ipts,ivm) * & |
---|
600 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) / & |
---|
601 | ( sla(ivm) * tree_ff(ivm) * pipe_density(ivm) )) |
---|
602 | |
---|
603 | IF(printlev>=4)THEN |
---|
604 | WRITE(numout,*) 'prescribe delta_KF, ', delta_KF |
---|
605 | WRITE(numout,*) 'prescribe lstress, ', lstress_fac |
---|
606 | ENDIF |
---|
607 | END DO |
---|
608 | |
---|
609 | IF (printlev>=4) THEN |
---|
610 | WRITE(numout,*)'Initial biomass distribution' |
---|
611 | WRITE(numout,*)'End initial biomass distribution',ind(ipts,ivm) |
---|
612 | WRITE(numout,*)"biomass(ipts,ivm,:,icarbon)",biomass(ipts,ivm,:,icarbon) |
---|
613 | WRITE(numout,*)"biomass(ipts,ivm,:,initrogen)",biomass(ipts,ivm,:,initrogen) |
---|
614 | END IF |
---|
615 | |
---|
616 | IF (ivm .EQ. test_pft .AND. printlev>=4) THEN |
---|
617 | WRITE(numout,*) 'Check prescribe' |
---|
618 | WRITE(numout,*) 'stomate_prescribe::init ind ',& |
---|
619 | ipts,ivm,ind(ipts,ivm) |
---|
620 | ENDIF |
---|
621 | |
---|
622 | ! PFT is not present |
---|
623 | ELSE |
---|
624 | |
---|
625 | ! At the stand level |
---|
626 | biomass(ipts,ivm,:,:) = zero |
---|
627 | ind(ipts,ivm) = zero |
---|
628 | |
---|
629 | ENDIF |
---|
630 | |
---|
631 | ! Set leaf age classes, all leaves are current year leaves |
---|
632 | leaf_frac(ipts,ivm,:) = zero |
---|
633 | leaf_frac(ipts,ivm,1) = un |
---|
634 | |
---|
635 | !+++CHECK+++ |
---|
636 | ! Set time since last beginning of growing season but only |
---|
637 | ! for the first day of the whole simulation. When the model |
---|
638 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
639 | ! time steps it should have a value. For trees without phenology |
---|
640 | ! the growing season starts at the moment the PFT is prescribed |
---|
641 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
642 | when_growthinit(ipts,ivm) = 200 |
---|
643 | ENDIF |
---|
644 | !+++++++++++ |
---|
645 | |
---|
646 | ! Seasonal trees have no leaves at beginning |
---|
647 | ! Saplings of evergreen trees have a leaf mass on day 1 and mass in the other components |
---|
648 | ! saplings of deciduous trees have no leaves on day 1 but mass in the other components. |
---|
649 | IF ( pheno_model(ivm) .NE. 'none' ) THEN |
---|
650 | |
---|
651 | ! Add the carbon from the leaves to the reserve pool |
---|
652 | biomass(ipts,ivm,icarbres,:) = biomass(ipts,ivm,icarbres,:) + biomass(ipts,ivm,ileaf,:) |
---|
653 | biomass(ipts,ivm,ileaf,:) = zero |
---|
654 | leaf_frac(ipts,ivm,1) = zero |
---|
655 | |
---|
656 | !+++CHECK+++ |
---|
657 | ! Set time since last beginning of growing season but only |
---|
658 | ! for the first day of the whole simulation. When the model |
---|
659 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
660 | ! time steps it should have a value. The phenology module |
---|
661 | ! prevents leaf onset soon after senescence, by setting |
---|
662 | ! ::when_growthinit to a value, leaf offset |
---|
663 | ! will occur at the first opportunity |
---|
664 | !!$ when_growthinit(ipts,ivm) = large_value |
---|
665 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
666 | when_growthinit(ipts,ivm) = 200 |
---|
667 | ENDIF |
---|
668 | !++++++++++++ |
---|
669 | |
---|
670 | ! Redundant, flag has already been set. When there are no leaves, the tree is in senescence |
---|
671 | senescence(ipts,ivm) = .TRUE. |
---|
672 | |
---|
673 | ENDIF ! pheno_model(ivm) |
---|
674 | |
---|
