1 | |
---|
2 | MODULE readdim2 |
---|
3 | !--------------------------------------------------------------------- |
---|
4 | !< $HeadURL$ |
---|
5 | !< $Date$ |
---|
6 | !< $Author$ |
---|
7 | !< $Revision$ |
---|
8 | !- IPSL (2006) |
---|
9 | !- This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
10 | !- |
---|
11 | USE ioipsl_para |
---|
12 | USE weather |
---|
13 | USE TIMER |
---|
14 | USE constantes |
---|
15 | USE solar |
---|
16 | USE grid |
---|
17 | USE mod_orchidee_para |
---|
18 | !- |
---|
19 | IMPLICIT NONE |
---|
20 | !- |
---|
21 | PRIVATE |
---|
22 | PUBLIC :: forcing_read, forcing_info, forcing_grid |
---|
23 | !- |
---|
24 | INTEGER, SAVE :: iim_full, jjm_full, llm_full, ttm_full |
---|
25 | INTEGER, SAVE :: iim_zoom, jjm_zoom |
---|
26 | INTEGER, SAVE :: iim_g_begin,jjm_g_begin,iim_g_end,jjm_g_end |
---|
27 | REAL, SAVE, ALLOCATABLE, DIMENSION(:,:) :: data_full, lon_full, lat_full |
---|
28 | REAL, SAVE, ALLOCATABLE, DIMENSION(:) :: lev_full |
---|
29 | INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: itau, i_index, j_index,j_index_g |
---|
30 | INTEGER, SAVE :: i_test, j_test |
---|
31 | INTEGER, SAVE :: printlev_loc !! Local printlev |
---|
32 | LOGICAL, SAVE :: allow_weathergen, interpol, daily_interpol |
---|
33 | LOGICAL, SAVE, PUBLIC :: weathergen, is_watchout |
---|
34 | REAL, SAVE :: merid_res, zonal_res |
---|
35 | LOGICAL, SAVE :: have_zaxis=.FALSE. |
---|
36 | !- |
---|
37 | !- Heigh controls and data |
---|
38 | !- |
---|
39 | LOGICAL, SAVE :: zfixed, zsigma, zhybrid, zlevels, zheight |
---|
40 | LOGICAL, SAVE :: zsamelev_uv |
---|
41 | REAL, SAVE :: zlev_fixed, zlevuv_fixed |
---|
42 | REAL, SAVE :: zhybrid_a, zhybrid_b |
---|
43 | REAL, SAVE :: zhybriduv_a, zhybriduv_b |
---|
44 | |
---|
45 | CONTAINS |
---|
46 | !- |
---|
47 | !===================================================================== |
---|
48 | !- |
---|
49 | SUBROUTINE forcing_info(filename, iim, jjm, llm, tm, date0, dt_force,& |
---|
50 | & force_id) |
---|
51 | |
---|
52 | !--------------------------------------------------------------------- |
---|
53 | ! |
---|
54 | !- This subroutine will get all the info from the forcing file and |
---|
55 | !- prepare for the zoom if needed. |
---|
56 | !- It returns to the caller the sizes of the data it will receive at |
---|
57 | !- the forcing_read call. This is important so that the caller can |
---|
58 | !- allocate the right space. |
---|
59 | !- |
---|
60 | !- filename : name of the file to be opened |
---|
61 | !- iim : size in x of the forcing data |
---|
62 | !- jjm : size in y of the forcing data |
---|
63 | !- llm : number of levels in the forcing data (not yet used) |
---|
64 | !- tm : Time dimension of the forcing |
---|
65 | !- date0 : The date at which the forcing file starts (julian days) |
---|
66 | !- dt_force : time-step of the forcing file in seconds |
---|
67 | !- force_id : ID of the forcing file |
---|
68 | !- |
---|
69 | !- ARGUMENTS |
---|
70 | !- |
---|
71 | IMPLICIT NONE |
---|
72 | !- |
---|
73 | CHARACTER(LEN=*) :: filename |
---|
74 | INTEGER :: iim, jjm, llm, tm |
---|
75 | REAL :: date0, dt_force |
---|
76 | INTEGER, INTENT(OUT) :: force_id |
---|
77 | !- LOCAL |
---|
78 | CHARACTER(LEN=20) :: calendar_str |
---|
79 | CHARACTER(LEN=200):: printstr !! temporary character string to contain error message |
---|
80 | REAL :: juld_1, juld_2 |
---|
81 | REAL, ALLOCATABLE, DIMENSION(:,:) :: fcontfrac |
---|
82 | REAL, ALLOCATABLE, DIMENSION(:,:) :: qair |
---|
83 | LOGICAL :: contfrac_exists=.FALSE. |
---|
84 | INTEGER :: NbPoint |
---|
85 | INTEGER :: i_test,j_test |
---|
86 | INTEGER :: i,j,ind,ttm_part |
---|
87 | INTEGER, ALLOCATABLE, DIMENSION(:) :: index_l |
---|
88 | REAL, ALLOCATABLE, DIMENSION(:,:) :: lon, lat |
---|
89 | REAL, ALLOCATABLE, DIMENSION(:) :: lev, levuv |
---|
90 | |
---|
91 | !- |
---|
92 | CALL flininfo(filename, iim_full, jjm_full, llm_full, ttm_full, force_id) |
---|
93 | !- |
---|
94 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_info : Details from forcing file :', & |
---|
95 | iim_full, jjm_full, llm_full, ttm_full |
---|
96 | !- |
---|
97 | IF ( llm_full < 1 ) THEN |
---|
98 | have_zaxis = .FALSE. |
---|
99 | ELSE |
---|
100 | have_zaxis = .TRUE. |
---|
101 | ENDIF |
---|
102 | WRITE(numout,*) 'have_zaxis : ', llm_full, have_zaxis |
---|
103 | !- |
---|
104 | ttm_part = 2 |
---|
105 | ALLOCATE(itau(ttm_part)) |
---|
106 | ALLOCATE(data_full(iim_full, jjm_full),lon_full(iim_full, jjm_full),& |
---|
107 | & lat_full(iim_full, jjm_full)) |
---|
108 | ALLOCATE(lev_full(llm_full)) |
---|
109 | ALLOCATE(fcontfrac(iim_full,jjm_full)) |
---|
110 | !- |
---|
111 | lev_full(:) = zero |
---|
112 | !- |
---|
113 | dt_force=zero |
---|
114 | CALL flinopen & |
---|
115 | & (filename, .FALSE., iim_full, jjm_full, llm_full, lon_full, lat_full, & |
---|
116 | & lev_full, ttm_part, itau, date0, dt_force, force_id) |
---|
117 | IF ( dt_force == zero ) THEN |
---|
118 | dt_force = itau(2) - itau(1) |
---|
119 | itau(:) = itau(:) / dt_force |
---|
120 | ENDIF |
---|
121 | ! WRITE(numout,*) "forcing_info : Forcing time step out of flinopen : ",dt_force |
---|
122 | !- |
---|
123 | !- What are the alowed options for the temportal interpolation |
---|
124 | !- |
---|
125 | !Config Key = ALLOW_WEATHERGEN |
---|
126 | !Config Desc = Allow weather generator to create data |
---|
127 | !Config If = [-] |
---|
128 | !Config Def = n |
---|
129 | !Config Help = This flag allows the forcing-reader to generate |
---|
130 | !Config synthetic data if the data in the file is too sparse |
---|
131 | !Config and the temporal resolution would not be enough to |
---|
132 | !Config run the model. |
---|
133 | !Config Units = [FLAG] |
---|
134 | !- |
---|
135 | allow_weathergen = .FALSE. |
---|
136 | CALL getin_p('ALLOW_WEATHERGEN',allow_weathergen) |
---|
137 | !- |
---|
138 | !- The calendar was set by the forcing file. If no "calendar" attribute was |
---|
139 | !- found then it is assumed to be gregorian, |
---|
140 | !MM => FALSE !! it is NOT assumed anything ! |
---|
141 | !- else it is what ever is written in this attribute. |
---|
142 | !- |
---|
143 | CALL ioget_calendar(calendar_str) |
---|
144 | i=INDEX(calendar_str,ACHAR(0)) |
---|
145 | IF ( i > 0 ) THEN |
---|
146 | calendar_str(i:20)=' ' |
---|
147 | ENDIF |
---|
148 | ! WRITE(numout,*) "forcing_info : Calendar used : ",calendar_str |
---|
149 | IF ( calendar_str == 'XXXX' ) THEN |
---|
150 | WRITE(numout,*) "forcing_info : The calendar was not found in the forcing file." |
---|
151 | IF (allow_weathergen) THEN |
---|
152 | ! Then change the calendar |
---|
153 | CALL ioconf_calendar("noleap") |
---|
154 | ELSE |
---|
155 | WRITE(numout,*) "forcing_info : We will force it to gregorian by default." |
---|
156 | CALL ioconf_calendar("gregorian") !! = 365.2425 ; "noleap" = 365.0; "360d"; "julian"=365.25 |
---|
157 | ENDIF |
---|
158 | ENDIF |
---|
159 | WRITE(numout,*) "readdim2 : Calendar used by the model : ",calendar_str |
---|
160 | IF (ttm_full .GE. 2) THEN |
---|
161 | juld_1 = itau2date(itau(1), date0, dt_force) |
---|
162 | juld_2 = itau2date(itau(2), date0, dt_force) |
---|
163 | ELSE |
---|
164 | juld_1 = 0 |
---|
165 | juld_2 = 0 |
---|
166 | CALL ipslerr_p ( 3, 'forcing_info','What is that only one time step in the forcing file ?', & |
---|
167 | & ' That can not be right.','verify forcing file.') |
---|
168 | ENDIF |
---|
169 | !- |
---|
170 | !- Initialize one_year / one_day |
---|
171 | CALL ioget_calendar (one_year, one_day) |
---|
172 | !- |
---|
173 | !- What is the distance between the two first states. From this we will deduce what is |
---|
174 | !- to be done. |
---|
175 | weathergen = .FALSE. |
---|
176 | interpol = .FALSE. |
---|
177 | daily_interpol = .FALSE. |
---|
178 | is_watchout = .FALSE. |
---|
179 | !- |
---|
180 | IF ( ABS(ABS(juld_2-juld_1)-30.) .LE. 2.) THEN |
---|
181 | IF ( allow_weathergen ) THEN |
---|
182 | weathergen = .TRUE. |
---|
183 | WRITE(numout,*) 'Using weather generator.' |
---|
184 | ELSE |
---|
185 | CALL ipslerr_p ( 3, 'forcing_info', & |
---|
186 | & 'This seems to be a monthly file.', & |
---|
187 | & 'We should use a weather generator with this file.', & |
---|
188 | & 'This should be allowed in the run.def') |
---|
189 | ENDIF |
---|
190 | ELSEIF (( ABS(juld_1-juld_2) .LE. 1./4.) .OR. ( ABS(juld_1-juld_2) .EQ. 1.)) THEN |
---|
191 | interpol = .TRUE. |
---|
192 | WRITE(numout,*) 'We will interpolate between the forcing data time steps.' |
---|
193 | IF ( ABS(juld_1-juld_2) .EQ. 1.) THEN |
---|
194 | daily_interpol = .TRUE. |
---|
195 | ENDIF |
---|
196 | ELSE |
---|
197 | ! Using the weather generator with data other than monthly ones probably |
---|
198 | ! needs some thinking. |
---|
199 | WRITE(numout,*) 'The time step is not suitable:',ABS(juld_1-juld_2),' days.' |
---|
200 | CALL ipslerr_p ( 3, 'forcing_info','The time step is not suitable.', & |
---|
201 | & '','We cannot do anything with these forcing data.') |
---|
202 | ENDIF |
---|
203 | !- |
---|
204 | !- redefine the forcing time step if the weather generator is activated |
---|
205 | !- |
---|
206 | IF ( weathergen ) THEN |
---|
207 | !Config Key = DT_WEATHGEN |
---|
208 | !Config Desc = Calling frequency of weather generator |
---|
209 | !Config If = ALLOW_WEATHERGEN |
---|
210 | !Config Def = 1800. |
---|
211 | !Config Help = Determines how often the weather generator |
---|
212 | !Config is called (time step in s). Should be equal |
---|
213 | !Config to or larger than Sechiba's time step (say, |
---|
214 | !Config up to 6 times Sechiba's time step or so). |
---|
215 | !Config Units = [seconds] |
---|
216 | dt_force = 1800. |
---|
217 | CALL getin_p('DT_WEATHGEN',dt_force) |
---|
218 | ENDIF |
---|
219 | !- |
---|
220 | !- Define the zoom |
---|
221 | !- |
---|
222 | !Config Key = LIMIT_WEST |
---|
223 | !Config Desc = Western limit of region |
---|
224 | !Config If = [-] |
