1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : lpj_establish |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Establish pft's |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION: None |
---|
12 | !! |
---|
13 | !! RECENT CHANGE(S): None |
---|
14 | !! |
---|
15 | !! REFERENCE(S) : |
---|
16 | !! - Sitch, S., B. Smith, et al. (2003), Evaluation of ecosystem dynamics, |
---|
17 | !! plant geography and terrestrial carbon cycling in the LPJ dynamic |
---|
18 | !! global vegetation model, Global Change Biology, 9, 161-185.\n |
---|
19 | !! - Haxeltine, A. and I. C. Prentice (1996), BIOME3: An equilibrium |
---|
20 | !! terrestrial biosphere model based on ecophysiological constraints, |
---|
21 | !! resource availability, and competition among plant functional types, |
---|
22 | !! Global Biogeochemical Cycles, 10(4), 693-709.\n |
---|
23 | !! - Smith, B., I. C. Prentice, et al. (2001), Representation of vegetation |
---|
24 | !! dynamics in the modelling of terrestrial ecosystems: comparing two |
---|
25 | !! contrasting approaches within European climate space, |
---|
26 | !! Global Ecology and Biogeography, 10, 621-637.\n |
---|
27 | !! |
---|
28 | !! SVN : |
---|
29 | !! $HeadURL$ |
---|
30 | !! $Date$ |
---|
31 | !! $Revision$ |
---|
32 | !! \n |
---|
33 | !_ ================================================================================================================================ |
---|
34 | |
---|
35 | MODULE lpj_establish |
---|
36 | |
---|
37 | ! modules used: |
---|
38 | USE xios_orchidee |
---|
39 | USE ioipsl_para |
---|
40 | USE stomate_data |
---|
41 | USE constantes |
---|
42 | USE grid |
---|
43 | USE function_library, ONLY: biomass_to_lai |
---|
44 | |
---|
45 | IMPLICIT NONE |
---|
46 | |
---|
47 | ! private & public routines |
---|
48 | PRIVATE |
---|
49 | PUBLIC establish,establish_clear |
---|
50 | |
---|
51 | LOGICAL, SAVE :: firstcall_establish = .TRUE. !! first call |
---|
52 | !$OMP THREADPRIVATE(firstcall_establish) |
---|
53 | CONTAINS |
---|
54 | |
---|
55 | |
---|
56 | !! ================================================================================================================================ |
---|
57 | !! SUBROUTINE : fire_clear |
---|
58 | !! |
---|
59 | !>\BRIEF Set the firstcall_establish flag to .TRUE. and activate initialization |
---|
60 | !_ ================================================================================================================================ |
---|
61 | |
---|
62 | SUBROUTINE establish_clear |
---|
63 | firstcall_establish = .TRUE. |
---|
64 | END SUBROUTINE establish_clear |
---|
65 | |
---|
66 | |
---|
67 | ! ================================================================================================================================= |
---|
68 | ! SUBROUTINE : establish |
---|
69 | ! |
---|
70 | !>\BRIEF Calculate sstablishment of new woody PFT and herbaceous PFTs |
---|
71 | !! |
---|
72 | !! DESCRIPTION : Establishments of new woody and herbaceous PFT are simulated. |
---|
73 | !! Maximum establishment rate (0.12) declines due to competition for light (space). |
---|
74 | !! There are two establishment estimates: one for the for DGVM and one for the |
---|
75 | !! static cases.\n |
---|
76 | !! In the case of DGVM, competitive process of establishment for the area of |
---|
77 | !! available space is represented using more detailed description compared with static |
---|
78 | !! one. Biomass and distribution of plant age are updated on the basis of changes |
---|
79 | !! in number of individuals. Finally excess sapwood of is converted to heartwood. |
---|
80 | !! |
---|
81 | !! \latexonly |
---|
82 | !! \input{equation_lpj_establish.tex} |
---|
83 | !! \endlatexonly |
---|
84 | !! \n |
---|
85 | !! |
---|
86 | !! RECENT CHANGE(S): None |
---|
87 | !! |
---|
88 | !! REFERENCE(S) : |
---|
89 | !! Smith, B., I. C. Prentice, et al. (2001), Representation of vegetation |
---|
90 | !! dynamics in the modelling of terrestrial ecosystems: comparing two |
---|
91 | !! contrasting approaches within European climate space, |
---|
92 | !! Global Ecology and Biogeography, 10, 621-637. |
---|
93 | !! |
---|
94 | !! FLOWCHART : |
---|
95 | !! \latexonly |
---|
96 | !! \includegraphics[scale = 0.7]{establish.png} |
---|
97 | !! \endlatexonly |
---|
98 | !! \n |
---|
99 | !_ ================================================================================================================================ |
---|
100 | |
---|
101 | SUBROUTINE establish (npts, dt, PFTpresent, regenerate, & |
---|
102 | neighbours, resolution, need_adjacent, herbivores, & |
---|
103 | precip_annual, gdd0, lm_lastyearmax, & |
---|
104 | cn_ind, lai, avail_tree, avail_grass, npp_longterm, & |
---|
105 | leaf_age, leaf_frac, & |
---|
106 | ind, biomass, age, everywhere, co2_to_bm, & |
---|
107 | soil_n_min, n_uptake, nstress_season, veget_max, woodmass_ind, & |
---|
108 | mortality, bm_to_litter) |
---|
109 | |
---|
110 | !! 0. Variable and parameter declaration |
---|
111 | |
---|
112 | !! 0.1 Input variables |
---|
113 | |
---|
114 | INTEGER(i_std), INTENT(in) :: npts !! Domain size - number of pixels (dimensionless) |
---|
115 | REAL(r_std), INTENT(in) :: dt !! Time step of vegetation dynamics for stomate |
---|
116 | !! (days) |
---|
117 | LOGICAL, DIMENSION(npts,nvm), INTENT(in) :: PFTpresent !! Is pft there (unitless) |
---|
118 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: regenerate !! Winter sufficiently cold (unitless) |
---|
119 | INTEGER(i_std), DIMENSION(npts,NbNeighb), INTENT(in) :: neighbours !! indices of the neighbours of each grid point |
---|
120 | !! (unitless); |
---|