675 | ! The biomass to build the saplings is taken from the atmosphere, keep track of |
---|
676 | ! amount to calculate the C-balance closure |
---|
677 | co2_to_bm(ipts,ivm) = co2_to_bm(ipts,ivm) + ( SUM(biomass(ipts,ivm,:,icarbon)) / dt ) |
---|
678 | |
---|
679 | ENDIF ! tree(ivm) |
---|
680 | |
---|
681 | !! 2.8 Initialize grassy PFTs |
---|
682 | !! Use veget_max to check whether the PFT is present. If the PFT is present but it |
---|
683 | !! has no biomass, prescribe its biomass (gC m-{2}). It is assumed that at day 1 |
---|
684 | !! grasses have all their biomass in the reserve pool. The criteria exclude crops. |
---|
685 | !! Crops are no longer prescribed but planted the day that begin_leaves is true. |
---|
686 | |
---|
687 | !+++TEMP+++ |
---|
688 | IF(printlev>=4 .AND. test_pft == ivm)THEN |
---|
689 | WRITE(numout,*) 'prescribe - total biomass, ',SUM(biomass(ipts,ivm,:,icarbon)) |
---|
690 | ENDIF |
---|
691 | !++++++++++ |
---|
692 | |
---|
693 | IF ( ( .NOT. is_tree(ivm) ) .AND. & |
---|
694 | ! ( natural(ivm) ) .AND. & |
---|
695 | ( veget_max(ipts,ivm) .GT. min_stomate ) .AND. & |
---|
696 | ( SUM( biomass(ipts,ivm,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
697 | |
---|
698 | !+++TEMP+++ |
---|
699 | IF(printlev>=4 .AND. test_pft == ivm)THEN |
---|
700 | WRITE(numout,*) 'We will prescribe a new vegetation, the old one died' |
---|
701 | ENDIF |
---|
702 | !++++++++++ |
---|
703 | |
---|
704 | ! For grasses we assume that an individual grass is 1 m2 of grass. This is set |
---|
705 | ! in nmaxtrees in pft_parameters.f90. It could be set to another value but |
---|
706 | ! with the current code this should not have any meaning. The grassland |
---|
707 | ! does not necessarily covers the whole 1 m2 so adjust for the canopy cover |
---|
708 | ind(ipts,ivm) = nmaxtrees(ivm) * ha_to_m2 * canopy_cover(ivm) |
---|
709 | |
---|
710 | ! now we generate the size of a single grass sapling...this was all taken from |
---|
711 | ! stomate_data.f90...we do not deal with circumference classes for grasses |
---|
712 | ! and crops, but we want to keep the arrays the same as for the trees so |
---|
713 | ! we put the sapling information into the first circumference class |
---|
714 | |
---|
715 | !+++CHECK+++ |
---|
716 | ! Calculate the sapwood to leaf mass in a similar way as has been done for trees. |
---|
717 | ! For trees this approach had been justified by observations. For grasses such |
---|
718 | ! justification is not supported by observations but we didn't try to find it. |
---|
719 | ! Needs more work by someone interested in grasses. There might be a more elegant |
---|
720 | ! solution making use of a well observed parameter. |
---|
721 | !!$ k_latosa(ipts,ivm) = k_latosa_min(ivm) + & |
---|
722 | !!$ (wstress_fac(ipts,ivm) * lstress_fac(ipts,ivm) * & |
---|
723 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm))) |
---|
724 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * (k_latosa_min(ivm) + & |
---|
725 | !!$ (lstress_fac(ipts,ivm) * & |
---|
726 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
727 | k_latosa(ipts,ivm) = (k_latosa_adapt(ipts,ivm) + & |
---|
728 | (lstress_fac(ipts,ivm) * & |
---|
729 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
730 | |
---|
731 | ! The mass of the structural carbon relates to the mass of the leaves through |
---|
732 | ! a prescribed parameter ::k_latosa |
---|
733 | KF(ipts,ivm) = k_latosa(ipts,ivm) |
---|
734 | !+++++++++++ |
---|
735 | |
---|
736 | ! Calculate leaf to root area |