---|
225 | !Config Def = -180. |
---|
226 | !Config Help = Western limit of the region we are |
---|
227 | !Config interested in. Between -180 and +180 degrees |
---|
228 | !Config The model will use the smalest regions from |
---|
229 | !Config region specified here and the one of the forcing file. |
---|
230 | !Config Units = [Degrees] |
---|
231 | !- |
---|
232 | limit_west = -180. |
---|
233 | CALL getin_p('LIMIT_WEST',limit_west) |
---|
234 | !- |
---|
235 | !Config Key = LIMIT_EAST |
---|
236 | !Config Desc = Eastern limit of region |
---|
237 | !Config If = [-] |
---|
238 | !Config Def = 180. |
---|
239 | !Config Help = Eastern limit of the region we are |
---|
240 | !Config interested in. Between -180 and +180 degrees |
---|
241 | !Config The model will use the smalest regions from |
---|
242 | !Config region specified here and the one of the forcing file. |
---|
243 | !Config Units = [Degrees] |
---|
244 | !- |
---|
245 | limit_east = 180. |
---|
246 | CALL getin_p('LIMIT_EAST',limit_east) |
---|
247 | !- |
---|
248 | !Config Key = LIMIT_NORTH |
---|
249 | !Config Desc = Northern limit of region |
---|
250 | !Config If = [-] |
---|
251 | !Config Def = 90. |
---|
252 | !Config Help = Northern limit of the region we are |
---|
253 | !Config interested in. Between +90 and -90 degrees |
---|
254 | !Config The model will use the smalest regions from |
---|
255 | !Config region specified here and the one of the forcing file. |
---|
256 | !Config Units = [Degrees] |
---|
257 | !- |
---|
258 | limit_north = 90. |
---|
259 | CALL getin_p('LIMIT_NORTH',limit_north) |
---|
260 | !- |
---|
261 | !Config Key = LIMIT_SOUTH |
---|
262 | !Config Desc = Southern limit of region |
---|
263 | !Config If = [-] |
---|
264 | !Config Def = -90. |
---|
265 | !Config Help = Southern limit of the region we are |
---|
266 | !Config interested in. Between 90 and -90 degrees |
---|
267 | !Config The model will use the smalest regions from |
---|
268 | !Config region specified here and the one of the forcing file. |
---|
269 | !Config Units = [Degrees] |
---|
270 | !- |
---|
271 | limit_south = -90. |
---|
272 | CALL getin_p('LIMIT_SOUTH',limit_south) |
---|
273 | !- |
---|
274 | !- Calculate domain size |
---|
275 | !- |
---|
276 | IF ( interpol ) THEN |
---|
277 | !- |
---|
278 | !- If we use temporal interpolation, then we cannot change the resolution (yet?) |
---|
279 | !- |
---|
280 | ALLOCATE(i_index(iim_full), j_index(jjm_full),j_index_g(jjm_full)) |
---|
281 | IF (is_root_prc) THEN |
---|
282 | |
---|
283 | CALL domain_size (limit_west, limit_east, limit_north, limit_south,& |
---|
284 | & iim_full, jjm_full, lon_full, lat_full, iim_zoom, jjm_zoom,& |
---|
285 | & i_index, j_index_g) |
---|
286 | |
---|
287 | j_index(:)=j_index_g(:) |
---|
288 | |
---|
289 | ALLOCATE(qair(iim_full,jjm_full)) |
---|
290 | CALL flinget_buffer (force_id,'Qair',iim_full, jjm_full, 1, ttm_full, 1, 1, data_full) |
---|
291 | CALL forcing_zoom(data_full, qair) |
---|
292 | |
---|
293 | CALL flinquery_var(force_id, 'contfrac', contfrac_exists) |
---|
294 | IF ( contfrac_exists ) THEN |
---|
295 | WRITE(numout,*) "contfrac exist in the forcing file." |
---|
296 | CALL flinget_buffer (force_id,'contfrac',iim_full, jjm_full, 1, ttm_full, 1, 1, data_full) |
---|
297 | CALL forcing_zoom(data_full, fcontfrac) |
---|
298 | WRITE(numout,*) "fcontfrac min/max :",MINVAL(fcontfrac(1:iim_zoom,1:jjm_zoom)),MAXVAL(fcontfrac(1:iim_zoom,1:jjm_zoom)) |
---|
299 | ELSE |
---|
300 | fcontfrac(:,:)=1. |
---|
301 | ENDIF |
---|
302 | |
---|
303 | |
---|
304 | DO i=1,iim_zoom |
---|
305 | DO j=1,jjm_zoom |
---|
306 | IF ( fcontfrac(i,j) <= EPSILON(1.) ) THEN |
---|
307 | qair(i,j) = 999999. |
---|
308 | ENDIF |
---|
309 | ENDDO |
---|
310 | ENDDO |
---|
311 | |
---|
312 | ALLOCATE(index_l(iim_zoom*jjm_zoom)) |
---|
313 | !- In this point is returning the global NbPoint with the global index |
---|
314 | CALL forcing_landind(iim_zoom,jjm_zoom,qair,.TRUE.,NbPoint,index_l,i_test,j_test) |
---|
315 | ! |
---|
316 | ! Work out the vertical layers to be used |
---|
317 | ! |
---|
318 | CALL forcing_vertical_ioipsl(force_id) |
---|
319 | ELSE |
---|
320 | ALLOCATE(index_l(1)) |
---|
321 | ENDIF |
---|
322 | |
---|
323 | ! Initiate global grid and parallelism |
---|
324 | CALL bcast(iim_zoom) |
---|
325 | CALL bcast(jjm_zoom) |
---|
326 | CALL bcast(NbPoint) |
---|
327 | CALL grid_set_glo(iim_zoom,jjm_zoom,NbPoint) |
---|
328 | CALL grid_allocate_glo(4) |
---|
329 | |
---|
330 | ! Check consistency in the number of mpi processors and the number of land points |
---|
331 | ! in order to prevent an exception |
---|
332 | IF (NbPoint < mpi_size) THEN |
---|
333 | WRITE(printstr,*) 'The number of landpoints found (', NbPoint, & |
---|
334 | ') is less than the number of processors selected (', mpi_size,')' |
---|
335 | CALL ipslerr_p(3, 'forcing_info', 'Wrong parallelization options', & |
---|
336 | TRIM(printstr), & |
---|
337 | 'Decrease the number of processors for the current grid') |
---|
338 | ENDIF |
---|
339 | |
---|
340 | ! |
---|
341 | !- global index index_g is the index_l of root proc |
---|
342 | IF (is_root_prc) index_g(:)=index_l(1:NbPoint) |
---|
343 | |
---|
344 | DEALLOCATE(index_l) |
---|
345 | |
---|
346 | ! |
---|
347 | ! Distribute to all processors the information on the forcing |
---|
348 | ! |
---|
349 | CALL bcast(index_g) |
---|
350 | CALL Init_orchidee_data_para_driver(nbp_glo,index_g) |
---|
351 | CALL init_ioipsl_para |
---|
352 | |
---|
353 | ! Initialize printlev_loc |
---|
354 | printlev_loc=get_printlev('readdim2') |
---|
355 | WRITE(numout,*) 'In readdim2, : standard PRINTLEV= ', printlev |
---|
356 | WRITE(numout,*) 'In readdim2, : local PRINTLEV_readdim2= ', printlev_loc |
---|
357 | |
---|
358 | ! CALL Init_writeField_p |
---|
359 | |
---|
360 | CALL bcast(jjm_zoom) |
---|
361 | CALL bcast(i_index) |
---|
362 | CALL bcast(j_index_g) |
---|
363 | CALL bcast(zfixed) |
---|
364 | CALL bcast(zsigma) |
---|
365 | CALL bcast(zhybrid) |
---|
366 | CALL bcast(zlevels) |
---|
367 | CALL bcast(zheight) |
---|
368 | CALL bcast(zsamelev_uv) |
---|
369 | CALL bcast(zlev_fixed) |
---|
370 | CALL bcast(zlevuv_fixed) |
---|
371 | CALL bcast(zhybrid_a) |
---|
372 | CALL bcast(zhybrid_b) |
---|
373 | CALL bcast(zhybriduv_a) |
---|
374 | CALL bcast(zhybriduv_b) |
---|
375 | ind=0 |
---|
376 | DO j=1,jjm_zoom |
---|
377 | IF ( (j >= jj_begin) .AND. (j <= jj_end) ) THEN |
---|
378 | ind=ind+1 |
---|
379 | j_index(ind)=j_index_g(j) |
---|
380 | ENDIF |
---|
381 | ENDDO |
---|
382 | |
---|
383 | jjm_zoom=jj_nb |
---|
384 | iim_zoom=iim_g |
---|
385 | |
---|
386 | !- |
---|
387 | !- If we use the weather generator, then we read zonal and meridional resolutions |
---|
388 | !- This should be unified one day... |
---|
389 | !- |
---|
390 | ELSEIF ( weathergen ) THEN |
---|
391 | !- |
---|
392 | !Config Key = MERID_RES |
---|
393 | !Config Desc = North-South Resolution |
---|
394 | !Config Def = 2. |
---|
395 | !Config If = ALLOW_WEATHERGEN |
---|
396 | !Config Help = North-South Resolution of the region we are |
---|
397 | !Config interested in. |
---|
398 | !Config Units = [Degrees] |
---|
399 | !- |
---|
400 | merid_res = 2. |
---|
401 | CALL getin_p('MERID_RES',merid_res) |
---|
402 | !- |
---|
403 | !Config Key = ZONAL_RES |
---|
404 | !Config Desc = East-West Resolution |
---|
405 | !Config Def = 2. |
---|
406 | !Config If = ALLOW_WEATHERGEN |
---|
407 | !Config Help = East-West Resolution of the region we are |
---|
408 | !Config interested in. In degrees |
---|
409 | !Config Units = [Degrees] |
---|
410 | !- |
---|
411 | zonal_res = 2. |
---|
412 | CALL getin_p('ZONAL_RES',zonal_res) |
---|
413 | !- |
---|
414 | !- Number of time steps is meaningless in this case |
---|
415 | !- |
---|
416 | ! ttm_full = HUGE( ttm_full ) |
---|
417 | !MM Number (realistic) of time steps for half hour dt |
---|
418 | ttm_full = NINT(one_year * 86400. / dt_force) |
---|
419 | !- |
---|
420 | IF (is_root_prc) THEN |
---|
421 | |
---|
422 | !- In this point is returning the global NbPoint with the global index |
---|
423 | CALL weathgen_domain_size (limit_west,limit_east,limit_north,limit_south, & |
---|
424 | zonal_res,merid_res,iim_zoom,jjm_zoom) |
---|
425 | ALLOCATE(index_l(iim_zoom*jjm_zoom)) |
---|
426 | ENDIF |
---|
427 | CALL bcast(iim_zoom) |
---|
428 | CALL bcast(jjm_zoom) |
---|
429 | |
---|
430 | ALLOCATE(lon(iim_zoom,jjm_zoom)) |
---|
431 | ALLOCATE(lat(iim_zoom,jjm_zoom)) |
---|
432 | ALLOCATE(lev(llm_full),levuv(llm_full)) |
---|
433 | |
---|
434 | ! We need lon and lat now for weathgen_init |
---|
435 | CALL forcing_grid (iim_zoom,jjm_zoom,llm_full,lon,lat,init_f=.TRUE.) |
---|
436 | CALL forcing_vertical_ioipsl(-1) |
---|
437 | |
---|
438 | IF (is_root_prc) THEN |
---|
439 | CALL weathgen_init & |
---|
440 | & (filename,dt_force,force_id,iim_zoom,jjm_zoom, & |
---|
441 | & zonal_res,merid_res,lon,lat,index_l,NbPoint) |
---|
442 | !!$,& |
---|
443 | !!$ & i_index,j_index_g) |
---|
444 | ELSE |
---|
445 | ALLOCATE(index_l(1)) |
---|
446 | index_l(1)=1 |
---|
447 | ENDIF |
---|
448 | |
---|
449 | CALL bcast(NbPoint) |
---|
450 | CALL grid_set_glo(iim_zoom,jjm_zoom,NbPoint) |
---|
451 | CALL grid_allocate_glo(4) |
---|
452 | |
---|
453 | ! |
---|
454 | !- global index index_g is the index_l of root proc |
---|
455 | IF (is_root_prc) index_g(:)=index_l(1:NbPoint) |
---|
456 | |
---|
457 | DEALLOCATE(index_l) |
---|
458 | |
---|
459 | CALL bcast(index_g) |
---|
460 | CALL Init_orchidee_data_para_driver(nbp_glo,index_g) |
---|
461 | CALL init_ioipsl_para |
---|
462 | ! CALL Init_writeField_p |
---|
463 | CALL bcast(jjm_zoom) |
---|
464 | !!$ CALL bcast(i_index) |
---|
465 | !!$ CALL bcast(j_index_g) |
---|
466 | |
---|
467 | !!$ ind=0 |
---|
468 | !!$ DO j=1,jjm_zoom |
---|
469 | !!$ IF ( (j >= jj_begin) .AND. (j <= jj_end) ) THEN |
---|
470 | !!$ ind=ind+1 |
---|