121 | !! [1=North and then clockwise] |
---|
122 | REAL(r_std), DIMENSION(npts,2), INTENT(in) :: resolution !! resolution at each grid point (m); 1=E-W, 2=N-S |
---|
123 | LOGICAL, DIMENSION(npts,nvm), INTENT(in) :: need_adjacent !! in order for this PFT to be introduced, does it |
---|
124 | !! have to be present in an adjacent grid box? |
---|
125 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: herbivores !! time constant of probability of a leaf to |
---|
126 | !! be eaten by a herbivore (days) |
---|
127 | REAL(r_std), DIMENSION(npts), INTENT(in) :: precip_annual !! annual precipitation (mm year^{-1}) |
---|
128 | REAL(r_std), DIMENSION(npts), INTENT(in) :: gdd0 !! growing degree days (degree C) |
---|
129 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: lm_lastyearmax !! last year's maximum leaf mass for each PFT |
---|
130 | !! (gC m^{-2 }) |
---|
131 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: cn_ind !! crown area of individuals (m^2) |
---|
132 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: lai !! leaf area index OF an individual plant |
---|
133 | !! (m^2 m^{-2}) |
---|
134 | REAL(r_std), DIMENSION(npts), INTENT(in) :: avail_tree !! space availability for trees (unitless) |
---|
135 | REAL(r_std), DIMENSION(npts), INTENT(in) :: avail_grass !! space availability for grasses (unitless) |
---|
136 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: npp_longterm !! longterm NPP, for each PFT (gC m^{-2}) |
---|
137 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_max !! "maximal" coverage fraction of a PFT |
---|
138 | !! (LAI -> infinity) on ground (unitless) |
---|
139 | REAL(r_std), DIMENSION(npts,nvm),INTENT(in) :: mortality !! Fraction of individual dying this time |
---|
140 | !! step (0 to 1, unitless) |
---|
141 | |
---|
142 | !! 0.2 Output variables |
---|
143 | |
---|
144 | !! 0.3 Modified variables |
---|
145 | |
---|
146 | REAL(r_std), DIMENSION(npts,nvm,nleafages), INTENT(inout) :: leaf_age !! leaf age (days) |
---|
147 | REAL(r_std), DIMENSION(npts,nvm,nleafages), INTENT(inout) :: leaf_frac !! fraction of leaves in leaf age class (unitless) |
---|
148 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: ind !! Number of individuals (individuals m^{-2}) |
---|
149 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout):: biomass !! biomass (gC m^{-2 }) |
---|
150 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: age !! mean age (years) |
---|
151 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: everywhere !! is the PFT everywhere in the grid box or very |
---|
152 | !! localized (unitless) |
---|
153 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: co2_to_bm !! biomass up take for establishment i.e. |
---|
154 | !! pseudo-photosynthesis (gC m^{-2} day^{-1}) |
---|
155 | REAL(r_std), DIMENSION(npts,nvm,nnspec), INTENT(inout) :: soil_n_min !! Nitrogen in mineral soil, |
---|
156 | !! (gN/(m**2 of PFT)) |
---|
157 | !! to correct for nitrogen creation associated with establishmnet |
---|
158 | REAL(r_std), DIMENSION(npts,nvm,nionspec), INTENT(inout) :: n_uptake !! Plant uptake of ammonium and nitrate |
---|
159 | !! (gN/m**2/day) |
---|
160 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: nstress_season !! seasonal nitrogen stress |
---|
161 | !! (unitless) |
---|
162 | !! (get's initialised at first establishment) |
---|
163 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: woodmass_ind !! woodmass of the individual, needed to calculate |
---|
164 | !! crownarea in lpj_crownarea (gC m^{-2 }) |
---|
165 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout) :: bm_to_litter !!Biomass transfer to litter |
---|
166 | |
---|
167 | !! 0.4 Local variables |
---|
168 | |
---|
169 | REAL(r_std) :: tau_eatup !! time during which a sapling can be entirely |
---|
170 | !! eaten by herbivores (days) |
---|
171 | REAL(r_std), DIMENSION(npts,nvm) :: fpc_nat !! new fpc, foliage projective cover: fractional |
---|
172 | !! coverage (unitless) |
---|
173 | REAL(r_std), DIMENSION(npts) :: estab_rate_max_climate_tree !! maximum tree establishment rate, |
---|
174 | !! based on climate only (unitless) |
---|
175 | REAL(r_std), DIMENSION(npts) :: estab_rate_max_climate_grass !! maximum grass establishment rate, |
---|
176 | !! based on climate only (unitless) |
---|
177 | REAL(r_std), DIMENSION(npts) :: estab_rate_max_tree !! maximum tree establishment rate, |
---|
178 | !! based on climate and fpc |
---|
179 | !! (unitless) |
---|
180 | REAL(r_std), DIMENSION(npts) :: estab_rate_max_grass !! maximum grass establishment rate, |
---|
181 | !! based on climate and fpc |
---|
182 | !! (unitless) |
---|
183 | REAL(r_std), DIMENSION(npts) :: sumfpc !! total natural fpc (unitless) |
---|
184 | REAL(r_std), DIMENSION(npts) :: fracnat !! total fraction occupied by natural |
---|
185 | !! vegetation (unitless) |
---|
186 | REAL(r_std), DIMENSION(npts) :: sumfpc_wood !! total woody fpc (unitless) |
---|
187 | REAL(r_std), DIMENSION(npts) :: spacefight_grass!! for grasses, measures the total concurrence |
---|
188 | !! for available space (unitless) |
---|
189 | REAL(r_std), DIMENSION(npts,nvm) :: d_ind !! change in number of individuals per time step |
---|
190 | !! (individuals m^{-2} day{-1}) |
---|
191 | REAL(r_std), DIMENSION(npts,nelements) :: bm_new !! biomass increase (gC m^{-2 }) |
---|
192 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements) :: biomass_old !! Save the original biomass passed into the subroutine |
---|
193 | REAL(r_std), DIMENSION(npts,nelements) :: bm_non !! Non-effective establishment: the "virtual" saplings that die instantly |
---|