---|
737 | LF(ipts,ivm) = c0_alloc(ivm) * KF(ipts,ivm) |
---|
738 | |
---|
739 | !---TEMP--- |
---|
740 | IF(printlev>=4.AND. test_pft == ivm)THEN |
---|
741 | WRITE(numout,*) 'KF, ', k_latosa(ipts,ivm), KF(ipts,ivm) |
---|
742 | WRITE(numout,*) 'LF, c0_alloc, ', c0_alloc(ivm) * KF(ipts,ivm), & |
---|
743 | c0_alloc(ivm) |
---|
744 | ENDIF |
---|
745 | !---------- |
---|
746 | |
---|
747 | ! initialize everything to make sure there are not random values floating around |
---|
748 | ! for ncirc != 1 |
---|
749 | bm_sapl(ivm,:,:) = val_exp |
---|
750 | |
---|
751 | ! Similar as for trees, the initial height of the vegetation was defined |
---|
752 | bm_sapl(ivm,ileaf,icarbon) = height_init_min(ivm) / lai_to_height(ivm) / sla(ivm) |
---|
753 | |
---|
754 | ! Use allometric relationships to define the root mass based on leaf mass. Some |
---|
755 | ! sapwood mass is needed to store the reserves. An arbitrairy fraction of 5% was |
---|
756 | ! used |
---|
757 | bm_sapl(ivm,iroot,icarbon) = bm_sapl(ivm,ileaf,icarbon) / LF(ipts,ivm) |
---|
758 | bm_sapl(ivm,isapabove,icarbon) = bm_sapl(ivm,ileaf,icarbon) / KF(ipts,ivm) |
---|
759 | |
---|
760 | ! Some of the biomass components that exist for trees are undefined for grasses |
---|
761 | bm_sapl(ivm,isapbelow,icarbon) = zero |
---|
762 | bm_sapl(ivm,iheartabove,icarbon) = zero |
---|
763 | bm_sapl(ivm,iheartbelow,icarbon) = zero |
---|
764 | bm_sapl(ivm,ifruit,icarbon) = zero |
---|
765 | bm_sapl(ivm,icarbres,icarbon) = zero |
---|
766 | |
---|
767 | ! Pools that are defined in the same way for trees and grasses |
---|
768 | bm_sapl(ivm,ilabile,icarbon) = labile_to_total * (bm_sapl(ivm,ileaf,icarbon) + & |
---|
769 | fcn_root(ivm) * bm_sapl(ivm,iroot,icarbon) + fcn_wood(ivm) * & |
---|
770 | (bm_sapl(ivm,isapabove,icarbon) + bm_sapl(ivm,isapbelow,icarbon) + & |
---|
771 | bm_sapl(ivm,icarbres,icarbon))) |
---|
772 | |
---|
773 | ! Avoid deciduous PFTs to have leaves out at establishment |
---|
774 | ! Whether the saplings have leaves or don't have leaves the first year doesn't really matter |
---|
775 | ! Either the approach is correct in the northern hemisphere or in the southern hemisphere. Note |
---|
776 | ! that the resource limitation approach starts with the sapling having leaves. |
---|
777 | ! Anyhow, a spin-up is needed to avoid issues with the initial conditions |
---|
778 | IF ( pheno_type(ivm) .NE. 1 ) THEN |
---|
779 | |
---|
780 | ! Not evergreen. Deciduous PFTs now need to survive an extra year before bud burst. To |
---|
781 | ! ensure survival there are several options: (a) either the height of the initial |
---|
782 | ! vegetation is increased (this results in more reserves) or (b) the reserves could be |
---|
783 | ! increased. The second option may result in result in numerical issues further down |
---|
784 | ! the code as the optimal reserve level is calculated from the other biomass pools |
---|
785 | bm_sapl(ivm,icarbres,icarbon) = bm_sapl(ivm,icarbres,icarbon) + bm_sapl(ivm,ileaf,icarbon) + & |
---|
786 | bm_sapl(ivm,iroot,icarbon) + bm_sapl(ivm,isapabove,icarbon) |
---|
787 | bm_sapl(ivm,ileaf,icarbon) = zero |
---|
788 | bm_sapl(ivm,iroot,icarbon) = zero |
---|
789 | bm_sapl(ivm,isapabove,icarbon) = zero |
---|
790 | ! When there are no leaves, the crop/grass is in senescence |
---|
791 | senescence(ipts,ivm) = .TRUE. |
---|
792 | |
---|
793 | ELSE |
---|
794 | |
---|
795 | ! Initilize carbohydrate reserves for evergreen PFTs |