471 | !!$ j_index(ind)=j_index_g(j) |
---|
472 | !!$ ENDIF |
---|
473 | !!$ ENDDO |
---|
474 | |
---|
475 | jjm_zoom=jj_nb |
---|
476 | iim_zoom=iim_g |
---|
477 | ! |
---|
478 | CALL weathgen_read_file(force_id,iim_zoom,jjm_zoom) |
---|
479 | |
---|
480 | !- |
---|
481 | ELSE |
---|
482 | !- |
---|
483 | CALL ipslerr_p(3,'forcing_info','Neither interpolation nor weather generator is specified.','','') |
---|
484 | !- |
---|
485 | ENDIF |
---|
486 | !- |
---|
487 | !- Transfer the right information to the caller |
---|
488 | !- |
---|
489 | iim = iim_zoom |
---|
490 | jjm = jjm_zoom |
---|
491 | llm = 1 |
---|
492 | tm = ttm_full |
---|
493 | !- |
---|
494 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_info : end : ', iim,jjm, llm,tm |
---|
495 | !- |
---|
496 | END SUBROUTINE forcing_info |
---|
497 | !- |
---|
498 | !- |
---|
499 | !===================================================================== |
---|
500 | SUBROUTINE forcing_read & |
---|
501 | & (filename, rest_id, lrstread, lrstwrite, & |
---|
502 | & itauin, istp, itau_split, split, nb_spread, netrad_cons, date0, & |
---|
503 | & dt_force, iim, jjm, lon, lat, zlev, zlevuv, ttm, & |
---|
504 | & swdown, coszang, precip, snowf, tair, u, v, qair, pb, lwdown, & |
---|
505 | & fcontfrac, fneighbours, fresolution, & |
---|
506 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy, & |
---|
507 | & kindex, nbindex, force_id) |
---|
508 | !--------------------------------------------------------------------- |
---|
509 | !- filename : name of the file to be opened |
---|
510 | !- rest_id : ID of restart file |
---|
511 | !- lrstread : read restart file? |
---|
512 | !- lrstwrite : write restart file? |
---|
513 | !- itauin : time step for which we need the data |
---|
514 | !- istp : time step for restart file |
---|
515 | !- itau_split : Where are we within the splitting |
---|
516 | !- of the time-steps of the forcing files |
---|
517 | !- (it decides IF we READ or not) |
---|
518 | !- split : The number of time steps we do |
---|
519 | !- between two time-steps of the forcing |
---|
520 | !- nb_spread : Over how many time steps do we spread the precipitation |
---|
521 | !- netrad_cons: flag that decides if net radiation should be conserved. |
---|
522 | !- date0 : The date at which the forcing file starts (julian days) |
---|
523 | !- dt_force : time-step of the forcing file in seconds |
---|
524 | !- iim : Size of the grid in x |
---|
525 | !- jjm : size of the grid in y |
---|
526 | !- lon : Longitudes |
---|
527 | !- lat : Latitudes |
---|
528 | !- zlev : First Levels if it exists (ie if watchout file) |
---|
529 | !- zlevuv : First Levels of the wind (equal precedent, if it exists) |
---|
530 | !- ttm : number of time steps in all in the forcing file |
---|
531 | !- swdown : Downward solar radiation (W/m^2) |
---|
532 | !- coszang : Cosine of the solar zenith angle (unitless) |
---|
533 | !- precip : Precipitation (Rainfall) (kg/m^2s) |
---|
534 | !- snowf : Snowfall (kg/m^2s) |
---|
535 | !- tair : 1st level (2m ? in off-line) air temperature (K) |
---|
536 | !- u and v : 1st level (2m/10m ? in off-line) (in theory !) wind speed (m/s) |
---|
537 | !- qair : 1st level (2m ? in off-line) humidity (kg/kg) |
---|
538 | !- pb : Surface pressure (Pa) |
---|
539 | !- lwdown : Downward long wave radiation (W/m^2) |
---|
540 | !- fcontfrac : Continental fraction (no unit) |
---|
541 | !- fneighbours: land neighbours |
---|
542 | !- fresolution: resolution in x and y dimensions for each points |
---|
543 | !- |
---|
544 | !- From a WATCHOUT file : |
---|
545 | !- SWnet : Net surface short-wave flux |
---|
546 | !- Eair : Air potential energy |
---|
547 | !- petAcoef : Coeficients A from the PBL resolution for T |
---|
548 | !- peqAcoef : Coeficients A from the PBL resolution for q |
---|
549 | !- petBcoef : Coeficients B from the PBL resolution for T |
---|
550 | !- peqBcoef : Coeficients B from the PBL resolution for q |
---|
551 | !- cdrag : Surface drag |
---|
552 | !- ccanopy : CO2 concentration in the canopy |
---|
553 | !- |
---|
554 | !- kindex : Index of all land-points in the data |
---|
555 | !- (used for the gathering) |
---|
556 | !- nbindex : Number of land points |
---|
557 | !- force_id : FLINCOM file id. |
---|
558 | !- It is used to close the file at the end of the run. |
---|
559 | !- |
---|
560 | !--------------------------------------------------------------------- |
---|
561 | IMPLICIT NONE |
---|
562 | !- |
---|
563 | CHARACTER(LEN=*) :: filename |
---|
564 | INTEGER, INTENT(IN) :: force_id |
---|
565 | INTEGER, INTENT(INOUT) :: nbindex |
---|
566 | INTEGER :: rest_id |
---|
567 | LOGICAL :: lrstread, lrstwrite |
---|
568 | INTEGER :: itauin, istp, itau_split, split, nb_spread |
---|
569 | LOGICAL :: netrad_cons |
---|
570 | REAL :: date0, dt_force |
---|
571 | INTEGER :: iim, jjm, ttm |
---|
572 | REAL,DIMENSION(iim,jjm) :: lon, lat, zlev, zlevuv, & |
---|
573 | & swdown, coszang, precip, snowf, tair, u, v, qair, pb, lwdown, & |
---|
574 | & fcontfrac |
---|
575 | REAL,DIMENSION(iim,jjm,2) :: fresolution |
---|
576 | INTEGER,DIMENSION(iim,jjm,8) :: fneighbours |
---|
577 | ! for watchout files |
---|
578 | REAL,DIMENSION(iim,jjm) :: & |
---|
579 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy |
---|
580 | INTEGER,DIMENSION(iim*jjm), INTENT(INOUT) :: kindex |
---|
581 | !- |
---|
582 | INTEGER :: ik,i,j |
---|
583 | ! |
---|
584 | IF ( interpol ) THEN |
---|
585 | !- |
---|
586 | CALL forcing_read_interpol & |
---|
587 | (filename, itauin, itau_split, split, nb_spread, netrad_cons, date0, & |
---|
588 | dt_force, iim, jjm, lon, lat, zlev, zlevuv, ttm, & |
---|
589 | swdown, coszang, precip, snowf, tair, u, v, qair, pb, lwdown, & |
---|
590 | fcontfrac, fneighbours, fresolution, & |
---|
591 | SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy, & |
---|
592 | kindex, nbindex, force_id) |
---|
593 | !- |
---|
594 | ELSEIF ( weathergen ) THEN |
---|
595 | !- |
---|
596 | IF (lrstread) THEN |
---|
597 | fcontfrac(:,:) = 1.0 |
---|
598 | WRITE(numout,*) 'contfrac : ', MINVAL(fcontfrac), MAXVAL(fcontfrac) |
---|
599 | ENDIF |
---|
600 | |
---|
601 | IF ( (itauin == 0).AND.(itau_split == 0) ) THEN |
---|
602 | CALL weathgen_main (istp, istp, filename, force_id, iim, jjm, 1, & |
---|
603 | rest_id, lrstread, lrstwrite, & |
---|
604 | limit_west, limit_east, limit_north, limit_south, & |
---|
605 | zonal_res, merid_res, lon, lat, date0, dt_force, & |
---|
606 | kindex, nbindex, & |
---|
607 | swdown, precip, snowf, tair, u, v, qair, pb, lwdown) |
---|
608 | ELSE |
---|
609 | CALL weathgen_main (itauin, istp, filename, force_id, iim, jjm, 1, & |
---|
610 | rest_id, lrstread, lrstwrite, & |
---|
611 | limit_west, limit_east, limit_north, limit_south, & |
---|
612 | zonal_res, merid_res, lon, lat, date0, dt_force, & |
---|
613 | kindex, nbindex, & |
---|
614 | swdown, precip, snowf, tair, u, v, qair, pb, lwdown) |
---|
615 | ENDIF |
---|
616 | !- |
---|
617 | IF ( (itauin == 0).AND.(itau_split == 0) ) THEN |
---|
618 | !--- |
---|
619 | !--- Allocate grid stuff |
---|
620 | !--- |
---|
621 | CALL grid_init ( nbindex, 4, "RegLonLat", "ForcingGrid" ) |
---|
622 | !--- |
---|
623 | !--- Compute |
---|
624 | !--- |
---|
625 | CALL grid_stuff(nbp_glo, iim_g, jjm_g, lon_g, lat_g, index_g) |
---|
626 | !CALL grid_stuff (nbindex, iim, jjm, lon, lat, kindex) |
---|
627 | DO ik=1,nbindex |
---|
628 | |
---|
629 | j = ((kindex(ik)-1)/iim) + 1 |
---|
630 | i = (kindex(ik) - (j-1)*iim) |
---|
631 | !- |
---|
632 | !- Store variable to help describe the grid |
---|
633 | !- once the points are gathered. |
---|
634 | !- |
---|
635 | fneighbours(i,j,:) = neighbours(ik,:) |
---|
636 | ! |
---|
637 | fresolution(i,j,:) = resolution(ik,:) |
---|
638 | ENDDO |
---|
639 | ENDIF |
---|
640 | ELSE |
---|
641 | !- |
---|
642 | |
---|
643 | CALL ipslerr_p(3,'forcing_read','Neither interpolation nor weather generator is specified.','','') |
---|
644 | |
---|
645 | ENDIF |
---|
646 | !- |
---|
647 | IF (.NOT. is_watchout) THEN |
---|
648 | ! We have to compute Potential air energy |
---|
649 | WHERE(tair(:,:) < val_exp) |
---|
650 | eair(:,:) = cp_air*tair(:,:)+cte_grav*zlev(:,:) |
---|
651 | ENDWHERE |
---|
652 | ENDIF |
---|
653 | !- |
---|
654 | ! |
---|
655 | !------------------------- |
---|
656 | END SUBROUTINE forcing_read |
---|
657 | !===================================================================== |
---|
658 | !- |
---|
659 | !- |
---|
660 | !===================================================================== |
---|
661 | SUBROUTINE forcing_read_interpol & |
---|
662 | & (filename, itauin, itau_split, split, nb_spread, netrad_cons, date0, & |
---|
663 | & dt_force, iim, jjm, lon, lat, zlev, zlevuv, ttm, swdown, coszang, rainf, snowf, tair, & |
---|
664 | & u, v, qair, pb, lwdown, & |
---|
665 | & fcontfrac, fneighbours, fresolution, & |
---|
666 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy, & |
---|
667 | & kindex, nbindex, force_id) |
---|
668 | !--------------------------------------------------------------------- |
---|
669 | !- filename : name of the file to be opened |
---|
670 | !- itauin : time step for which we need the data |
---|
671 | !- itau_split : Where are we within the splitting |
---|
672 | !- of the time-steps of the forcing files |
---|
673 | !- (it decides IF we READ or not) |
---|
674 | !- split : The number of time steps we do |
---|
675 | !- between two time-steps of the forcing |
---|
676 | !- nb_spread : Over how many time steps do we spread the precipitation |
---|
677 | !- netrad_cons: flag that decides if net radiation should be conserved. |
---|
678 | !- date0 : The date at which the forcing file starts (julian days) |
---|
679 | !- dt_force : time-step of the forcing file in seconds |
---|
680 | !- iim : Size of the grid in x |
---|
681 | !- jjm : size of the grid in y |
---|
682 | !- lon : Longitudes |
---|
683 | !- lat : Latitudes |