194 | REAL(r_std), DIMENSION(npts,nelements) :: bm_eff !! Effective (or real) establishment |
---|
195 | REAL(r_std), DIMENSION(npts) :: dia !! stem diameter (m) |
---|
196 | REAL(r_std), DIMENSION(npts) :: b1 !! temporary variable |
---|
197 | REAL(r_std), DIMENSION(npts) :: woodmass !! woodmass of an individual (gC m^{-2}) |
---|
198 | REAL(r_std), DIMENSION(npts) :: leaf_mass_young !! carbon mass in youngest leaf age class |
---|
199 | !! (gC m^{-2}) |
---|
200 | REAL(r_std), DIMENSION(npts) :: factor !! reduction factor for establishment if many |
---|
201 | !! trees or grasses are present (unitless) |
---|
202 | REAL(r_std), DIMENSION(npts,nelements) :: total_bm !! Total carbon (or nitrogen) mass for all pools (gC m^{-2}) |
---|
203 | REAL(r_std), DIMENSION(npts,nelements) :: total_bm_sapl !! Total sappling biomass for all pools |
---|
204 | !! (gC(orN) m^{-2}) |
---|
205 | REAL(r_std), DIMENSION(npts,nelements) :: total_bm_sapl_non !! total non-effective sapling biomass |
---|
206 | |
---|
207 | INTEGER(i_std) :: nfrontx !! from how many sides is the grid box invaded |
---|
208 | !! (unitless?) |
---|
209 | INTEGER(i_std) :: nfronty !! from how many sides is the grid box invaded |
---|
210 | !! (unitless?) |
---|
211 | REAL(r_std), DIMENSION(npts) :: vn !! flow due to new individuals veget_max after |
---|
212 | !! establishment, to get a proper estimate of |
---|
213 | !! carbon and nitrogen |
---|
214 | REAL(r_std), DIMENSION(npts) :: lai_ind !! lai on each PFT surface (m^2 m^{-2}) |
---|
215 | REAL(r_std), DIMENSION(npts) :: veget_max_tree !! Sum of veget_max for the pft's which are trees |
---|
216 | INTEGER(i_std) :: nbtree !! Number of PFT's which are trees |
---|
217 | INTEGER(i_std) :: i,j,k,m !! indices (unitless) |
---|
218 | REAL(r_std), DIMENSION(npts) :: soil_n_constraint !! Soil inorganic N pool (gN m-2) |
---|
219 | REAL(r_std), DIMENSION(npts) :: ntake !! total N associated to establishment (gN) |
---|
220 | REAL(r_std), DIMENSION(npts) :: ntake_nitrate !! nitrate associated to establishment (gN) |
---|
221 | !_ ================================================================================================================================ |
---|
222 | |
---|
223 | IF (printlev>=3) WRITE(numout,*) 'Entering establish' |
---|
224 | |
---|
225 | !! 1. messages and initialization |
---|
226 | |
---|
227 | ! Assumption: time durasion that sapling is completely eaten by hervioures is a half year? |
---|
228 | ! No reference |
---|
229 | tau_eatup = one_year/2. |
---|
230 | |
---|
231 | ! Calculate the sum of the vegetation over the tree pft's and the number of pft's which are trees |
---|
232 | veget_max_tree(:) = 0.0 |
---|
233 | nbtree=0 |
---|
234 | DO j = 1, nvm |
---|
235 | IF (is_tree(j)) THEN |
---|
236 | veget_max_tree(:) = veget_max_tree(:) + veget_max(:,j) |
---|
237 | nbtree = nbtree + 1 |
---|
238 | END IF |
---|
239 | END DO |
---|
240 | ! Set nbtree=1 to avoid zero division later if there are no tree PFT's. |
---|
241 | ! For that case veget_max_tree=0 so there will not be any impact. |
---|
242 | IF (nbtree == 0) nbtree=1 |
---|
243 | |
---|
244 | !! 1.1 First call only |
---|
245 | IF ( firstcall_establish ) THEN |
---|
246 | |
---|
247 | WRITE(numout,*) 'establish:' |
---|
248 | |
---|
249 | WRITE(numout,*) ' > time during which a sapling can be entirely eaten by herbivores (d): ', & |
---|
250 | tau_eatup |
---|
251 | |
---|
252 | firstcall_establish = .FALSE. |
---|
253 | |
---|
254 | ENDIF |
---|
255 | |
---|
256 | !! 2. recalculate fpc |
---|
257 | |
---|
258 | IF (ok_dgvm) THEN |
---|
259 | fracnat(:) = un |
---|
260 | |
---|
261 | !! 2.1 Only natural part of the grid cell |
---|
262 | do j = 2,nvm ! Loop over # PFTs |
---|
263 | |
---|
264 | IF ( .NOT. natural(j) ) THEN |
---|
265 | fracnat(:) = fracnat(:) - veget_max(:,j) |
---|
266 | ENDIF |
---|
267 | ENDDO ! Loop over # PFTs |
---|
268 | |
---|
269 | sumfpc(:) = zero |
---|
270 | |
---|
271 | !! 2.2 Total natural fpc on grid |
---|
272 | ! The overall fractional coverage of a PFT in a grid is calculated here. |
---|
273 | ! FPC is related to mean individual leaf area index by the Lambert-Beer law. |
---|
274 | ! See Eq. (1) in tex file.\n |
---|
275 | DO j = 2,nvm ! Loop over # PFTs |
---|
276 | IF ( natural(j) ) THEN |
---|
277 | WHERE(fracnat(:).GT.min_stomate) |
---|
278 | WHERE (lai(:,j) == val_exp) |
---|
279 | fpc_nat(:,j) = cn_ind(:,j) * ind(:,j) / fracnat(:) |
---|
280 | ELSEWHERE |
---|
281 | fpc_nat(:,j) = cn_ind(:,j) * ind(:,j) / fracnat(:) & |
---|
282 | * ( un - exp( - biomass_to_lai(lm_lastyearmax(:,j),npts,j)* ext_coeff(j) ) ) |
---|
283 | ENDWHERE |
---|
284 | ENDWHERE |
---|
285 | |
---|
286 | WHERE ( PFTpresent(:,j) ) |
---|
287 | sumfpc(:) = sumfpc(:) + fpc_nat(:,j) |
---|
288 | ENDWHERE |
---|
289 | ELSE |
---|
290 | |
---|
291 | fpc_nat(:,j) = zero |
---|
292 | |
---|
293 | ENDIF |
---|
294 | |
---|
295 | ENDDO ! Loop over # PFTs |
---|
296 | |
---|
297 | !! 2.3 Total woody fpc on grid and number of regenerative tree pfts |
---|
298 | ! Total woody FPC increases by adding new FPC. |
---|
299 | ! Under the condition that temperature in last winter is higher than a threshold, |
---|
300 | ! woody plants is exposed in higher competitive environment. |
---|
301 | sumfpc_wood(:) = zero |
---|
302 | |
---|
303 | DO j = 2,nvm ! Loop over # PFTs |
---|
304 | |
---|
305 | IF ( is_tree(j) .AND. natural(j) ) THEN |
---|
306 | |
---|
307 | ! total woody fpc |
---|
308 | WHERE ( PFTpresent(:,j) ) |
---|
309 | sumfpc_wood(:) = sumfpc_wood(:) + fpc_nat(:,j) |
---|
310 | ENDWHERE |
---|
311 | |
---|
312 | ENDIF |
---|
313 | |
---|
314 | ENDDO ! Loop over # PFTs |
---|
315 | |
---|