---|
796 | bm_sapl(ivm,icarbres,icarbon) = zero |
---|
797 | |
---|
798 | ! Evergreen plants never go into senescence |
---|
799 | senescence(ipts,ivm) = .FALSE. |
---|
800 | |
---|
801 | ENDIF |
---|
802 | |
---|
803 | IF (printlev>=4) THEN |
---|
804 | WRITE(numout,*) ' sapling biomass (gC):',1,ivm,ipts |
---|
805 | WRITE(numout,*) ' leaves: (::bm_sapl(ivm,ileaf,icarbon))',& |
---|
806 | bm_sapl(ivm,ileaf,icarbon) |
---|
807 | WRITE(numout,*) ' sap above ground: (::bm_sapl(ivm,ispabove,icarbon)):',& |
---|
808 | bm_sapl(ivm,isapabove,icarbon) |
---|
809 | WRITE(numout,*) ' sap below ground: (::bm_sapl(ivm,isapbelow,icarbon))',& |
---|
810 | bm_sapl(ivm,isapbelow,icarbon) |
---|
811 | WRITE(numout,*) ' heartwood above ground: (::bm_sapl(ivm,iheartabove,icarbon))',& |
---|
812 | bm_sapl(ivm,iheartabove,icarbon) |
---|
813 | WRITE(numout,*) ' heartwood below ground: (::bm_sapl(ivm,iheartbelow,icarbon))',& |
---|
814 | bm_sapl(ivm,iheartbelow,icarbon) |
---|
815 | WRITE(numout,*) ' roots: (::bm_sapl(ivm,iroot,icarbon))',& |
---|
816 | bm_sapl(ivm,iroot,icarbon) |
---|
817 | WRITE(numout,*) ' fruits: (::bm_sapl(ivm,ifruit,icarbon))',& |
---|
818 | bm_sapl(ivm,ifruit,icarbon) |
---|
819 | WRITE(numout,*) ' carbohydrate reserve: (::bm_sapl(ivm,icarbres,icarbon))',& |
---|
820 | bm_sapl(ivm,icarbres,icarbon) |
---|
821 | WRITE(numout,*) ' labile reserve: (::bm_sapl(ivm,ilabile,icarbon))',& |
---|
822 | bm_sapl(ivm,ilabile,icarbon) |
---|
823 | ENDIF |
---|
824 | |
---|
825 | |
---|
826 | |
---|
827 | cn_leaf=cn_leaf_init(ivm) |
---|
828 | cn_wood=cn_leaf/fcn_wood(ivm) |
---|
829 | cn_root=cn_leaf/fcn_root(ivm) |
---|
830 | |
---|
831 | DO k=1,nparts |
---|
832 | IF (k.EQ.ileaf) THEN |
---|
833 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_leaf |
---|
834 | ELSE IF (k.LT.iroot) THEN |
---|
835 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_wood |
---|
836 | ELSE |
---|
837 | bm_sapl(ivm,k,initrogen) = bm_sapl(ivm,k,icarbon) / cn_root |
---|
838 | ENDIF |
---|
839 | ENDDO |
---|
840 | |
---|
841 | ! Write initial values |
---|
842 | IF (printlev>=4) THEN |
---|
843 | WRITE(numout,*) ' root to sapwood tradeoff (LF) : ', c0_alloc(ivm) |
---|
844 | WRITE(numout,*) ' grass sapling biomass: ',bm_sapl(ivm,:,icarbon) |
---|
845 | ENDIF |
---|
846 | |
---|
847 | ! Initial biomass (g C m-2) |
---|
848 | biomass(ipts,ivm,:,:) = bm_sapl(ivm,:,:) * ind(ipts,ivm) |
---|
849 | IF (printlev>=4) THEN |
---|
850 | WRITE(numout,*) 'bm_grass, prescribe, ', biomass(ipts,ivm,:,icarbon) |
---|
851 | ENDIF |
---|
852 | |
---|
853 | |
---|
854 | ! Set leaf age classes -> all leaves will be current year leaves |
---|
855 | leaf_frac(ipts,ivm,:) = zero |
---|
856 | leaf_frac(ipts,ivm,1) = un |
---|
857 | |
---|
858 | ! Set time since last beginning of growing season but only |
---|
859 | ! for the first day of the whole simulation. When the model |
---|
860 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
861 | ! time steps it should have a value. |
---|
862 | !!$ when_growthinit(ipts,ivm) = large_value |
---|
863 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
864 | when_growthinit(ipts,ivm) = 200 |
---|
865 | ENDIF |
---|
866 | |
---|
867 | ! The biomass to build the saplings is taken from the atmosphere, keep track of |
---|
868 | ! amount to calculate the C-balance closure |
---|
869 | co2_to_bm(ipts,ivm) = co2_to_bm(ipts,ivm) + ( SUM(biomass(ipts,ivm,:,icarbon)) / dt ) |
---|
870 | |
---|