---|
684 | !- zlev : First Levels if it exists (ie if watchout file) |
---|
685 | !- zlevuv : First Levels of the wind (equal precedent, if it exists) |
---|
686 | !- ttm : number of time steps in all in the forcing file |
---|
687 | !- swdown : Downward solar radiation (W/m^2) |
---|
688 | !- coszang : Cosine of the solar zenith angle (unitless) |
---|
689 | !- rainf : Rainfall (kg/m^2s) |
---|
690 | !- snowf : Snowfall (kg/m^2s) |
---|
691 | !- tair : 2m air temperature (K) |
---|
692 | !- u and v : 2m (in theory !) wind speed (m/s) |
---|
693 | !- qair : 2m humidity (kg/kg) |
---|
694 | !- pb : Surface pressure (Pa) |
---|
695 | !- lwdown : Downward long wave radiation (W/m^2) |
---|
696 | !- fcontfrac : Continental fraction (no unit) |
---|
697 | !- fneighbours: land neighbours |
---|
698 | !- fresolution: resolution in x and y dimensions for each points |
---|
699 | !- |
---|
700 | !- From a WATCHOUT file : |
---|
701 | !- SWnet : Net surface short-wave flux |
---|
702 | !- Eair : Air potential energy |
---|
703 | !- petAcoef : Coeficients A from the PBL resolution for T |
---|
704 | !- peqAcoef : Coeficients A from the PBL resolution for q |
---|
705 | !- petBcoef : Coeficients B from the PBL resolution for T |
---|
706 | !- peqBcoef : Coeficients B from the PBL resolution for q |
---|
707 | !- cdrag : Surface drag |
---|
708 | !- ccanopy : CO2 concentration in the canopy |
---|
709 | !- |
---|
710 | !- kindex : Index of all land-points in the data |
---|
711 | !- (used for the gathering) |
---|
712 | !- nbindex : Number of land points |
---|
713 | !- force_id : FLINCOM file id. |
---|
714 | !- It is used to close the file at the end of the run. |
---|
715 | !--------------------------------------------------------------------- |
---|
716 | IMPLICIT NONE |
---|
717 | !- |
---|
718 | INTEGER,PARAMETER :: lm=1 |
---|
719 | !- |
---|
720 | !- Input variables |
---|
721 | !- |
---|
722 | CHARACTER(LEN=*) :: filename |
---|
723 | INTEGER :: itauin, itau_split, split, nb_spread |
---|
724 | LOGICAL :: netrad_cons |
---|
725 | REAL :: date0, dt_force |
---|
726 | INTEGER :: iim, jjm, ttm |
---|
727 | REAL,DIMENSION(:,:),INTENT(IN) :: lon, lat !- LOCAL data array (size=iim,jjm) |
---|
728 | INTEGER, INTENT(IN) :: force_id |
---|
729 | !- |
---|
730 | !- Output variables |
---|
731 | !- |
---|
732 | REAL,DIMENSION(:,:),INTENT(OUT) :: zlev, zlevuv, & !- LOCAL data array (size=iim,jjm) |
---|
733 | & swdown, coszang, rainf, snowf, tair, u, v, qair, pb, lwdown, & |
---|
734 | & fcontfrac |
---|
735 | REAL,DIMENSION(:,:,:),INTENT(OUT) :: fresolution !- LOCAL data array (size=iim,jjm,2) |
---|
736 | INTEGER,DIMENSION(:,:,:),INTENT(OUT) :: fneighbours !- LOCAL data array (size=iim,jjm,8) |
---|
737 | ! for watchout files |
---|
738 | REAL,DIMENSION(:,:),INTENT(OUT) :: & |
---|
739 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy |
---|
740 | INTEGER,DIMENSION(:),INTENT(INOUT) :: kindex !- LOCAL index of the map |
---|
741 | INTEGER, INTENT(INOUT) :: nbindex |
---|
742 | !- |
---|
743 | !- Local variables |
---|
744 | !- |
---|
745 | INTEGER, SAVE :: last_read=0 |
---|
746 | INTEGER, SAVE :: itau_read, itau_read_nm1=0, itau_read_n=0 |
---|
747 | REAL,SAVE,ALLOCATABLE,DIMENSION(:,:) :: & |
---|
748 | & zlev_nm1, zlevuv_nm1, swdown_nm1, rainf_nm1, snowf_nm1, tair_nm1, u_nm1, v_nm1, qair_nm1, & |
---|
749 | & pb_nm1, lwdown_nm1, & |
---|
750 | & zlev_n, zlevuv_n, swdown_n, rainf_n, snowf_n, tair_n, u_n, v_n, qair_n, & |
---|
751 | & pb_n, lwdown_n, mean_coszang |
---|
752 | |
---|
753 | REAL,SAVE,ALLOCATABLE,DIMENSION(:,:) :: & |
---|
754 | & startday_n, startday_nm1, daylength_n, daylength_nm1, tmax_n, tmax_nm1, tmin_nm1, tmin_nm2, tmin_n, & |
---|
755 | & qsatta, qsattmin_n, qsattmin_nm1, qmin_n, qmin_nm1, qmax_n, qmax_nm1, qsa |
---|
756 | REAL,SAVE :: hour |
---|
757 | |
---|
758 | ! just for grid stuff if the forcing file is a watchout file |
---|
759 | REAL, ALLOCATABLE, DIMENSION(:,:) :: tmpdata |
---|
760 | ! variables to be read in watchout files |
---|
761 | REAL,SAVE,ALLOCATABLE,DIMENSION(:,:) :: & |
---|
762 | & SWnet_nm1, Eair_nm1, petAcoef_nm1, peqAcoef_nm1, petBcoef_nm1, peqBcoef_nm1, cdrag_nm1, ccanopy_nm1, & |
---|
763 | & SWnet_n, Eair_n, petAcoef_n, peqAcoef_n, petBcoef_n, peqBcoef_n, cdrag_n, ccanopy_n |
---|
764 | REAL, SAVE :: julian_for ! Date of the forcing to be read |
---|
765 | REAL :: julian, ss, rw |
---|
766 | !jur, |
---|
767 | REAL, SAVE :: julian0 ! First day of this year |
---|
768 | INTEGER :: yy, mm, dd, is, i, j, ik |
---|
769 | REAL(r_std), DIMENSION(2) :: min_resol, max_resol |
---|
770 | ! if Wind_N and Wind_E are in the file (and not just Wind) |
---|
771 | LOGICAL, SAVE :: wind_N_exists=.FALSE. |
---|
772 | LOGICAL :: wind_E_exists=.FALSE. |
---|
773 | LOGICAL, SAVE :: contfrac_exists=.FALSE. |
---|
774 | LOGICAL, SAVE :: neighbours_exists=.FALSE. |
---|
775 | LOGICAL, SAVE :: initialized = .FALSE. |
---|
776 | LOGICAL :: check=.FALSE. |
---|
777 | ! to bypass FPE problem on integer convertion with missing_value heigher than precision |
---|
778 | INTEGER, PARAMETER :: undef_int = 999999999 |
---|
779 | !--------------------------------------------------------------------- |
---|
780 | |
---|
781 | itau_read = MOD((itauin-1),ttm)+1 |
---|
782 | |
---|
783 | IF (check) THEN |
---|
784 | WRITE(numout,*) & |
---|
785 | " FORCING READ : itauin, itau_read, itau_split : ",& |
---|
786 | itauin, itau_read, itau_split |
---|
787 | ENDIF |
---|
788 | |
---|
789 | !- |
---|
790 | !- This part initializes the reading of the forcing. As you can see |
---|
791 | !- we only go through here if both time steps are zero. |
---|
792 | !- |
---|
793 | IF ( (itau_read == 0).AND.(itau_split == 0) ) THEN |
---|
794 | !- |
---|
795 | !- Tests on forcing file type |
---|
796 | CALL flinquery_var(force_id, 'Wind_N', wind_N_exists) |
---|
797 | IF ( wind_N_exists ) THEN |
---|
798 | CALL flinquery_var(force_id, 'Wind_E', wind_E_exists) |
---|
799 | IF ( .NOT. wind_E_exists ) THEN |
---|
800 | CALL ipslerr_p(3,'forcing_read_interpol', & |
---|
801 | & 'Variable Wind_E does not exist in forcing file', & |
---|
802 | & 'But variable Wind_N exists.','Please, rename Wind_N to Wind;') |
---|
803 | ENDIF |
---|
804 | ENDIF |
---|
805 | CALL flinquery_var(force_id, 'levels', is_watchout) |
---|
806 | IF ( is_watchout ) THEN |
---|
807 | WRITE(numout,*) "Read a Watchout File." |
---|
808 | ENDIF |
---|
809 | CALL flinquery_var(force_id, 'contfrac', contfrac_exists) |
---|
810 | !- |
---|
811 | IF (check) WRITE(numout,*) 'ALLOCATE all the memory needed' |
---|
812 | !- |
---|
813 | ALLOCATE & |
---|
814 | & (swdown_nm1(iim,jjm), rainf_nm1(iim,jjm), snowf_nm1(iim,jjm), & |
---|
815 | & tair_nm1(iim,jjm), u_nm1(iim,jjm), v_nm1(iim,jjm), qair_nm1(iim,jjm), & |
---|
816 | & pb_nm1(iim,jjm), lwdown_nm1(iim,jjm)) |
---|
817 | ALLOCATE & |
---|
818 | & (swdown_n(iim,jjm), rainf_n(iim,jjm), snowf_n(iim,jjm), & |
---|
819 | & tair_n(iim,jjm), u_n(iim,jjm), v_n(iim,jjm), qair_n(iim,jjm), & |
---|
820 | & pb_n(iim,jjm), lwdown_n(iim,jjm)) |
---|
821 | |
---|
822 | IF(daily_interpol) THEN |
---|
823 | ALLOCATE & |
---|
824 | & (startday_n(iim,jjm), startday_nm1(iim,jjm), daylength_n(iim,jjm), & |
---|
825 | & daylength_nm1(iim,jjm), tmax_n(iim,jjm), tmax_nm1(iim,jjm), tmin_n(iim,jjm), & |
---|
826 | & tmin_nm1(iim,jjm), tmin_nm2(iim,jjm), qsatta(iim,jjm), qsattmin_n(iim,jjm), qsattmin_nm1(iim,jjm), & |
---|
827 | & qmin_n(iim,jjm), qmin_nm1(iim,jjm), qmax_n(iim,jjm), qmax_nm1(iim,jjm), qsa(iim,jjm) ) |
---|
828 | ENDIF |
---|
829 | |
---|
830 | |
---|
831 | ALLOCATE & |
---|
832 | & (zlev_nm1(iim,jjm), zlev_n(iim,jjm), zlevuv_nm1(iim,jjm), zlevuv_n(iim,jjm), & |
---|
833 | & SWnet_nm1(iim,jjm), Eair_nm1(iim,jjm), cdrag_nm1(iim,jjm), ccanopy_nm1(iim,jjm), & |
---|
834 | & petAcoef_nm1(iim,jjm), peqAcoef_nm1(iim,jjm), petBcoef_nm1(iim,jjm), peqBcoef_nm1(iim,jjm), & |
---|
835 | & SWnet_n(iim,jjm), Eair_n(iim,jjm), cdrag_n(iim,jjm), ccanopy_n(iim,jjm), & |
---|
836 | & petAcoef_n(iim,jjm), peqAcoef_n(iim,jjm), petBcoef_n(iim,jjm), peqBcoef_n(iim,jjm)) |
---|
837 | ALLOCATE & |
---|
838 | & (mean_coszang(iim,jjm)) |
---|
839 | !- |
---|
840 | IF (check) WRITE(numout,*) 'Memory ALLOCATED' |
---|
841 | !- |
---|
842 | !- We need for the driver surface air temperature and humidity before the |
---|
843 | !- the loop starts. Thus we read it here. |
---|
844 | !- |
---|
845 | CALL forcing_just_read (iim, jjm, zlev, zlevuv, ttm, 1, 1, & |
---|
846 | & swdown, rainf, snowf, tair, & |
---|
847 | & u, v, qair, pb, lwdown, & |
---|
848 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy, & |
---|
849 | & force_id, wind_N_exists, check) |
---|
850 | !---- |
---|
851 | |
---|
852 | !-- First in case it's not a watchout file |
---|
853 | IF ( .NOT. is_watchout ) THEN |
---|
854 | IF ( contfrac_exists ) THEN |
---|
855 | WRITE(numout,*) "contfrac exist in the forcing file." |
---|
856 | CALL flinget_buffer (force_id,'contfrac',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
857 | CALL forcing_zoom(data_full, fcontfrac) |
---|
858 | WRITE(numout,*) "fcontfrac min/max :",MINVAL(fcontfrac(1:iim_zoom,jjm_zoom)),MAXVAL(fcontfrac(1:iim_zoom,jjm_zoom)) |
---|
859 | ! |
---|
860 | ! We need to make sure that when we gather the points we pick all |
---|
861 | ! the points where contfrac is above 0. Thus we prepare tair for |
---|
862 | ! subroutine forcing_landind |
---|
863 | ! |
---|
864 | DO i=1,iim |
---|
865 | DO j=1,jjm |
---|
866 | IF ( j==1 .AND. i<ii_begin) fcontfrac(i,j)=0. ! bande de recouvrement du scatter2D |
---|
867 | IF ( j==jjm .AND. i>ii_end) fcontfrac(i,j)=0. ! => on mets les données qu'on veut pas du noeud à missing_value |
---|
868 | IF ( fcontfrac(i,j) <= EPSILON(1.) ) THEN |
---|
869 | tair(i,j) = 999999. |
---|
870 | ENDIF |
---|
871 | ENDDO |
---|
872 | ENDDO |
---|
873 | ELSE |
---|
874 | fcontfrac(:,:) = 1.0 |
---|