316 | !! 2.4 Total number of natural grasses on grid\n |
---|
317 | ! Grass increment equals 'everywhere'\n |
---|
318 | spacefight_grass(:) = zero |
---|
319 | |
---|
320 | DO j = 2,nvm ! Loop over # PFTs |
---|
321 | |
---|
322 | IF ( .NOT. is_tree(j) .AND. natural(j) ) THEN |
---|
323 | |
---|
324 | ! Count a PFT fully only if it is present on a grid. |
---|
325 | WHERE ( PFTpresent(:,j) ) |
---|
326 | spacefight_grass(:) = spacefight_grass(:) + everywhere(:,j) |
---|
327 | ENDWHERE |
---|
328 | |
---|
329 | ENDIF |
---|
330 | |
---|
331 | ENDDO ! Loop over # PFTs |
---|
332 | |
---|
333 | !! 2.5 Maximum establishment rate, based on climate only\n |
---|
334 | WHERE ( ( precip_annual(:) .GE. precip_crit ) .AND. ( gdd0(:) .GE. gdd_crit_estab ) ) |
---|
335 | |
---|
336 | estab_rate_max_climate_tree(:) = estab_max_tree ! 'estab_max_*'; see 'stomate_constants.f90' |
---|
337 | estab_rate_max_climate_grass(:) = estab_max_grass |
---|
338 | |
---|
339 | ELSEWHERE |
---|
340 | |
---|
341 | estab_rate_max_climate_tree(:) = zero |
---|
342 | estab_rate_max_climate_grass(:) = zero |
---|
343 | |
---|
344 | ENDWHERE |
---|
345 | |
---|
346 | !! 2.6 Reduce maximum tree establishment rate if many trees are present. |
---|
347 | ! In the original DGVM, this is done using a step function which yields a |
---|
348 | ! reduction by factor 4 if sumfpc_wood(i) .GT. fpc_crit - 0.05. |
---|
349 | ! This can lead to small oscillations (without consequences however). |
---|
350 | ! Here, a steady linear transition is used between fpc_crit-0.075 and |
---|
351 | ! fpc_crit-0.025. |
---|
352 | ! factor(:) = 1. - 15. * ( sumfpc_wood(:) - (fpc_crit-.075)) |
---|
353 | ! factor(:) = MAX( 0.25_r_std, MIN( 1._r_std, factor(:))) |
---|
354 | ! S. Zaehle modified according to Smith et al. 2001 |
---|
355 | ! See Eq. (2) in header |
---|
356 | factor(:)=(un - exp(- establish_scal_fact * (un - sumfpc_wood(:))))*(un - sumfpc_wood(:)) |
---|
357 | estab_rate_max_tree(:) = estab_rate_max_climate_tree(:) * factor(:) |
---|
358 | |
---|
359 | !! 2.7 Modulate grass establishment rate. |
---|
360 | ! If canopy is not closed (fpc < fpc_crit-0.05), normal establishment. |
---|
361 | ! If canopy is closed, establishment is reduced by a factor 4. |
---|
362 | ! Factor is linear between these two bounds. |
---|
363 | ! This is different from the original DGVM where a step function is |
---|
364 | ! used at fpc_crit-0.05 (This can lead to small oscillations, |
---|
365 | ! without consequences however). |
---|
366 | ! factor(:) = 1. - 15. * ( sumfpc(:) - (fpc_crit-.05)) |
---|
367 | ! factor(:) = MAX( 0.25_r_std, MIN( 1._r_std, factor(:))) |
---|
368 | ! estab_rate_max_grass(:) = estab_rate_max_climate_grass(:) * factor(:) |
---|
369 | ! S. Zaehle modified to true LPJ formulation, grasses are only allowed in the |
---|
370 | ! fpc fraction not occupied by trees..., 080806 |
---|
371 | ! estab_rate_max_grass(:)=MAX(0.98-sumfpc(:),zero) |
---|
372 | ! See Eq. (3) in header |
---|
373 | estab_rate_max_grass(:) = MAX(MIN(estab_rate_max_climate_grass(:), max_tree_coverage - sumfpc(:)),zero) |
---|
374 | |
---|
375 | !! 2.8 Longterm grass NPP for competition between C4 and C3 grasses |
---|
376 | ! to avoid equal veget_max, the idea is that more reestablishment |
---|
377 | ! is possible for the more productive PFT |
---|
378 | factor(:) = min_stomate |
---|
379 | |
---|
380 | DO j = 2,nvm ! Loop over # PFTs |
---|
381 | IF ( natural(j) .AND. .NOT.is_tree(j)) & |
---|
382 | factor(:) = factor(:) + npp_longterm(:,j) * & |
---|
383 | biomass_to_lai(lm_lastyearmax(:,j),npts,j) |
---|
384 | ENDDO ! Loop over # PFTs |
---|
385 | |
---|
386 | !! 2.9 Establish natural PFTs |
---|
387 | d_ind(:,:) = zero |
---|
388 | |
---|
389 | IF ( NbNeighb /= 8 ) THEN |
---|
390 | CALL ipslerr(3, "establish", "This routine needs to be adapted to non rectengular grids", "Talk to Jan Polcher", " ") |
---|
391 | ENDIF |
---|
392 | |
---|
393 | DO j = 2,nvm ! Loop over # PFTs |
---|
394 | |
---|
395 | IF ( natural(j) ) THEN ! only for natural PFTs |
---|
396 | |
---|
397 | !! 2.9.1 PFT expansion across the grid box. Not to be confused with areal coverage. |
---|
398 | IF ( treat_expansion ) THEN |
---|
399 | |
---|
400 | ! only treat plants that are regenerative and present and still can expand |
---|
401 | DO i = 1, npts ! Loop over # pixels - domain size |
---|
402 | |
---|
403 | IF ( PFTpresent(i,j) .AND. & |
---|
404 | ( everywhere(i,j) .LT. un ) .AND. & |
---|
405 | ( regenerate(i,j) .GT. regenerate_crit ) ) THEN |
---|
406 | |
---|
407 | ! from how many sides is the grid box invaded (separate x and y directions |
---|
408 | ! because resolution may be strongly anisotropic) |
---|
409 | ! For the moment we only look into 4 direction but that can be expanded (JP) |
---|
410 | nfrontx = 0 |
---|
411 | IF ( neighbours(i,3) .GT. 0 ) THEN |
---|
412 | IF ( everywhere(neighbours(i,3),j) .GT. 1.-min_stomate ) nfrontx = nfrontx+1 |
---|
413 | ENDIF |
---|
414 | IF ( neighbours(i,7) .GT. 0 ) THEN |
---|
415 | IF ( everywhere(neighbours(i,7),j) .GT. 1.-min_stomate ) nfrontx = nfrontx+1 |
---|
416 | ENDIF |
---|
417 | |
---|
418 | nfronty = 0 |
---|
419 | IF ( neighbours(i,1) .GT. 0 ) THEN |
---|
420 | IF ( everywhere(neighbours(i,1),j) .GT. 1.-min_stomate ) nfronty = nfronty+1 |
---|
421 | ENDIF |
---|
422 | IF ( neighbours(i,5) .GT. 0 ) THEN |
---|
423 | IF ( everywhere(neighbours(i,5),j) .GT. 1.-min_stomate ) nfronty = nfronty+1 |
---|
424 | ENDIF |
---|
425 | |
---|
426 | everywhere(i,j) = & |
---|
427 | everywhere(i,j) + migrate(j) * dt/one_year * & |
---|
428 | ( nfrontx / resolution(i,1) + nfronty / resolution(i,2) ) |
---|
429 | |
---|