871 | ! ELSEIF (.NOT. natural(ivm)) THEN |
---|
872 | ! |
---|
873 | ! ! Initialize croplands - else leaves_begin will never become true |
---|
874 | ! ! Set time since last beginning of growing season but only |
---|
875 | ! ! for the first day of the whole simulation. When the model |
---|
876 | ! ! is initialized when_growthinit is set to undef. In subsequent |
---|
877 | ! ! time steps it should have a value. |
---|
878 | ! IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
879 | ! when_growthinit(ipts,ivm) = 200 |
---|
880 | ! ENDIF |
---|
881 | |
---|
882 | ENDIF ! .NOT. tree(ivm) |
---|
883 | |
---|
884 | !! 2.3 Declare PFT present |
---|
885 | !! Now that the PFT has biomass it should be declared 'present' |
---|
886 | !! everywhere in that grid box. Assign some additional properties |
---|
887 | PFTpresent(ipts,ivm) = .TRUE. |
---|
888 | everywhere(ipts,ivm) = un |
---|
889 | age(ipts,ivm) = zero |
---|
890 | npp_longterm(ipts,ivm) = npp_longterm_init |
---|
891 | lm_lastyearmax(ipts,ivm) = zero |
---|
892 | |
---|
893 | ENDIF ! not ok_dgvm or agricultural |
---|
894 | |
---|
895 | ENDIF ! IF (veget_max .GT. zero .AND. ind .EQ. zero) |
---|
896 | |
---|
897 | ENDDO ! loop over pixels |
---|
898 | |
---|
899 | ENDDO ! loop over PFTs |
---|
900 | |
---|
901 | !! 4. Calculate components of the mass balance |
---|
902 | |
---|
903 | !! 4.1 Calculate final biomass |
---|
904 | pool_end(:,:,:) = zero |
---|
905 | DO ipar = 1,nparts |
---|
906 | DO iele = 1,nelements |
---|
907 | pool_end(:,:,iele) = pool_end(:,:,iele) + & |
---|
908 | (biomass(:,:,ipar,iele) * veget_max(:,:)) |
---|
909 | ENDDO |
---|
910 | ENDDO |
---|
911 | |
---|
912 | !! 4.2 Calculate mass balance |
---|
913 | check_intern(:,:,iatm2land,icarbon) = check_intern(:,:,iatm2land,icarbon) + & |
---|
914 | co2_to_bm(:,:) * veget_max(:,:) * dt |
---|
915 | check_intern(:,:,iland2atm,icarbon) = -un * zero |
---|
916 | check_intern(:,:,ilat2out,icarbon) = zero |
---|
917 | check_intern(:,:,ilat2in,icarbon) = -un * zero |
---|
918 | check_intern(:,:,ipoolchange,icarbon) = -un * (pool_end(:,:,icarbon) - pool_start(:,:,icarbon)) |
---|
919 | closure_intern = zero |
---|
920 | DO imbc = 1,nmbcomp |
---|
921 | closure_intern(:,:,icarbon) = closure_intern(:,:,icarbon) + check_intern(:,:,imbc,icarbon) |
---|
922 | ENDDO |
---|
923 | |
---|
924 | !! 4.3 Write outcome |
---|
925 | DO ipts=1,npts |
---|
926 | DO ivm=1,nvm |
---|
927 | IF(ABS(closure_intern(ipts,ivm,icarbon)) .LE. min_stomate)THEN |
---|
928 | IF (ld_massbal) WRITE(numout,*) 'Mass balance closure in prescribe_prognostic' |
---|
929 | ELSE |
---|
930 | WRITE(numout,*) 'Error: mass balance is not closed in prescribe_prognostic' |
---|
931 | WRITE(numout,*) ' ipts,ivm; ', ipts,ivm |
---|
932 | WRITE(numout,*) ' Difference is, ', closure_intern(ipts,ivm,icarbon) |
---|
933 | WRITE(numout,*) ' pool_end,pool_start: ', pool_end(ipts,ivm,icarbon), pool_start(ipts,ivm,icarbon) |
---|
934 | WRITE(numout,*) ' check_intern,co2_to_bm,pool_end,veget_max: ', & |
---|
935 | check_intern(ipts,ivm,iatm2land,icarbon),co2_to_bm(ipts,ivm), veget_max(ipts,ivm) |
---|
936 | IF(ld_stop)THEN |
---|
937 | CALL ipslerr_p (3,'prescribe_prognostic', 'Mass balance error.','','') |
---|
938 | ENDIF |
---|
939 | ENDIF |
---|
940 | ENDDO |
---|
941 | ENDDO |
---|
942 | |
---|
943 | firstcall_prescribe = .FALSE. |
---|
944 | |
---|
945 | END SUBROUTINE prescribe |
---|
946 | |
---|
947 | |
---|
948 | END MODULE stomate_prescribe |
---|