875 | ENDIF |
---|
876 | !--- |
---|
877 | !--- Create the index table |
---|
878 | !--- |
---|
879 | !--- This job return a LOCAL kindex |
---|
880 | CALL forcing_landind(iim, jjm, tair, check, nbindex, kindex, i_test, j_test) |
---|
881 | #ifdef CPP_PARA |
---|
882 | ! We keep previous function forcing_landind, only to get a valid (i_test,j_test) |
---|
883 | ! Force nbindex points for parallel computation |
---|
884 | nbindex=nbp_loc |
---|
885 | CALL scatter(index_g,kindex(1:nbindex)) |
---|
886 | kindex(1:nbindex)=kindex(1:nbindex)-(jj_begin-1)*iim_g |
---|
887 | #endif |
---|
888 | ik=MAX(nbindex/2,1) |
---|
889 | j_test = (((kindex(ik)-1)/iim) + 1) |
---|
890 | i_test = (kindex(ik) - (j_test-1)*iim) |
---|
891 | IF (check) THEN |
---|
892 | WRITE(numout,*) 'New test point is : ', i_test, j_test |
---|
893 | ENDIF |
---|
894 | !--- |
---|
895 | !--- Allocate grid stuff |
---|
896 | !--- |
---|
897 | CALL grid_init ( nbindex, 4, "RegLonLat", "ForcingGrid" ) |
---|
898 | !--- |
---|
899 | !--- All grid variables |
---|
900 | !--- |
---|
901 | CALL grid_stuff(nbp_glo, iim_g, jjm_g, lon_g, lat_g, index_g) |
---|
902 | DO ik=1,nbindex |
---|
903 | ! |
---|
904 | j = ((kindex(ik)-1)/iim) + 1 |
---|
905 | i = (kindex(ik) - (j-1)*iim) |
---|
906 | !- |
---|
907 | !- Store variable to help describe the grid |
---|
908 | !- once the points are gathered. |
---|
909 | !- |
---|
910 | fneighbours(i,j,:) = neighbours(ik,:) |
---|
911 | ! |
---|
912 | fresolution(i,j,:) = resolution(ik,:) |
---|
913 | ENDDO |
---|
914 | ELSE |
---|
915 | !-- Second, in case it is a watchout file |
---|
916 | ALLOCATE (tmpdata(iim,jjm)) |
---|
917 | tmpdata(:,:) = 0.0 |
---|
918 | !-- |
---|
919 | IF ( .NOT. contfrac_exists ) THEN |
---|
920 | CALL ipslerr_p (3,'forcing_read_interpol', & |
---|
921 | & 'Could get contfrac variable in a watchout file :',TRIM(filename), & |
---|
922 | & '(Problem with file ?)') |
---|
923 | ENDIF |
---|
924 | CALL flinget_buffer (force_id,'contfrac',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
925 | CALL forcing_zoom(data_full, fcontfrac) |
---|
926 | ! |
---|
927 | ! We need to make sure that when we gather the points we pick all |
---|
928 | ! the points where contfrac is above 0. Thus we prepare tair for |
---|
929 | ! subroutine forcing_landind |
---|
930 | ! |
---|
931 | DO i=1,iim |
---|
932 | DO j=1,jjm |
---|
933 | IF ( j==1 .AND. i<ii_begin) fcontfrac(i,j)=0. |
---|
934 | IF ( j==jjm .AND. i>ii_end) fcontfrac(i,j)=0. |
---|
935 | IF ( fcontfrac(i,j) <= EPSILON(1.) ) THEN |
---|
936 | tair(i,j) = 999999. |
---|
937 | ENDIF |
---|
938 | ENDDO |
---|
939 | ENDDO |
---|
940 | !--- |
---|
941 | !--- Create the index table |
---|
942 | !--- |
---|
943 | !--- This job return a LOCAL kindex |
---|
944 | CALL forcing_landind(iim, jjm, tair, check, nbindex, kindex, i_test, j_test) |
---|
945 | #ifdef CPP_PARA |
---|
946 | ! We keep previous function forcing_landind, only to get a valid (i_test,j_test) |
---|
947 | ! Force nbindex points for parallel computation |
---|
948 | nbindex=nbp_loc |
---|
949 | CALL scatter(index_g,kindex) |
---|
950 | kindex(:)=kindex(:)-offset |
---|
951 | ! kindex(:)=kindex(:)-(jj_begin-1)*iim_g |
---|
952 | #endif |
---|
953 | ik=MAX(nbindex/2,1) |
---|
954 | j_test = (((kindex(ik)-1)/iim) + 1) |
---|
955 | i_test = (kindex(ik) - (j_test-1)*iim) |
---|
956 | IF (check) THEN |
---|
957 | WRITE(numout,*) 'New test point is : ', i_test, j_test |
---|
958 | ENDIF |
---|
959 | !--- |
---|
960 | !--- Allocate grid stuff |
---|
961 | !--- |
---|
962 | CALL grid_init ( nbindex, 4, "RegLonLat", "ForcingGrid" ) |
---|
963 | neighbours(:,:) = -1 |
---|
964 | resolution(:,:) = 0. |
---|
965 | min_resol(:) = 1.e6 |
---|
966 | max_resol(:) = -1. |
---|
967 | !--- |
---|
968 | !--- All grid variables |
---|
969 | !--- |
---|
970 | !- |
---|
971 | !- Get variables to help describe the grid |
---|
972 | CALL flinquery_var(force_id, 'neighboursNN', neighbours_exists) |
---|
973 | IF ( .NOT. neighbours_exists ) THEN |
---|
974 | CALL ipslerr_p (3,'forcing_read_interpol', & |
---|
975 | & 'Could get neighbours in a watchout file :',TRIM(filename), & |
---|
976 | & '(Problem with file ?)') |
---|
977 | ELSE |
---|
978 | WRITE(numout,*) "Watchout file contains neighbours and resolutions." |
---|
979 | ENDIF |
---|
980 | ! |
---|
981 | fneighbours(:,:,:) = undef_int |
---|
982 | ! |
---|
983 | !- once the points are gathered. |
---|
984 | CALL flinget_buffer (force_id,'neighboursNN',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
985 | CALL forcing_zoom(data_full, tmpdata) |
---|
986 | WHERE(tmpdata(:,:) < undef_int) |
---|
987 | fneighbours(:,:,1) = NINT(tmpdata(:,:)) |
---|
988 | ENDWHERE |
---|
989 | ! |
---|
990 | CALL flinget_buffer (force_id,'neighboursNE',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
991 | CALL forcing_zoom(data_full, tmpdata) |
---|
992 | WHERE(tmpdata(:,:) < undef_int) |
---|
993 | fneighbours(:,:,2) = NINT(tmpdata(:,:)) |
---|
994 | ENDWHERE |
---|
995 | ! |
---|
996 | CALL flinget_buffer (force_id,'neighboursEE',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
997 | CALL forcing_zoom(data_full, tmpdata) |
---|
998 | WHERE(tmpdata(:,:) < undef_int) |
---|
999 | fneighbours(:,:,3) = NINT(tmpdata(:,:)) |
---|
1000 | ENDWHERE |
---|
1001 | ! |
---|
1002 | CALL flinget_buffer (force_id,'neighboursSE',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1003 | CALL forcing_zoom(data_full, tmpdata) |
---|
1004 | WHERE(tmpdata(:,:) < undef_int) |
---|
1005 | fneighbours(:,:,4) = NINT(tmpdata(:,:)) |
---|
1006 | ENDWHERE |
---|
1007 | ! |
---|
1008 | CALL flinget_buffer (force_id,'neighboursSS',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1009 | CALL forcing_zoom(data_full, tmpdata) |
---|
1010 | WHERE(tmpdata(:,:) < undef_int) |
---|
1011 | fneighbours(:,:,5) = NINT(tmpdata(:,:)) |
---|
1012 | ENDWHERE |
---|
1013 | ! |
---|
1014 | CALL flinget_buffer (force_id,'neighboursSW',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1015 | CALL forcing_zoom(data_full, tmpdata) |
---|
1016 | WHERE(tmpdata(:,:) < undef_int) |
---|
1017 | fneighbours(:,:,6) = NINT(tmpdata(:,:)) |
---|
1018 | ENDWHERE |
---|
1019 | ! |
---|
1020 | CALL flinget_buffer (force_id,'neighboursWW',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1021 | CALL forcing_zoom(data_full, tmpdata) |
---|
1022 | WHERE(tmpdata(:,:) < undef_int) |
---|
1023 | fneighbours(:,:,7) = NINT(tmpdata(:,:)) |
---|
1024 | ENDWHERE |
---|
1025 | ! |
---|
1026 | CALL flinget_buffer (force_id,'neighboursNW',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1027 | CALL forcing_zoom(data_full, tmpdata) |
---|
1028 | WHERE(tmpdata(:,:) < undef_int) |
---|
1029 | fneighbours(:,:,8) = NINT(tmpdata(:,:)) |
---|
1030 | ENDWHERE |
---|
1031 | ! |
---|
1032 | ! now, resolution of the grid |
---|
1033 | CALL flinget_buffer (force_id,'resolutionX',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1034 | CALL forcing_zoom(data_full, tmpdata) |
---|
1035 | fresolution(:,:,1) = tmpdata(:,:) |
---|
1036 | ! |
---|
1037 | CALL flinget_buffer (force_id,'resolutionY',iim_full, jjm_full, llm_full, ttm, 1, 1, data_full) |
---|
1038 | CALL forcing_zoom(data_full, tmpdata) |
---|
1039 | fresolution(:,:,2) = tmpdata(:,:) |
---|
1040 | ! |
---|
1041 | DO ik=1,nbindex |
---|
1042 | ! |
---|
1043 | j = ((kindex(ik)-1)/iim) + 1 |
---|
1044 | i = (kindex(ik) - (j-1)*iim) |
---|
1045 | !- |
---|
1046 | !- Store variable to help describe the grid |
---|
1047 | !- once the points are gathered. |
---|
1048 | !- |
---|
1049 | neighbours(ik,:) = fneighbours(i,j,:) |
---|
1050 | ! |
---|
1051 | resolution(ik,:) = fresolution(i,j,:) |
---|
1052 | ! |
---|
1053 | |
---|
1054 | ENDDO |
---|
1055 | CALL gather(neighbours,neighbours_g) |
---|
1056 | CALL gather(resolution,resolution_g) |
---|
1057 | min_resol(1) = MINVAL(resolution(:,1)) |
---|
1058 | min_resol(2) = MAXVAL(resolution(:,2)) |
---|
1059 | max_resol(1) = MAXVAL(resolution(:,1)) |
---|
1060 | max_resol(2) = MAXVAL(resolution(:,2)) |
---|
1061 | ! |
---|
1062 | area(:) = resolution(:,1)*resolution(:,2) |
---|
1063 | CALL gather(area,area_g) |
---|
1064 | !-- |
---|
1065 | DEALLOCATE (tmpdata) |
---|
1066 | ENDIF |
---|
1067 | WRITE(numout,*) 'contfrac : ', MINVAL(fcontfrac), MAXVAL(fcontfrac) |
---|
1068 | !--- |
---|
1069 | ENDIF |
---|
1070 | !--- |
---|
1071 | IF (check) THEN |
---|
1072 | WRITE(numout,*) & |
---|
1073 | & 'The dates : ',itau_read,itau_split,itau_read_nm1,itau_read_n |
---|
1074 | ENDIF |
---|
1075 | !--- |
---|
1076 | !--- Here we do the work in case only interpolation is needed. |
---|
1077 | !--- |
---|
1078 | IF ( initialized .AND. interpol ) THEN |
---|
1079 | !--- |
---|
1080 | IF ( daily_interpol ) THEN |
---|
1081 | |
---|
1082 | IF (split > 1) THEN |
---|
1083 | IF ( itau_split <= (split/2.) ) THEN |
---|
1084 | rw = REAL(itau_split+split/2.)/split |
---|
1085 | ELSE |
---|
1086 | rw = REAL(itau_split-split/2.)/split |
---|
1087 | ENDIF |
---|
1088 | ELSE |
---|
1089 | rw = 1. |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | IF ((last_read == 0) .OR. ( rw==(1./split)) ) THEN |
---|
1093 | !--- |
---|
1094 | !----- Start or Restart |
---|
1095 | IF (last_read == 0) THEN |
---|
1096 | ! Case of a restart or a shift in the forcing file. |
---|
1097 | IF (itau_read > 1) THEN |
---|
1098 | itau_read_nm1=itau_read-1 |
---|
1099 | CALL forcing_just_read (iim, jjm, zlev_nm1, zlevuv_nm1, ttm, itau_read_nm1, itau_read_nm1, & |
---|
1100 | & swdown_nm1, rainf_nm1, snowf_nm1, tmin_nm1, & |
---|
1101 | & u_nm1, v_nm1, qair_nm1, pb_nm1, lwdown_nm1, & |
---|
1102 | & SWnet_nm1, Eair_nm1, petAcoef_nm1, peqAcoef_nm1, petBcoef_nm1, peqBcoef_nm1, cdrag_nm1, ccanopy_nm1, & |
---|
1103 | & force_id, wind_N_exists, check) |
---|
1104 | CALL forcing_just_read_tmax (iim, jjm, ttm, itau_read_nm1, itau_read_nm1, tmax_nm1, force_id ) |
---|
1105 | ! Case of a simple start. |