430 | IF ( .NOT. need_adjacent(i,j) ) THEN |
---|
431 | |
---|
432 | ! in that case, we also assume that the PFT expands from places within |
---|
433 | ! the grid box (e.g., oasis). |
---|
434 | ! What is this equation? No reference. |
---|
435 | everywhere(i,j) = & |
---|
436 | everywhere(i,j) + migrate(j) * dt/one_year * & |
---|
437 | 2. * SQRT( pi*everywhere(i,j)/(resolution(i,1)*resolution(i,2)) ) |
---|
438 | |
---|
439 | ENDIF |
---|
440 | |
---|
441 | everywhere(i,j) = MIN( everywhere(i,j), un ) |
---|
442 | |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ENDDO ! Loop over # pixels - domain size |
---|
446 | |
---|
447 | ENDIF ! treat expansion? |
---|
448 | |
---|
449 | !! 2.9.2 Establishment rate |
---|
450 | ! - Is lower if the PFT is only present in a small part of the grid box |
---|
451 | ! (after its introduction), therefore multiplied by "everywhere". |
---|
452 | ! - Is divided by the number of PFTs that compete ("spacefight"). |
---|
453 | ! - Is modulated by space availability (avail_tree, avail_grass). |
---|
454 | |
---|
455 | !! 2.9.2.1 present and regenerative trees |
---|
456 | IF ( is_tree(j) ) THEN |
---|
457 | |
---|
458 | WHERE ( PFTpresent(:,j) .AND. ( regenerate(:,j) .GT. regenerate_crit ) ) |
---|
459 | d_ind(:,j) = estab_rate_max_tree(:)*everywhere(:,j) * & |
---|
460 | avail_tree(:) * dt/one_year |
---|
461 | ENDWHERE |
---|
462 | |
---|
463 | !! 2.9.2.2 present and regenerative grasses |
---|
464 | ELSE |
---|
465 | WHERE ( PFTpresent(:,j) .AND. ( regenerate(:,j) .GT. regenerate_crit ) & |
---|
466 | .AND.factor(:).GT.min_stomate .AND. spacefight_grass(:).GT. min_stomate) |
---|
467 | |
---|
468 | d_ind(:,j) = estab_rate_max_grass(:)*everywhere(:,j)/spacefight_grass(:) * & |
---|
469 | MAX(min_stomate,npp_longterm(:,j)*biomass_to_lai(lm_lastyearmax(:,j),npts,j)/factor(:)) * & |
---|
470 | fracnat(:) * dt/one_year |
---|
471 | ENDWHERE |
---|
472 | |
---|
473 | ENDIF ! tree/grass |
---|
474 | |
---|
475 | ENDIF ! if natural |
---|
476 | ENDDO ! Loop over # PFTs |
---|
477 | |
---|
478 | !! 3. Lpj establishment in static case |
---|
479 | |
---|
480 | ! Lpj establishment in static case, S. Zaehle 080806, account for real LPJ dynamics in |
---|
481 | ! prescribed vegetation, i.e. population dynamics within a given area of the grid cell. |
---|
482 | ELSE |
---|
483 | |
---|
484 | d_ind(:,:) = zero |
---|
485 | |
---|
486 | DO j = 2,nvm ! Loop over # PFTs |
---|
487 | WHERE(ind(:,j)*cn_ind(:,j).GT.min_stomate) |
---|
488 | lai_ind(:) = biomass_to_lai(lm_lastyearmax(:,j),npts,j)/(ind(:,j)*cn_ind(:,j)) |
---|
489 | ELSEWHERE |
---|
490 | lai_ind(:) = zero |
---|
491 | ENDWHERE |
---|
492 | |
---|
493 | !! 3.1 For natural woody PFTs |
---|
494 | IF ( natural(j) .AND. is_tree(j)) THEN |
---|
495 | |
---|
496 | ! See Eq. (4) in tex file. |
---|
497 | fpc_nat(:,j) = MIN(un, cn_ind(:,j) * ind(:,j) * & |
---|
498 | MAX( ( un - exp( - ext_coeff(j) * lai_ind(:) ) ), min_cover ) ) |
---|
499 | |
---|
500 | |
---|
501 | WHERE (veget_max(:,j).GT.min_stomate.AND.ind(:,j).LE.2.) |
---|
502 | |
---|
503 | !! 3.1.1 Only establish into growing stands |
---|
504 | ! Only establish into growing stands, ind can become very |
---|
505 | ! large in the static mode because LAI is very low in poor |
---|
506 | ! growing conditions, favouring continuous establishment. |
---|
507 | ! To avoid this a maximum IND is set. BLARPP: This should be |
---|
508 | ! replaced by a better stand density criteria. |
---|
509 | factor(:)=(un - exp(-establish_scal_fact * (un - fpc_nat(:,j))))*(un - fpc_nat(:,j)) |
---|
510 | |
---|
511 | estab_rate_max_tree(:) = estab_max_tree * factor(:) * MAX(0.11 , nstress_season(:,j) ) |
---|
512 | |
---|
513 | !! 3.1.2 do establishment for natural PFTs\n |
---|
514 | d_ind(:,j) = MAX( zero, estab_rate_max_tree(:) * dt/one_year) |
---|
515 | |
---|
516 | ENDWHERE |
---|
517 | |
---|
518 | !S. Zaehle: quickfix: to simulate even aged stand, uncomment the following lines... |
---|
519 | !where (ind(:,j) .LE. min_stomate) |
---|
520 | !d_ind(:,j) = 0.1 !MAX( 0.0, estab_rate_max_tree(:) * dt/one_year) |
---|
521 | WHERE (veget_max(:,j).GT.min_stomate .AND. ind(:,j).EQ.zero) |
---|
522 | d_ind(:,j) = ind_0_estab |
---|
523 | ENDWHERE |
---|
524 | |
---|
525 | !! 3.2 For natural grass PFTs |
---|
526 | ELSEIF ( natural(j) .AND. .NOT.is_tree(j)) THEN |
---|
527 | |
---|
528 | WHERE (veget_max(:,j).GT.min_stomate) |
---|
529 | |
---|
530 | fpc_nat(:,j) = cn_ind(:,j) * ind(:,j) * & |
---|
531 | MAX( ( un - exp( - ext_coeff(j) * lai_ind(:) ) ), min_cover ) |
---|
532 | |
---|
533 | d_ind(:,j) = MAX(zero , (un - fpc_nat(:,j)) * dt/one_year ) |
---|
534 | |
---|
535 | ENDWHERE |
---|
536 | |
---|
537 | WHERE (veget_max(:,j).GT.min_stomate .AND. ind(:,j).EQ. zero) |
---|
538 | d_ind(:,j) = ind_0_estab |
---|
539 | ENDWHERE |
---|
540 | |
---|
541 | ENDIF |
---|
542 | |
---|
543 | ENDDO ! Loop over # PFTs |
---|
544 | |
---|
545 | ENDIF ! DGVM OR NOT |
---|
546 | |
---|
547 | !! 4. Biomass calculation |
---|
548 | |
---|
549 | DO j = 2,nvm ! Loop over # PFTs |
---|
550 | |
---|
551 | IF ( natural(j) ) THEN ! only for natural PFTs |
---|
552 | |
---|
553 | !! 4.1 Herbivores reduce establishment rate |
---|
554 | ! We suppose that saplings are vulnerable during a given time after establishment. |
---|
555 | ! This is taken into account by preventively reducing the establishment rate. |
---|
556 | IF ( ok_herbivores ) THEN |
---|
557 | |
---|
558 | d_ind(:,j) = d_ind(:,j) * EXP( - tau_eatup/herbivores(:,j) ) |
---|
559 | |
---|
560 | ENDIF |
---|
561 | |
---|
562 | !! 4.2 Total biomass. |
---|
563 | ! Add biomass only if d_ind, over one year, is of the order of ind. |
---|
564 | ! save old leaf mass to calculate leaf age |
---|
565 | leaf_mass_young(:) = leaf_frac(:,j,1) * biomass(:,j,ileaf,icarbon) |
---|
566 | |
---|
567 | ! total biomass of existing PFT to limit biomass added from establishment |
---|
568 | total_bm(:,:) = zero |
---|
569 | |
---|
570 | DO k = 1, nparts |
---|
571 | total_bm(:,:) = total_bm(:,:) + biomass(:,j,k,:) |
---|
572 | ENDDO |
---|
573 | ! soil nitrogen available to feed plant establishment. |
---|
574 | ! This needs to be taken from soil N. Reason: plants must not produce nitrogen by establishment |
---|
575 | ! (otherwise this creates N) |
---|
576 | soil_n_constraint(:)=soil_n_min(:,j,iammonium)+soil_n_min(:,j,initrate) |
---|
577 | |
---|
578 | |
---|
579 | IF(ok_dgvm) THEN |
---|
580 | vn(:) = veget_max(:,j) |
---|
581 | ELSE |
---|
582 | vn(:) = un |
---|
583 | ENDIF |
---|
584 | |
---|
585 | !! 4.3 Woodmass calculation |
---|
586 | |
---|
587 | !! 4.3.1 with DGVM |
---|
588 | IF(ok_dgvm) THEN |
---|
589 | |
---|
590 | ! S. Zaehle calculate new woodmass_ind and veget_max after establishment (needed for correct scaling!) |
---|
591 | ! essential correction for MERGE! |
---|
592 | IF(is_tree(j))THEN |
---|
593 | DO i=1,npts ! Loop over # pixels - domain size |
---|
594 | IF((d_ind(i,j)+ind(i,j)).GT.min_stomate) THEN |
---|
595 | |
---|
596 | IF((total_bm(i,icarbon).LE.min_stomate) .OR. (veget_max(i,j) .LE. min_stomate)) THEN |
---|
597 | |
---|
598 | ! new wood mass of PFT |
---|
599 | woodmass_ind(i,j) = & |
---|
600 | (((biomass(i,j,isapabove,icarbon) + biomass(i,j,isapbelow,icarbon) & |
---|
601 | + biomass(i,j,iheartabove,icarbon) + biomass(i,j,iheartbelow,icarbon))*veget_max(i,j)) & |
---|
602 | + (bm_sapl(j,isapabove,icarbon) + bm_sapl(j,isapbelow,icarbon) & |
---|
603 | + bm_sapl(j,iheartabove,icarbon) + bm_sapl(j,iheartbelow,icarbon))*d_ind(i,j))/(ind(i,j) + d_ind(i,j)) |
---|
604 | |
---|
605 | ELSE |
---|
606 | |
---|
607 | ! new biomass is added to the labile pool, hence there is no change |
---|
608 | ! in CA associated with establishment |
---|
609 | woodmass_ind(i,j) = & |
---|
610 | & (biomass(i,j,isapabove,icarbon) + biomass(i,j,isapbelow,icarbon) & |
---|
611 | & +biomass(i,j,iheartabove,icarbon) + biomass(i,j,iheartbelow,icarbon))*veget_max(i,j) & |
---|
612 | & /(ind(i,j) + d_ind(i,j)) |
---|
613 | |
---|
614 | ENDIF |
---|
615 | |
---|
616 | ! new diameter of PFT |
---|
617 | dia(i) = (woodmass_ind(i,j)/(pipe_density(j)*pi/4.*pipe_tune2(j))) & |
---|
618 | & **(1./(2.+pipe_tune3(j))) |
---|
619 | vn(i) = (ind(i,j) + d_ind(i,j))*pipe_tune1(j)*MIN(dia(i),maxdia(j))**pipe_tune_exp_coeff(j) |
---|
620 | |
---|
621 | ENDIF |
---|
622 | ENDDO ! Loop over # pixels - domain size |
---|
623 | ELSE ! for grasses, cnd=1, so the above calculation cancels |
---|
624 | vn(:) = ind(:,j) + d_ind(:,j) |
---|
625 | ENDIF |
---|
626 | |
---|
627 | !! 4.3.2 without DGVM (static)\n |
---|
628 | ELSE |
---|
629 | DO i=1,npts ! Loop over # pixels - domain size |
---|
630 | IF(is_tree(j).AND.(d_ind(i,j)+ind(i,j)).GT.min_stomate) THEN |
---|
631 | IF(total_bm(i,icarbon).LE.min_stomate) THEN |
---|
632 | |
---|
633 | ! new wood mass of PFT |
---|
634 | woodmass_ind(i,j) = & |
---|
635 | & (((biomass(i,j,isapabove,icarbon) + biomass(i,j,isapbelow,icarbon) & |
---|
636 | & + biomass(i,j,iheartabove,icarbon) + biomass(i,j,iheartbelow,icarbon))) & |
---|
637 | & + (bm_sapl(j,isapabove,icarbon) + bm_sapl(j,isapbelow,icarbon) & |
---|
638 | & + bm_sapl(j,iheartabove,icarbon) + bm_sapl(j,iheartbelow,icarbon))*d_ind(i,j))/(ind(i,j)+d_ind(i,j)) |
---|
639 | |
---|
640 | ELSE |
---|
641 | |
---|
642 | ! new biomass is added to the labile pool, hence there is no change |
---|
643 | ! in CA associated with establishment |
---|
644 | woodmass_ind(i,j) = & |
---|
645 | & (biomass(i,j,isapabove,icarbon) + biomass(i,j,isapbelow,icarbon) & |
---|
646 | & + biomass(i,j,iheartabove,icarbon) + biomass(i,j,iheartbelow,icarbon)) & |
---|
647 | & /(ind(i,j) + d_ind(i,j)) |
---|
648 | |
---|
649 | ENDIF |
---|
650 | ENDIF |
---|
651 | ENDDO ! Loop over # pixels - domain size |
---|
652 | |
---|
653 | vn(:) = un ! cannot change in static!, and veget_max implicit in d_ind |
---|
654 | |
---|
655 | ENDIF |
---|
656 | |
---|
657 | !! 4.4 total biomass of PFT added by establishment defined over veget_max ... |
---|
658 | |
---|
659 | total_bm_sapl(:,:) = zero |
---|
660 | total_bm_sapl_non(:,:) = zero |
---|
661 | biomass_old(:,j,:,:)=biomass(:,j,:,:) |
---|
662 | DO k = 1, nparts ! Loop over # litter tissues (nparts=8); see 'stomate_constants.f90' |
---|
663 | WHERE(d_ind(:,j).GT.min_stomate.AND.total_bm(:,icarbon).GT.min_stomate.AND.vn(:).GT.min_stomate) |
---|
664 | |
---|
665 | total_bm_sapl(:,icarbon) = total_bm_sapl(:,icarbon) + bm_sapl(j,k,icarbon) * d_ind(:,j) / vn(:) |
---|
666 | total_bm_sapl(:,initrogen) = total_bm_sapl(:,initrogen) + bm_sapl(j,k,initrogen) * d_ind(:,j) / vn(:) |
---|
667 | |
---|
668 | ! non-effective establishment |
---|
669 | total_bm_sapl_non(:,icarbon) = total_bm_sapl_non(:,icarbon) + & |
---|
670 | bm_sapl(j,k,icarbon) * (ind(:,j)+d_ind(:,j))*mortality(:,j) / vn(:) |
---|
671 | |
---|
672 | total_bm_sapl_non(:,initrogen) = total_bm_sapl_non(:,initrogen) + & |
---|
673 | bm_sapl(j,k,initrogen) * (ind(:,j)+d_ind(:,j))*mortality(:,j) / vn(:) |
---|
674 | |
---|
675 | |
---|
676 | ENDWHERE |
---|
677 | ENDDO ! Loop over # litter tissues |
---|
678 | |
---|
679 | |
---|
680 | total_bm_sapl(:,initrogen)=MIN(total_bm_sapl(:,initrogen),soil_n_constraint(:)) |
---|
681 | ntake(:)=zero |
---|
682 | !Dan Zhu modification: there is a problem here, if DGVM is activated, co2_to_bm will never reach |
---|