---|
1106 | ELSE |
---|
1107 | itau_read_nm1 = un |
---|
1108 | WRITE(numout,*) "we will use the forcing of the first day to initialize " |
---|
1109 | CALL forcing_just_read (iim, jjm, zlev_nm1, zlevuv_nm1, ttm, itau_read_nm1, itau_read_nm1, & |
---|
1110 | & swdown_nm1, rainf_nm1, snowf_nm1, tmin_nm1, & |
---|
1111 | & u_nm1, v_nm1, qair_nm1, pb_nm1, lwdown_nm1, & |
---|
1112 | & SWnet_nm1, Eair_nm1, petAcoef_nm1, peqAcoef_nm1, petBcoef_nm1, peqBcoef_nm1, cdrag_nm1, ccanopy_nm1, & |
---|
1113 | & force_id, wind_N_exists, check) |
---|
1114 | CALL forcing_just_read_tmax (iim, jjm, ttm, itau_read_nm1, itau_read_nm1, tmax_nm1, force_id ) |
---|
1115 | ENDIF |
---|
1116 | tmin_nm2(:,:)=tmin_nm1(:,:) |
---|
1117 | IF ( dt_force .GT. 3600. ) THEN |
---|
1118 | mean_coszang(:,:) = 0.0 |
---|
1119 | daylength_n(:,:) = 0. |
---|
1120 | DO is=1,split |
---|
1121 | !MM we compute mean SWdown between t and t+Dt then I take t+Dt/2. |
---|
1122 | julian = julian_for+((is-0.5)/split)*dt_force/one_day |
---|
1123 | !!$ julian = julian_for+(FLOAT(is)/split)*dt_force/one_day |
---|
1124 | CALL solarang (julian, julian0, iim, jjm, lon*0, lat, coszang) |
---|
1125 | mean_coszang(:,:) = mean_coszang(:,:)+coszang(:,:) |
---|
1126 | WHERE( coszang(:,:) > 0. ) |
---|
1127 | daylength_n(:,:)=daylength_n(:,:)+1./split*24 |
---|
1128 | ENDWHERE |
---|
1129 | ENDDO |
---|
1130 | mean_coszang(:,:) = mean_coszang(:,:)/split |
---|
1131 | daylength_nm1(:,:)=daylength_n(:,:) |
---|
1132 | ! WRITE(*,*) "mean_coszang =",MAXVAL(mean_coszang) |
---|
1133 | ENDIF |
---|
1134 | ELSE |
---|
1135 | !----- Normal mode : copy old step |
---|
1136 | swdown_nm1(:,:) = swdown_n(:,:) |
---|
1137 | rainf_nm1(:,:) = rainf_n(:,:) |
---|
1138 | snowf_nm1(:,:) = snowf_n(:,:) |
---|
1139 | tair_nm1(:,:) = tair_n(:,:) |
---|
1140 | u_nm1(:,:) = u_n(:,:) |
---|
1141 | v_nm1(:,:) = v_n(:,:) |
---|
1142 | qair_nm1(:,:) = qair_n(:,:) |
---|
1143 | pb_nm1(:,:) = pb_n(:,:) |
---|
1144 | lwdown_nm1(:,:) = lwdown_n(:,:) |
---|
1145 | tmin_nm2(:,:) = tmin_nm1(:,:) |
---|
1146 | tmin_nm1(:,:) = tmin_n(:,:) |
---|
1147 | tmax_nm1(:,:) = tmax_n(:,:) |
---|
1148 | |
---|
1149 | IF (is_watchout) THEN |
---|
1150 | zlev_nm1(:,:) = zlev_n(:,:) |
---|
1151 | zlevuv_nm1(:,:) = zlevuv_n(:,:) |
---|
1152 | ! Net surface short-wave flux |
---|
1153 | SWnet_nm1(:,:) = SWnet_n(:,:) |
---|
1154 | ! Air potential energy |
---|
1155 | Eair_nm1(:,:) = Eair_n(:,:) |
---|
1156 | ! Coeficients A from the PBL resolution for T |
---|
1157 | petAcoef_nm1(:,:) = petAcoef_n(:,:) |
---|
1158 | ! Coeficients A from the PBL resolution for q |
---|
1159 | peqAcoef_nm1(:,:) = peqAcoef_n(:,:) |
---|
1160 | ! Coeficients B from the PBL resolution for T |
---|
1161 | petBcoef_nm1(:,:) = petBcoef_n(:,:) |
---|
1162 | ! Coeficients B from the PBL resolution for q |
---|
1163 | peqBcoef_nm1(:,:) = peqBcoef_n(:,:) |
---|
1164 | ! Surface drag |
---|
1165 | cdrag_nm1(:,:) = cdrag_n(:,:) |
---|
1166 | ! CO2 concentration in the canopy |
---|
1167 | ccanopy_nm1(:,:) = ccanopy_n(:,:) |
---|
1168 | ENDIF |
---|
1169 | itau_read_nm1 = itau_read_n |
---|
1170 | ENDIF |
---|
1171 | !----- |
---|
1172 | !----- |
---|
1173 | IF(last_read==0)THEN |
---|
1174 | itau_read_n = itau_read |
---|
1175 | ELSE |
---|
1176 | itau_read_n = itau_read+1 |
---|
1177 | ENDIF |
---|
1178 | |
---|
1179 | IF (itau_read_n > ttm) THEN |
---|
1180 | WRITE(numout,*) 'WARNING --WARNING --WARNING --WARNING ' |
---|
1181 | WRITE(numout,*) & |
---|
1182 | & 'WARNING : We are going back to the start of the file' |
---|
1183 | itau_read_n =1 |
---|
1184 | ENDIF |
---|
1185 | IF (check) THEN |
---|
1186 | WRITE(numout,*) & |
---|
1187 | & 'The dates 2 : ',itau_read,itau_split,itau_read_nm1,itau_read_n |
---|
1188 | ENDIF |
---|
1189 | !----- |
---|
1190 | !----- Get a reduced julian day ! |
---|
1191 | !----- This is needed because we lack the precision on 32 bit machines. |
---|
1192 | !----- |
---|
1193 | IF ( dt_force .GT. 3600. ) THEN |
---|
1194 | julian_for = itau2date(itau_read-1, date0, dt_force) |
---|
1195 | CALL ju2ymds (julian_for, yy, mm, dd, ss) |
---|
1196 | |
---|
1197 | ! first day of this year |
---|
1198 | CALL ymds2ju (yy,1,1,0.0, julian0) |
---|
1199 | !----- |
---|
1200 | IF (check) THEN |
---|
1201 | WRITE(numout,*) 'Forcing for Julian day ',julian_for,'is read' |
---|
1202 | WRITE(numout,*) 'Date for this day ',yy,' / ',mm,' / ',dd," ",ss |
---|
1203 | ENDIF |
---|
1204 | ENDIF |
---|
1205 | !----- |
---|
1206 | CALL forcing_just_read (iim, jjm, zlev_n, zlevuv_n, ttm, itau_read_n, itau_read_n, & |
---|
1207 | & swdown_n, rainf_n, snowf_n, tmin_n, & |
---|
1208 | & u_n, v_n, qair_n, pb_n, lwdown_n, & |
---|
1209 | & SWnet_n, Eair_n, petAcoef_n, peqAcoef_n, petBcoef_n, peqBcoef_n, cdrag_n, ccanopy_n, & |
---|
1210 | & force_id, wind_N_exists, check) |
---|
1211 | CALL forcing_just_read_tmax (iim, jjm, ttm, itau_read_n, itau_read_n, tmax_n, force_id ) |
---|
1212 | |
---|
1213 | !--- |
---|
1214 | last_read = itau_read_n |
---|
1215 | !----- |
---|
1216 | !----- Compute mean solar angle for the comming period |
---|
1217 | !----- |
---|
1218 | IF (check) WRITE(numout,*) 'Going into solarang', split, one_day |
---|
1219 | !----- |
---|
1220 | |
---|
1221 | !----- |
---|
1222 | ENDIF |
---|
1223 | !--- |
---|
1224 | IF ( itau_split == 1. ) THEN |
---|
1225 | IF ( dt_force .GT. 3600. ) THEN |
---|
1226 | mean_coszang(:,:) = 0.0 |
---|
1227 | daylength_nm1(:,:)=daylength_n(:,:) |
---|
1228 | daylength_n(:,:) = 0. |
---|
1229 | DO is=1,split |
---|
1230 | !MM we compute mean SWdown between t and t+Dt then I take t+Dt/2. |
---|
1231 | julian = julian_for+((is-0.5)/split)*dt_force/one_day |
---|
1232 | !!$ julian = julian_for+(FLOAT(is)/split)*dt_force/one_day |
---|
1233 | CALL solarang (julian, julian0, iim, jjm, lon*0, lat, coszang) |
---|
1234 | mean_coszang(:,:) = mean_coszang(:,:)+coszang(:,:) |
---|
1235 | WHERE( coszang(:,:) > 0. ) |
---|
1236 | daylength_n(:,:)=daylength_n(:,:)+1./split*24 |
---|
1237 | ENDWHERE |
---|
1238 | ENDDO |
---|
1239 | mean_coszang(:,:) = mean_coszang(:,:)/split |
---|
1240 | ! WRITE(*,*) "mean_coszang =",MAXVAL(mean_coszang) |
---|
1241 | ENDIF |
---|
1242 | ENDIF |
---|
1243 | |
---|
1244 | !--- Do the interpolation |
---|
1245 | IF (check) WRITE(numout,*) 'Doing the interpolation between time steps' |
---|
1246 | !--- |
---|
1247 | |
---|
1248 | IF (check) WRITE(numout,*) 'Coeff of interpollation : ',rw |
---|
1249 | !--- |
---|
1250 | |
---|
1251 | pb(:,:) = (pb_n(:,:)-pb_nm1(:,:))*rw + pb_nm1(:,:) |
---|
1252 | u(:,:) = (u_n(:,:)-u_nm1(:,:))*rw + u_nm1(:,:) |
---|
1253 | v(:,:) = (v_n(:,:)-v_nm1(:,:))*rw + v_nm1(:,:) |
---|
1254 | |
---|
1255 | !--- Take care of the height of the vertical levels |
---|
1256 | zlev(:,:) = (zlev_n(:,:)-zlev_nm1(:,:))*rw + zlev_nm1(:,:) |
---|
1257 | zlevuv(:,:) = (zlevuv_n(:,:)-zlevuv_nm1(:,:))*rw + zlevuv_nm1(:,:) |
---|
1258 | |
---|
1259 | hour=REAL(itau_split)/split*24 |
---|
1260 | startday_n(:,:)=12.-daylength_n(:,:)/2. |
---|
1261 | startday_nm1(:,:)=12.-daylength_nm1(:,:)/2. |
---|
1262 | |
---|
1263 | WHERE ( ( hour >= startday_n(:,:) ) .AND. ( hour > 12) .AND. ( hour <= 14) ) |
---|
1264 | tair(:,:)=(tmax_nm1(:,:)-tmin_nm1(:,:))/2 * ( sin(pi/(14-startday_n(:,:))*(hour-0.5* & |
---|
1265 | & (14.-startday_n(:,:))-startday_n(:,:))) )+ (tmax_nm1(:,:)+tmin_nm1(:,:))/2. |
---|
1266 | ELSEWHERE( ( hour >= startday_n(:,:) ) .AND. ( hour <= 12) ) |
---|
1267 | tair(:,:)=(tmax_n(:,:)-tmin_n(:,:))/2 * ( sin(pi/(14-startday_n(:,:))*(hour-0.5* & |
---|
1268 | & (14.-startday_n(:,:))-startday_n(:,:))) )+ (tmax_n(:,:)+tmin_n(:,:))/2. |
---|
1269 | ELSEWHERE ( hour < startday_n(:,:) ) |
---|
1270 | tair(:,:)=(tmax_nm1(:,:)-tmin_n(:,:))/2.*sin(pi/(24.-14.+startday_nm1(:,:) )* & |
---|
1271 | & (hour + 24.+0.5*(24.-14.+startday_nm1(:,:) )-14.))+(tmax_nm1(:,:)+tmin_n(:,:))/2. |
---|
1272 | ELSEWHERE |
---|
1273 | tair(:,:)=(tmax_nm1(:,:)-tmin_n(:,:))/2.*sin(pi/(24.-14.+startday_n(:,:))*(hour+0.5* & |
---|
1274 | & (24.-14.+startday_n(:,:))-14.))+(tmax_nm1(:,:)+tmin_n(:,:))/2. |
---|
1275 | ENDWHERE |
---|
1276 | |
---|
1277 | CALL weathgen_qsat_2d (iim,jjm,tmin_n,pb,qsattmin_n) |
---|
1278 | CALL weathgen_qsat_2d (iim,jjm,tmin_nm1,pb,qsattmin_nm1) |
---|
1279 | CALL weathgen_qsat_2d (iim,jjm,tair,pb,qsatta) |
---|
1280 | |
---|
1281 | !--- |
---|
1282 | qmin_nm1(:,:) = MIN(qair_nm1(:,:),0.99*qsattmin_nm1(:,:)) |
---|
1283 | qmin_n(:,:) = MIN(qair_n(:,:),0.99*qsattmin_n(:,:)) |
---|
1284 | qmax_nm1(:,:) = (qair_nm1(:,:)-qmin_nm1(:,:)) + qair_nm1(:,:) |
---|
1285 | qmax_n(:,:) = (qair_n(:,:)-qmin_n(:,:)) + qair_n(:,:) |
---|
1286 | |
---|
1287 | qsa(:,:) = 0.99*qsatta(:,:) |
---|
1288 | |
---|
1289 | |
---|
1290 | WHERE ( ( hour >= startday_n(:,:) ) .AND. ( hour > 12) .AND. ( hour <= 14) ) |
---|
1291 | qair(:,:)=MIN(qsa(:,:),(qmax_nm1(:,:)-qmin_nm1(:,:))/2 * ( sin(pi/(14-startday_n(:,:))*(hour-0.5* & |
---|
1292 | & (14.-startday_n(:,:))-startday_n(:,:))) )+ (qmax_nm1(:,:)+qmin_nm1(:,:))/2.) |
---|
1293 | ELSEWHERE( ( hour >= startday_n(:,:) ) .AND. ( hour <= 12) ) |
---|
1294 | qair(:,:)=MIN(qsa(:,:),(qmax_n(:,:)-qmin_n(:,:))/2 * ( sin(pi/(14-startday_n(:,:))*(hour-0.5* & |
---|
1295 | & (14.-startday_n(:,:))-startday_n(:,:))) )+ (qmax_n(:,:)+qmin_n(:,:))/2.) |
---|
1296 | ELSEWHERE ( hour < startday_n(:,:) ) |
---|
1297 | qair(:,:)=MIN(qsa(:,:),(qmax_nm1(:,:)-qmin_n(:,:))/2.*sin(pi/(24.-14.+startday_nm1(:,:) )* & |
---|
1298 | & (hour + 24.+0.5*(24.-14.+startday_nm1(:,:) )-14.))+(qmax_nm1(:,:)+qmin_n(:,:))/2.) |
---|
1299 | ELSEWHERE |
---|
1300 | qair(:,:)=MIN(qsa(:,:),(qmax_nm1(:,:)-qmin_n(:,:))/2.*sin(pi/(24.-14.+startday_n(:,:))*(hour+0.5* & |
---|
1301 | & (24.-14.+startday_n(:,:))-14.))+(qmax_nm1(:,:)+qmin_n(:,:))/2.) |
---|
1302 | ENDWHERE |
---|
1303 | |
---|
1304 | IF (is_watchout) THEN |
---|
1305 | SWnet(:,:) = (SWnet_n(:,:)-SWnet_nm1(:,:))*rw + SWnet_nm1(:,:) |
---|