683 | !0 due to establishment, where d_ind is still large at equilibrium (=ind*mortality). So we |
---|
684 | !need to subtract it from litter (not biomass, because the |
---|
685 | !corresponding biomass has been lost in lpj_gap). |
---|
686 | |
---|
687 | !! 4.5 Update biomass at each component |
---|
688 | DO k = 1, nparts ! Loop over # litter tissues |
---|
689 | |
---|
690 | bm_new(:,:) = zero |
---|
691 | bm_non(:,:) = zero |
---|
692 | bm_eff(:,:) = zero |
---|
693 | |
---|
694 | ! first ever establishment, C flows |
---|
695 | WHERE( d_ind(:,j).GT.min_stomate .AND. & |
---|
696 | total_bm(:,icarbon).LE.min_stomate .AND. & |
---|
697 | vn(:).GT.min_stomate) |
---|
698 | |
---|
699 | bm_new(:,icarbon) = d_ind(:,j) * bm_sapl(j,k,icarbon) / vn(:) |
---|
700 | biomass(:,j,k,icarbon) = biomass(:,j,k,icarbon) + bm_new(:,icarbon) |
---|
701 | |
---|
702 | bm_new(:,initrogen) = d_ind(:,j) * (bm_sapl(j,k,initrogen)) / vn(:) |
---|
703 | biomass(:,j,k,initrogen) = biomass(:,j,k,initrogen) + bm_new(:,initrogen) |
---|
704 | |
---|
705 | ! bm_to_litter minus the 'non-effective' establishment (mortality), but cannot be less than 0 |
---|
706 | WHERE((veget_max_tree(:) .GT. 0.1) .AND. (veget_max(:,j) .LT. veget_max_tree(:)/nbtree) ) |
---|
707 | |
---|
708 | bm_non(:,icarbon) = MIN( biomass(:,j,k,icarbon)+bm_to_litter(:,j,k,icarbon), & |
---|
709 | (ind(:,j)+d_ind(:,j))*mortality(:,j) * bm_sapl(j,k,icarbon)/vn(:) ) |
---|
710 | bm_eff(:,icarbon) = MIN( npp_longterm(:,j)/one_year, bm_new(:,icarbon)-bm_non(:,icarbon) ) |
---|
711 | bm_non(:,icarbon) = MIN( biomass(:,j,k,icarbon)+bm_to_litter(:,j,k,icarbon), & |
---|
712 | bm_new(:,icarbon)-bm_eff(:,icarbon) ) |
---|
713 | |
---|
714 | bm_non(:,initrogen) = MIN( biomass(:,j,k,initrogen)+bm_to_litter(:,j,k,initrogen), & |
---|
715 | (ind(:,j)+d_ind(:,j))*mortality(:,j) * bm_sapl(j,k,initrogen)/vn(:) ) |
---|
716 | bm_eff(:,initrogen) = bm_new(:,initrogen)-bm_non(:,initrogen) |
---|
717 | bm_non(:,initrogen) = MIN( biomass(:,j,k,initrogen)+bm_to_litter(:,j,k,initrogen), & |
---|
718 | bm_new(:,initrogen)-bm_eff(:,initrogen) ) |
---|
719 | ! I think there was an error |
---|
720 | ! co2_to_bm(:,j)=co2_to_bm(:,j) + bm_new(:) - bm_non(:) |
---|
721 | co2_to_bm(:,j)=co2_to_bm(:,j) + bm_new(:,icarbon)/dt - bm_non(:,icarbon)/dt |
---|
722 | ntake(:) = ntake(:) + bm_new(:,initrogen) - bm_non(:,initrogen) |
---|
723 | |
---|
724 | WHERE( bm_to_litter(:,j,k,icarbon) .LT. bm_non(:,icarbon) ) |
---|
725 | biomass(:,j,k,icarbon) = biomass(:,j,k,icarbon) - & |
---|
726 | ( bm_non(:,icarbon) - bm_to_litter(:,j,k,icarbon) ) |
---|
727 | ENDWHERE |
---|
728 | bm_to_litter(:,j,k,icarbon) = bm_to_litter(:,j,k,icarbon) - & |
---|
729 | MIN(bm_to_litter(:,j,k,icarbon), bm_non(:,icarbon) ) |
---|
730 | |
---|
731 | WHERE( bm_to_litter(:,j,k,initrogen) .LT. bm_non(:,initrogen) ) |
---|
732 | biomass(:,j,k,initrogen) = biomass(:,j,k,initrogen) - & |
---|
733 | ( bm_non(:,initrogen) - bm_to_litter(:,j,k,initrogen) ) |
---|
734 | ENDWHERE |
---|
735 | bm_to_litter(:,j,k,initrogen) = bm_to_litter(:,j,k,initrogen) - & |
---|
736 | MIN(bm_to_litter(:,j,k,initrogen), bm_non(:,initrogen) ) |
---|
737 | |
---|
738 | ELSEWHERE |
---|
739 | |
---|
740 | bm_non(:,icarbon) = MIN( bm_to_litter(:,j,k,icarbon), & |
---|
741 | (ind(:,j)+d_ind(:,j))*mortality(:,j) * bm_sapl(j,k,icarbon)/vn(:) ) |
---|
742 | co2_to_bm(:,j)=co2_to_bm(:,j) + bm_new(:,icarbon)/dt - bm_non(:,icarbon)/dt |
---|
743 | bm_to_litter(:,j,k,icarbon)=bm_to_litter(:,j,k,icarbon)- bm_non(:,icarbon) |
---|
744 | |
---|
745 | bm_non(:,initrogen) = MIN( bm_to_litter(:,j,k,initrogen), & |
---|
746 | (ind(:,j)+d_ind(:,j))*mortality(:,j) * bm_sapl(j,k,initrogen)/vn(:) ) |
---|
747 | ntake(:)= ntake(:) + bm_new(:,initrogen) - bm_non(:,initrogen) |
---|
748 | bm_to_litter(:,j,k,initrogen)=bm_to_litter(:,j,k,initrogen)- bm_non(:,initrogen) |
---|
749 | ENDWHERE |
---|
750 | |
---|
751 | ENDWHERE |
---|
752 | |
---|
753 | ! establishment into existing population, C flows |
---|
754 | WHERE(d_ind(:,j).GT.min_stomate.AND.total_bm(:,icarbon).GT.min_stomate) |
---|
755 | |
---|
756 | bm_new(:,icarbon) = total_bm_sapl(:,icarbon) * biomass_old(:,j,k,icarbon) / total_bm(:,icarbon) |
---|
757 | biomass(:,j,k,icarbon) = biomass(:,j,k,icarbon) + bm_new(:,icarbon) |
---|
758 | |
---|
759 | bm_new(:,initrogen) = total_bm_sapl(:,initrogen) * biomass_old(:,j,k,initrogen) / total_bm(:,initrogen) |
---|
760 | biomass(:,j,k,initrogen) = biomass(:,j,k,initrogen) + bm_new(:,initrogen) |
---|
761 | |
---|
762 | WHERE((veget_max_tree(:) .GT. 0.1) .AND. (veget_max(:,j) .LT. veget_max_tree(:)/nbtree) ) |
---|
763 | |
---|
764 | bm_non(:,icarbon) = MIN( biomass(:,j,k,icarbon)+bm_to_litter(:,j,k,icarbon), & |
---|
765 | total_bm_sapl_non(:,icarbon) *biomass_old(:,j,k,icarbon)/total_bm(:,icarbon) ) |
---|
766 | bm_eff(:,icarbon) = MIN( npp_longterm(:,j)/one_year, bm_new(:,icarbon)-bm_non(:,icarbon) ) |
---|
767 | bm_non(:,icarbon) = MAX( zero, MIN( biomass(:,j,k,icarbon)+bm_to_litter(:,j,k,icarbon)-min_stomate, & |
---|
768 | bm_new(:,icarbon)-bm_eff(:,icarbon) ) ) |
---|
769 | |
---|
770 | bm_non(:,initrogen) = MIN( biomass(:,j,k,initrogen)+bm_to_litter(:,j,k,initrogen), & |
---|
771 | total_bm_sapl_non(:,initrogen) *biomass_old(:,j,k,initrogen)/total_bm(:,initrogen) ) |
---|
772 | bm_eff(:,initrogen) = bm_new(:,initrogen)-bm_non(:,initrogen) |
---|
773 | bm_non(:,initrogen) = MAX( zero, MIN( biomass(:,j,k,initrogen)+bm_to_litter(:,j,k,initrogen)-min_stomate, & |
---|
774 | bm_new(:,initrogen)-bm_eff(:,initrogen) ) ) |
---|
775 | |
---|
776 | co2_to_bm(:,j)=co2_to_bm(:,j) + bm_new(:,icarbon) - bm_non(:,icarbon) |
---|
777 | ntake(:) = ntake(:) + bm_new(:,initrogen) - bm_non(:,initrogen) |
---|
778 | |
---|
779 | WHERE( bm_to_litter(:,j,k,icarbon) .LT. bm_non(:,icarbon) ) |
---|
780 | biomass(:,j,k,icarbon) = biomass(:,j,k,icarbon) - ( bm_non(:,icarbon) - bm_to_litter(:,j,k,icarbon) ) |
---|
781 | ENDWHERE |
---|
782 | bm_to_litter(:,j,k,icarbon) = bm_to_litter(:,j,k,icarbon) - MIN(bm_to_litter(:,j,k,icarbon), bm_non(:,icarbon) ) |
---|
783 | |
---|
784 | WHERE( bm_to_litter(:,j,k,initrogen) .LT. bm_non(:,initrogen) ) |
---|
785 | biomass(:,j,k,initrogen) = biomass(:,j,k,initrogen) - ( bm_non(:,initrogen) - bm_to_litter(:,j,k,initrogen) ) |
---|
786 | ENDWHERE |
---|
787 | bm_to_litter(:,j,k,initrogen) = bm_to_litter(:,j,k,initrogen) - & |
---|
788 | MIN(bm_to_litter(:,j,k,initrogen), bm_non(:,initrogen) ) |
---|
789 | |
---|
790 | ELSEWHERE |
---|
791 | |
---|
792 | bm_non(:,icarbon) = MIN( bm_to_litter(:,j,k,icarbon), & |
---|
793 | total_bm_sapl_non(:,icarbon) *biomass_old(:,j,k,icarbon)/total_bm(:,icarbon) ) |
---|
794 | co2_to_bm(:,j) = co2_to_bm(:,j) + bm_new(:,icarbon)/dt - bm_non(:,icarbon)/dt |
---|
795 | bm_to_litter(:,j,k,icarbon)=bm_to_litter(:,j,k,icarbon)- bm_non(:,icarbon) |
---|
796 | |
---|
797 | bm_non(:,initrogen) = MIN( bm_to_litter(:,j,k,initrogen), & |
---|
798 | total_bm_sapl_non(:,initrogen) *biomass_old(:,j,k,initrogen)/total_bm(:,initrogen) ) |
---|
799 | ntake(:) = ntake(:) + bm_new(:,initrogen) - bm_non(:,initrogen) |
---|
800 | bm_to_litter(:,j,k,initrogen)=bm_to_litter(:,j,k,initrogen)- bm_non(:,initrogen) |
---|
801 | ENDWHERE |
---|
802 | |
---|
803 | ENDWHERE |
---|
804 | |
---|
805 | ENDDO ! Loop over # litter tissues |
---|
806 | |
---|
807 | ntake_nitrate(:)=MIN(ntake(:),MAX(soil_n_min(:,j,iammonium)-min_stomate,0.0)) |
---|
808 | soil_n_min(:,j,iammonium)=soil_n_min(:,j,iammonium)-ntake_nitrate(:) |
---|
809 | n_uptake(:,j,iammonium)=n_uptake(:,j,iammonium) + ntake_nitrate(:)/dt |
---|
810 | |
---|
811 | ntake(:)=MIN(ntake(:)-ntake_nitrate(:),MAX(soil_n_min(:,j,initrate)-min_stomate,0.0)) |
---|
812 | soil_n_min(:,j,initrate)=soil_n_min(:,j,initrate)-ntake(:) |
---|
813 | n_uptake(:,j,initrate)=n_uptake(:,j,initrate) + ntake(:)/dt |
---|
814 | |
---|
815 | IF (ANY( bm_to_litter(:,j,:,icarbon) .LT. 0.0 ) .OR. ANY( biomass(:,j,:,icarbon) .LT. 0.0 ) ) THEN |
---|
816 | CALL ipslerr_p(3,'establish','something wrong in establish/gap.','','') |
---|
817 | ENDIF |
---|
818 | |
---|
819 | !! 4.6 Decrease leaf age in youngest class if new leaf biomass is higher than old one. |
---|
820 | WHERE ( d_ind(:,j) * bm_sapl(j,ileaf,icarbon) .GT. min_stomate ) |
---|
821 | |
---|
822 | ! reset leaf ages. Should do a real calculation like in the npp routine, |
---|
823 | ! but this case is rare and not worth messing around. |
---|
824 | ! S. Zaehle 080806, added real calculation now, because otherwise leaf_age/leaf_frac |
---|
825 | ! are not initialised for the calculation of vmax, and hence no growth at all. |
---|
826 | ! logic follows that of stomate_npp.f90, just that it's been adjusted for the code here |
---|
827 | leaf_age(:,j,1) = leaf_age(:,j,1) * leaf_mass_young(:) / & |
---|
828 | ( leaf_mass_young(:) + d_ind(:,j) * bm_sapl(j,ileaf,icarbon) ) |
---|
829 | |
---|
830 | ENDWHERE |
---|
831 | |
---|
832 | leaf_mass_young(:) = leaf_mass_young(:) + d_ind(:,j) * bm_sapl(j,ileaf,icarbon) |
---|
833 | |
---|
834 | !! 4.7 Youngest class: new mass in youngest class divided by total new mass |
---|
835 | WHERE ( biomass(:,j,ileaf,icarbon) .GT. min_stomate ) |
---|
836 | ! new age class fractions (fraction in youngest class increases) |
---|
837 | leaf_frac(:,j,1) = leaf_mass_young(:) / biomass(:,j,ileaf,icarbon) |
---|
838 | |
---|
839 | ENDWHERE |
---|
840 | |
---|
841 | !! 4.8 Other classes: old mass in leaf age class divided by new mass |
---|
842 | DO m = 2, nleafages |
---|
843 | |
---|
844 | WHERE ( biomass(:,j,ileaf,icarbon) .GT. min_stomate ) |
---|
845 | |
---|
846 | leaf_frac(:,j,m) = leaf_frac(:,j,m) * & |
---|
847 | ( biomass(:,j,ileaf,icarbon) + d_ind(:,j) * bm_sapl(j,ileaf,icarbon) ) / biomass(:,j,ileaf,icarbon) |
---|
848 | |
---|
849 | ENDWHERE |
---|
850 | |
---|
851 | ENDDO |
---|
852 | |
---|
853 | !! 4.9 Update age and number of individuals |
---|
854 | WHERE ( d_ind(:,j) .GT. min_stomate ) |
---|
855 | |
---|
856 | age(:,j) = age(:,j) * ind(:,j) / ( ind(:,j) + d_ind(:,j) ) |
---|
857 | |
---|
858 | ind(:,j) = ind(:,j) + d_ind(:,j) |
---|
859 | |
---|
860 | ENDWHERE |
---|
861 | |
---|
862 | !! 4.10 Convert excess sapwood to heartwood |
---|
863 | !! No longer done : supressed by S. Zaehle given that the LPJ logic of carbon allocation was |
---|
864 | !! contradictory to SLAVE allocation. See CVS tag 1_5 for initial formulation. |
---|
865 | |
---|
866 | |
---|
867 | ENDIF ! natural |
---|
868 | |
---|
869 | ENDDO ! Loop over # PFTs |
---|
870 | |
---|
871 | !! 5. history |
---|
872 | |
---|
873 | d_ind = d_ind / dt |
---|
874 | |
---|
875 | CALL xios_orchidee_send_field("IND_ESTAB",d_ind) |
---|
876 | CALL xios_orchidee_send_field("ESTABTREE",estab_rate_max_tree) |
---|
877 | CALL xios_orchidee_send_field("ESTABGRASS",estab_rate_max_grass) |
---|
878 | |
---|
879 | CALL histwrite_p (hist_id_stomate, 'IND_ESTAB', itime, d_ind, npts*nvm, horipft_index) |
---|
880 | CALL histwrite_p (hist_id_stomate, 'ESTABTREE', itime, estab_rate_max_tree, npts, hori_index) |
---|
881 | CALL histwrite_p (hist_id_stomate, 'ESTABGRASS', itime, estab_rate_max_grass, npts, hori_index) |
---|
882 | |
---|
883 | IF (printlev>=4) WRITE(numout,*) 'Leaving establish' |
---|
884 | |
---|
885 | END SUBROUTINE establish |
---|
886 | |
---|
887 | END MODULE lpj_establish |
---|