1306 | Eair(:,:) = (Eair_n(:,:)-Eair_nm1(:,:))*rw + Eair_nm1(:,:) |
---|
1307 | petAcoef(:,:) = (petAcoef_n(:,:)-petAcoef_nm1(:,:))*rw + petAcoef_nm1(:,:) |
---|
1308 | peqAcoef(:,:) = (peqAcoef_n(:,:)-peqAcoef_nm1(:,:))*rw + peqAcoef_nm1(:,:) |
---|
1309 | petBcoef(:,:) = (petBcoef_n(:,:)-petBcoef_nm1(:,:))*rw + petBcoef_nm1(:,:) |
---|
1310 | peqBcoef(:,:) = (peqBcoef_n(:,:)-peqBcoef_nm1(:,:))*rw + peqBcoef_nm1(:,:) |
---|
1311 | cdrag(:,:) = (cdrag_n(:,:)-cdrag_nm1(:,:))*rw + cdrag_nm1(:,:) |
---|
1312 | ccanopy(:,:) = (ccanopy_n(:,:)-ccanopy_nm1(:,:))*rw + ccanopy_nm1(:,:) |
---|
1313 | ENDIF |
---|
1314 | !--- |
---|
1315 | !--- Here we need to allow for an option |
---|
1316 | !--- where radiative energy is conserved |
---|
1317 | !--- |
---|
1318 | IF ( netrad_cons ) THEN |
---|
1319 | lwdown(:,:) = lwdown_n(:,:) |
---|
1320 | ELSE |
---|
1321 | lwdown(:,:) = (lwdown_n(:,:)-lwdown_nm1(:,:))*rw + lwdown_nm1(:,:) |
---|
1322 | ENDIF |
---|
1323 | !--- |
---|
1324 | !--- For the solar radiation we decompose the mean value |
---|
1325 | !--- using the zenith angle of the sun if the time step in the forcing data is |
---|
1326 | !---- more than an hour. Else we use the standard linera interpolation |
---|
1327 | !---- |
---|
1328 | IF (check) WRITE(numout,*) 'Ready to deal with the solar radiation' |
---|
1329 | !---- |
---|
1330 | IF ( dt_force .GT. 3600. ) THEN |
---|
1331 | !--- |
---|
1332 | IF ( netrad_cons ) THEN |
---|
1333 | WRITE(numout,*) 'Solar radiation can not be conserved with a timestep of ', dt_force |
---|
1334 | ENDIF |
---|
1335 | !--- |
---|
1336 | !MM we compute mean SWdown between t and t+Dt then I take t+Dt/2. |
---|
1337 | julian = julian_for + (itau_split-0.5)/split*dt_force/one_day |
---|
1338 | !!$ julian = julian_for + rw*dt_force/one_day |
---|
1339 | IF (check) THEN |
---|
1340 | WRITE(numout,'(a,f20.10,2I3)') & |
---|
1341 | & 'JULIAN BEFORE SOLARANG : ',julian,itau_split,split |
---|
1342 | ENDIF |
---|
1343 | !--- |
---|
1344 | CALL solarang(julian, julian0, iim, jjm, lon*0, lat, coszang) |
---|
1345 | !--- |
---|
1346 | |
---|
1347 | WHERE ((mean_coszang(:,:) > 0.) .AND. (hour <= 12 )) |
---|
1348 | swdown(:,:) = swdown_n(:,:) *coszang(:,:)/mean_coszang(:,:) |
---|
1349 | ELSEWHERE ((mean_coszang(:,:) > 0.) .AND. (hour > 12 )) |
---|
1350 | swdown(:,:) = swdown_nm1(:,:) *coszang(:,:)/mean_coszang(:,:) |
---|
1351 | ELSEWHERE |
---|
1352 | swdown(:,:) = 0.0 |
---|
1353 | END WHERE |
---|
1354 | !--- |
---|
1355 | WHERE (swdown(:,:) > 2000. ) |
---|
1356 | swdown(:,:) = 2000. |
---|
1357 | END WHERE |
---|
1358 | !--- |
---|
1359 | ELSE |
---|
1360 | !--- |
---|
1361 | IF ( netrad_cons ) THEN |
---|
1362 | swdown(:,:) = swdown_n(:,:) |
---|
1363 | ELSE |
---|
1364 | swdown(:,:) = (swdown_n(:,:)-swdown_nm1(:,:))*rw + swdown_nm1(:,:) |
---|
1365 | ENDIF |
---|
1366 | !--- |
---|
1367 | ENDIF |
---|
1368 | !--- |
---|
1369 | IF (check) THEN |
---|
1370 | WRITE(numout,*) '__ Forcing read at ',itau_split,' :',i_test, j_test |
---|
1371 | WRITE(numout,*) 'SWdown : ',swdown_nm1(i_test, j_test), & |
---|
1372 | & ' < ', swdown(i_test, j_test), ' < ', swdown_n(i_test, j_test) |
---|
1373 | IF (is_watchout) THEN |
---|
1374 | WRITE(numout,*) 'SWnet : ',swnet_nm1(i_test, j_test), & |
---|
1375 | & ' < ', swnet(i_test, j_test), ' < ', swnet_n(i_test, j_test) |
---|
1376 | WRITE(numout,*) 'levels :',zlev_nm1(i_test, j_test), & |
---|
1377 | & ' < ', zlev(i_test, j_test), ' < ', zlev_n(i_test, j_test) |
---|
1378 | WRITE(numout,*) 'EAIR :',Eair_nm1(i_test, j_test), & |
---|
1379 | & ' < ', eair(i_test, j_test), ' < ', Eair_n(i_test, j_test) |
---|
1380 | ENDIF |
---|
1381 | WRITE(numout,*) 'TAIR :',tair_nm1(i_test, j_test), & |
---|
1382 | & ' < ', tair(i_test, j_test), ' < ', tair_n(i_test, j_test) |
---|
1383 | WRITE(numout,*) 'QAIR :',qair_nm1(i_test, j_test), & |
---|
1384 | & ' < ', qair(i_test, j_test), ' < ', qair_n(i_test, j_test) |
---|
1385 | WRITE(numout,*) 'U :',u_nm1(i_test, j_test), & |
---|
1386 | & ' < ', u(i_test, j_test), ' < ', u_n(i_test, j_test) |
---|
1387 | WRITE(numout,*) 'V :',v_nm1(i_test, j_test), & |
---|
1388 | & ' < ', v(i_test, j_test), ' < ', v_n(i_test, j_test) |
---|
1389 | ENDIF |
---|
1390 | !--- |
---|
1391 | !--- For precip we suppose that the rain |
---|
1392 | !--- is the sum over the next 6 hours |
---|
1393 | !--- |
---|
1394 | WHERE ((itau_split <= nb_spread).AND.(hour<=12).AND.(tair(:,:)>=273.15)) |
---|
1395 | rainf(:,:) = rainf_n(:,:) *(split/REAL(nb_spread)) |
---|
1396 | snowf(:,:) = 0.0 |
---|
1397 | ELSEWHERE ((itau_split <= nb_spread).AND.(hour<=12).AND.(tair(:,:)<273.15)) |
---|
1398 | snowf(:,:) = rainf_n(:,:) *(split/REAL(nb_spread)) |
---|
1399 | rainf(:,:) = 0.0 |
---|
1400 | ELSEWHERE ((itau_split <= nb_spread).AND.(hour>12).AND.(tair(:,:)>=273.15)) |
---|
1401 | rainf(:,:) = rainf_nm1(:,:) *(split/REAL(nb_spread)) |
---|
1402 | snowf(:,:) = 0.0 |
---|
1403 | ELSEWHERE ((itau_split <= nb_spread).AND.(hour>12).AND.(tair(:,:)<273.15)) |
---|
1404 | snowf(:,:) = rainf_nm1(:,:) *(split/REAL(nb_spread)) |
---|
1405 | rainf(:,:) = 0.0 |
---|
1406 | ELSEWHERE |
---|
1407 | snowf(:,:) = 0.0 |
---|
1408 | rainf(:,:) = 0.0 |
---|
1409 | ENDWHERE |
---|
1410 | |
---|
1411 | IF (check) THEN |
---|
1412 | WRITE(numout,*) '__ Forcing read at ',itau_split,' :' |
---|
1413 | WRITE(numout,*) 'Rainf : ',rainf_nm1(i_test, j_test), & |
---|
1414 | & ' < ', rainf(i_test, j_test), ' < ', rainf_n(i_test, j_test) |
---|
1415 | WRITE(numout,*) 'Snowf : ',snowf_nm1(i_test, j_test), & |
---|
1416 | & ' < ', snowf(i_test, j_test), ' < ', snowf_n(i_test, j_test) |
---|
1417 | ENDIF |
---|
1418 | !--- |
---|
1419 | |
---|
1420 | |
---|
1421 | ELSE |
---|
1422 | |
---|
1423 | IF (itau_read /= last_read) THEN |
---|
1424 | !--- |
---|
1425 | !----- Start or Restart |
---|
1426 | IF (itau_read_n == 0) THEN |
---|
1427 | ! Case of a restart or a shift in the forcing file. |
---|
1428 | IF (itau_read > 1) THEN |
---|
1429 | itau_read_nm1=itau_read-1 |
---|
1430 | CALL forcing_just_read (iim, jjm, zlev_nm1, zlevuv_nm1, ttm, itau_read_nm1, itau_read_nm1, & |
---|
1431 | & swdown_nm1, rainf_nm1, snowf_nm1, tair_nm1, & |
---|
1432 | & u_nm1, v_nm1, qair_nm1, pb_nm1, lwdown_nm1, & |
---|
1433 | & SWnet_nm1, Eair_nm1, petAcoef_nm1, peqAcoef_nm1, petBcoef_nm1, peqBcoef_nm1, cdrag_nm1, ccanopy_nm1, & |
---|
1434 | & force_id, wind_N_exists, check) |
---|
1435 | ! Case of a simple start. |
---|
1436 | ELSE IF (dt_force*ttm > one_day-1. ) THEN |
---|
1437 | ! if the forcing file contains at least 24 hours, |
---|
1438 | ! we will use the last forcing step of the first day |
---|
1439 | ! as initiale condition to prevent first shift off reading. |
---|
1440 | itau_read_nm1 = NINT (one_day/dt_force) |
---|
1441 | WRITE(numout,*) "the forcing file contains 24 hours :",dt_force*ttm,one_day-1. |
---|
1442 | WRITE(numout,*) "we will use the last forcing step of the first day : itau_read_nm1 ",itau_read_nm1 |
---|
1443 | CALL forcing_just_read (iim, jjm, zlev_nm1, zlevuv_nm1, ttm, itau_read_nm1, itau_read_nm1, & |
---|
1444 | & swdown_nm1, rainf_nm1, snowf_nm1, tair_nm1, & |
---|
1445 | & u_nm1, v_nm1, qair_nm1, pb_nm1, lwdown_nm1, & |
---|
1446 | & SWnet_nm1, Eair_nm1, petAcoef_nm1, peqAcoef_nm1, petBcoef_nm1, peqBcoef_nm1, cdrag_nm1, ccanopy_nm1, & |
---|
1447 | & force_id, wind_N_exists, check) |
---|
1448 | ELSE |
---|
1449 | ! if the forcing file contains less than 24 hours, |
---|
1450 | ! just say error ! |
---|
1451 | CALL ipslerr_p(3,'forcing_read_interpol', & |
---|
1452 | & 'The forcing file contains less than 24 hours !', & |
---|
1453 | & 'We can''t intialize interpolation with such a file.','') |
---|
1454 | ENDIF |
---|
1455 | ELSE |
---|
1456 | !----- Normal mode : copy old step |
---|
1457 | swdown_nm1(:,:) = swdown_n(:,:) |
---|
1458 | rainf_nm1(:,:) = rainf_n(:,:) |
---|
1459 | snowf_nm1(:,:) = snowf_n(:,:) |
---|
1460 | tair_nm1(:,:) = tair_n(:,:) |
---|
1461 | u_nm1(:,:) = u_n(:,:) |
---|
1462 | v_nm1(:,:) = v_n(:,:) |
---|
1463 | qair_nm1(:,:) = qair_n(:,:) |
---|
1464 | pb_nm1(:,:) = pb_n(:,:) |
---|
1465 | lwdown_nm1(:,:) = lwdown_n(:,:) |
---|
1466 | IF (is_watchout) THEN |
---|
1467 | zlev_nm1(:,:) = zlev_n(:,:) |
---|
1468 | ! Net surface short-wave flux |
---|
1469 | SWnet_nm1(:,:) = SWnet_n(:,:) |
---|
1470 | ! Air potential energy |
---|
1471 | Eair_nm1(:,:) = Eair_n(:,:) |
---|
1472 | ! Coeficients A from the PBL resolution for T |
---|
1473 | petAcoef_nm1(:,:) = petAcoef_n(:,:) |
---|
1474 | ! Coeficients A from the PBL resolution for q |
---|
1475 | peqAcoef_nm1(:,:) = peqAcoef_n(:,:) |
---|
1476 | ! Coeficients B from the PBL resolution for T |
---|
1477 | petBcoef_nm1(:,:) = petBcoef_n(:,:) |
---|
1478 | ! Coeficients B from the PBL resolution for q |
---|
1479 | peqBcoef_nm1(:,:) = peqBcoef_n(:,:) |
---|
1480 | ! Surface drag |
---|
1481 | cdrag_nm1(:,:) = cdrag_n(:,:) |
---|
1482 | ! CO2 concentration in the canopy |
---|
1483 | ccanopy_nm1(:,:) = ccanopy_n(:,:) |
---|
1484 | ENDIF |
---|
1485 | itau_read_nm1 = itau_read_n |
---|
1486 | ENDIF |
---|
1487 | !----- |
---|
1488 | itau_read_n = itau_read |
---|
1489 | IF (itau_read_n > ttm) THEN |
---|
1490 | WRITE(numout,*) 'WARNING --WARNING --WARNING --WARNING ' |
---|
1491 | WRITE(numout,*) & |
---|
1492 | & 'WARNING : We are going back to the start of the file' |
---|
1493 | itau_read_n =1 |
---|
1494 | ENDIF |
---|
1495 | IF (check) THEN |
---|
1496 | WRITE(numout,*) & |
---|
1497 | & 'The dates 2 : ',itau_read,itau_split,itau_read_nm1,itau_read_n |
---|
1498 | ENDIF |
---|
1499 | !----- |
---|
1500 | !----- Get a reduced julian day ! |
---|
1501 | !----- This is needed because we lack the precision on 32 bit machines. |
---|
1502 | !----- |
---|
1503 | IF ( dt_force .GT. 3600. ) THEN |
---|
1504 | julian_for = itau2date(itau_read-1, date0, dt_force) |
---|
1505 | CALL ju2ymds (julian_for, yy, mm, dd, ss) |
---|
1506 | |
---|
1507 | ! first day of this year |
---|
1508 | CALL ymds2ju (yy,1,1,0.0, julian0) |
---|
1509 | !----- |
---|
1510 | IF (check) THEN |
---|
1511 | WRITE(numout,*) 'Forcing for Julian day ',julian_for,'is read' |
---|
1512 | WRITE(numout,*) 'Date for this day ',yy,' / ',mm,' / ',dd," ",ss |
---|
1513 | ENDIF |
---|
1514 | ENDIF |
---|
1515 | !----- |
---|
1516 | CALL forcing_just_read (iim, jjm, zlev_n, zlevuv_n, ttm, itau_read_n, itau_read_n, & |
---|
1517 | & swdown_n, rainf_n, snowf_n, tair_n, & |
---|
1518 | & u_n, v_n, qair_n, pb_n, lwdown_n, & |
---|
1519 | & SWnet_n, Eair_n, petAcoef_n, peqAcoef_n, petBcoef_n, peqBcoef_n, cdrag_n, ccanopy_n, & |
---|
1520 | & force_id, wind_N_exists, check) |
---|
1521 | !--- |
---|
1522 | last_read = itau_read_n |
---|
1523 | !----- |
---|
1524 | !----- Compute mean solar angle for the comming period |
---|
1525 | !----- |
---|
1526 | IF (check) WRITE(numout,*) 'Going into solarang', split, one_day |
---|
1527 | !----- |
---|
1528 | IF ( dt_force .GT. 3600. ) THEN |
---|
1529 | mean_coszang(:,:) = 0.0 |
---|
1530 | DO is=1,split |
---|
1531 | !MM we compute mean SWdown between t and t+Dt then I take t+Dt/2. |
---|
1532 | julian = julian_for+((is-0.5)/split)*dt_force/one_day |
---|
1533 | !!$ julian = julian_for+(FLOAT(is)/split)*dt_force/one_day |
---|
1534 | CALL solarang (julian, julian0, iim, jjm, lon, lat, coszang) |
---|
1535 | mean_coszang(:,:) = mean_coszang(:,:)+coszang(:,:) |
---|
1536 | ENDDO |
---|
1537 | mean_coszang(:,:) = mean_coszang(:,:)/split |
---|
1538 | ! WRITE(*,*) "mean_coszang =",MAXVAL(mean_coszang) |
---|
1539 | ENDIF |
---|
1540 | !----- |
---|
1541 | ENDIF |
---|
1542 | !--- |
---|
1543 | !--- Do the interpolation |
---|
1544 | IF (check) WRITE(numout,*) 'Doing the interpolation between time steps' |
---|
1545 | !--- |
---|
1546 | IF (split > 1) THEN |
---|
1547 | rw = REAL(itau_split)/split |
---|
1548 | ELSE |
---|
1549 | rw = 1. |
---|
1550 | ENDIF |
---|
1551 | IF (check) WRITE(numout,*) 'Coeff of interpollation : ',rw |
---|
1552 | !--- |
---|
1553 | qair(:,:) = (qair_n(:,:)-qair_nm1(:,:))*rw + qair_nm1(:,:) |
---|
1554 | tair(:,:) = (tair_n(:,:)-tair_nm1(:,:))*rw + tair_nm1(:,:) |
---|
1555 | pb(:,:) = (pb_n(:,:)-pb_nm1(:,:))*rw + pb_nm1(:,:) |
---|
1556 | u(:,:) = (u_n(:,:)-u_nm1(:,:))*rw + u_nm1(:,:) |
---|
1557 | v(:,:) = (v_n(:,:)-v_nm1(:,:))*rw + v_nm1(:,:) |
---|
1558 | IF (is_watchout) THEN |
---|
1559 | zlev(:,:) = (zlev_n(:,:)-zlev_nm1(:,:))*rw + zlev_nm1(:,:) |
---|
1560 | zlevuv(:,:) = zlev(:,:) |
---|
1561 | SWnet(:,:) = (SWnet_n(:,:)-SWnet_nm1(:,:))*rw + SWnet_nm1(:,:) |
---|
1562 | Eair(:,:) = (Eair_n(:,:)-Eair_nm1(:,:))*rw + Eair_nm1(:,:) |
---|
1563 | petAcoef(:,:) = (petAcoef_n(:,:)-petAcoef_nm1(:,:))*rw + petAcoef_nm1(:,:) |
---|
1564 | peqAcoef(:,:) = (peqAcoef_n(:,:)-peqAcoef_nm1(:,:))*rw + peqAcoef_nm1(:,:) |
---|
1565 | petBcoef(:,:) = (petBcoef_n(:,:)-petBcoef_nm1(:,:))*rw + petBcoef_nm1(:,:) |
---|
1566 | peqBcoef(:,:) = (peqBcoef_n(:,:)-peqBcoef_nm1(:,:))*rw + peqBcoef_nm1(:,:) |
---|
1567 | cdrag(:,:) = (cdrag_n(:,:)-cdrag_nm1(:,:))*rw + cdrag_nm1(:,:) |
---|
1568 | ccanopy(:,:) = (ccanopy_n(:,:)-ccanopy_nm1(:,:))*rw + ccanopy_nm1(:,:) |
---|
1569 | ENDIF |
---|
1570 | !--- |
---|
1571 | !--- Here we need to allow for an option |
---|
1572 | !--- where radiative energy is conserved |
---|
1573 | !--- |
---|
1574 | IF ( netrad_cons ) THEN |
---|
1575 | lwdown(:,:) = lwdown_n(:,:) |
---|
1576 | ELSE |
---|
1577 | lwdown(:,:) = (lwdown_n(:,:)-lwdown_nm1(:,:))*rw + lwdown_nm1(:,:) |
---|
1578 | ENDIF |
---|
1579 | !--- |
---|
1580 | !--- For the solar radiation we decompose the mean value |
---|
1581 | !--- using the zenith angle of the sun if the time step in the forcing data is |
---|
1582 | !---- more than an hour. Else we use the standard linera interpolation |
---|
1583 | !---- |
---|
1584 | IF (check) WRITE(numout,*) 'Ready to deal with the solar radiation' |
---|
1585 | !---- |
---|
1586 | IF ( dt_force .GT. 3600. ) THEN |
---|
1587 | !--- |
---|
1588 | IF ( netrad_cons ) THEN |
---|
1589 | WRITE(numout,*) 'Solar radiation can not be conserved with a timestep of ', dt_force |
---|
1590 | ENDIF |
---|
1591 | !--- |
---|
1592 | !MM we compute mean SWdown between t and t+Dt then I take t+Dt/2. |
---|
1593 | julian = julian_for + (itau_split-0.5)/split*dt_force/one_day |
---|
1594 | !!$ julian = julian_for + rw*dt_force/one_day |
---|
1595 | IF (check) THEN |
---|
1596 | WRITE(numout,'(a,f20.10,2I3)') & |
---|
1597 | & 'JULIAN BEFORE SOLARANG : ',julian,itau_split,split |
---|
1598 | ENDIF |
---|
1599 | !--- |
---|
1600 | CALL solarang(julian, julian0, iim, jjm, lon, lat, coszang) |
---|
1601 | !--- |
---|
1602 | WHERE (mean_coszang(:,:) > 0.) |
---|
1603 | swdown(:,:) = swdown_n(:,:) *coszang(:,:)/mean_coszang(:,:) |
---|
1604 | ELSEWHERE |
---|
1605 | swdown(:,:) = 0.0 |
---|
1606 | END WHERE |
---|
1607 | !--- |
---|
1608 | WHERE (swdown(:,:) > 2000. ) |
---|
1609 | swdown(:,:) = 2000. |
---|
1610 | END WHERE |
---|
1611 | !--- |
---|
1612 | ELSE |
---|
1613 | !--- |
---|
1614 | IF ( netrad_cons ) THEN |
---|
1615 | swdown(:,:) = swdown_n(:,:) |
---|
1616 | ELSE |
---|
1617 | swdown(:,:) = (swdown_n(:,:)-swdown_nm1(:,:))*rw + swdown_nm1(:,:) |
---|
1618 | ENDIF |
---|
1619 | !--- |
---|
1620 | ENDIF |
---|
1621 | !--- |
---|
1622 | IF (check) THEN |
---|
1623 | WRITE(numout,*) '__ Forcing read at ',itau_split,' :',i_test, j_test |
---|
1624 | WRITE(numout,*) 'SWdown : ',swdown_nm1(i_test, j_test), & |
---|
1625 | & ' < ', swdown(i_test, j_test), ' < ', swdown_n(i_test, j_test) |
---|
1626 | IF (is_watchout) THEN |
---|
1627 | WRITE(numout,*) 'SWnet : ',swnet_nm1(i_test, j_test), & |
---|
1628 | & ' < ', swnet(i_test, j_test), ' < ', swnet_n(i_test, j_test) |
---|
1629 | WRITE(numout,*) 'levels :',zlev_nm1(i_test, j_test), & |
---|
1630 | & ' < ', zlev(i_test, j_test), ' < ', zlev_n(i_test, j_test) |
---|
1631 | WRITE(numout,*) 'EAIR :',Eair_nm1(i_test, j_test), & |
---|
1632 | & ' < ', eair(i_test, j_test), ' < ', Eair_n(i_test, j_test) |
---|
1633 | ENDIF |
---|
1634 | WRITE(numout,*) 'TAIR :',tair_nm1(i_test, j_test), & |
---|
1635 | & ' < ', tair(i_test, j_test), ' < ', tair_n(i_test, j_test) |
---|
1636 | WRITE(numout,*) 'QAIR :',qair_nm1(i_test, j_test), & |
---|
1637 | & ' < ', qair(i_test, j_test), ' < ', qair_n(i_test, j_test) |
---|
1638 | WRITE(numout,*) 'U :',u_nm1(i_test, j_test), & |
---|
1639 | & ' < ', u(i_test, j_test), ' < ', u_n(i_test, j_test) |
---|
1640 | WRITE(numout,*) 'V :',v_nm1(i_test, j_test), & |
---|
1641 | & ' < ', v(i_test, j_test), ' < ', v_n(i_test, j_test) |
---|
1642 | ENDIF |
---|
1643 | !--- |
---|
1644 | !--- For precip we suppose that the rain |
---|
1645 | !--- is the sum over the next 6 hours |
---|
1646 | !--- |
---|
1647 | IF (itau_split <= nb_spread) THEN |
---|
1648 | rainf(:,:) = rainf_n(:,:)*(split/REAL(nb_spread)) |
---|
1649 | snowf(:,:) = snowf_n(:,:)*(split/REAL(nb_spread)) |
---|
1650 | ELSE |
---|
1651 | rainf(:,:) = 0.0 |
---|
1652 | snowf(:,:) = 0.0 |
---|
1653 | ENDIF |
---|
1654 | IF (check) THEN |
---|
1655 | WRITE(numout,*) '__ Forcing read at ',itau_split,' :' |
---|
1656 | WRITE(numout,*) 'Rainf : ',rainf_nm1(i_test, j_test), & |
---|
1657 | & ' < ', rainf(i_test, j_test), ' < ', rainf_n(i_test, j_test) |
---|
1658 | WRITE(numout,*) 'Snowf : ',snowf_nm1(i_test, j_test), & |
---|
1659 | & ' < ', snowf(i_test, j_test), ' < ', snowf_n(i_test, j_test) |
---|
1660 | ENDIF |
---|
1661 | !--- |
---|
1662 | ENDIF ! (daily_interpol) |
---|
1663 | ENDIF |
---|
1664 | !--- |
---|
1665 | !--- Here we might put the call to the weather generator ... one day. |
---|
1666 | !--- Pour le moment, le branchement entre interpolation et generateur de temps |
---|
1667 | !--- est fait au-dessus. |
---|
1668 | !--- |
---|
1669 | !- IF ( initialized .AND. weathergen ) THEN |
---|
1670 | !- .... |
---|
1671 | !- ENDIF |
---|
1672 | !--- |
---|
1673 | !--- At this point the code should be initialized. If not we have a problem ! |
---|
1674 | !--- |
---|
1675 | IF ( (itau_read == 0).AND.(itau_split == 0) ) THEN |
---|
1676 | !--- |
---|
1677 | initialized = .TRUE. |
---|
1678 | !--- |
---|
1679 | ELSE |
---|
1680 | IF ( .NOT. initialized ) THEN |
---|
1681 | WRITE(numout,*) 'Why is the code forcing_read not initialized ?' |
---|
1682 | WRITE(numout,*) 'Have you called it with both time-steps set to zero ?' |
---|
1683 | CALL ipslerr_p(3,'forcing_read_interpol','Pb in initialization','','') |
---|
1684 | ENDIF |
---|
1685 | ENDIF |
---|
1686 | ! |
---|
1687 | !------------------------- |
---|
1688 | END SUBROUTINE forcing_read_interpol |
---|
1689 | !===================================================================== |
---|
1690 | !- |
---|
1691 | !===================================================================== |
---|
1692 | SUBROUTINE forcing_just_read & |
---|
1693 | & (iim, jjm, zlev, zlev_uv, ttm, itb, ite, & |
---|
1694 | & swdown, rainf, snowf, tair, & |
---|
1695 | & u, v, qair, pb, lwdown, & |
---|
1696 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy, & |
---|
1697 | & force_id, wind_N_exists, check) |
---|
1698 | !--------------------------------------------------------------------- |
---|
1699 | !- iim : Size of the grid in x |
---|
1700 | !- jjm : size of the grid in y |
---|
1701 | !- zlev : height of the varibales T and Q |
---|
1702 | !- zlev_uv : height of the varibales U and V |
---|
1703 | !- ttm : number of time steps in all in the forcing file |
---|
1704 | !- itb, ite : index of respectively begin and end of read for each variable |
---|
1705 | !- swdown : Downward solar radiation (W/m^2) |
---|
1706 | !- rainf : Rainfall (kg/m^2s) |
---|
1707 | !- snowf : Snowfall (kg/m^2s) |
---|
1708 | !- tair : 2m air temperature (K) |
---|
1709 | !- u and v : 2m (in theory !) wind speed (m/s) |
---|
1710 | !- qair : 2m humidity (kg/kg) |
---|
1711 | !- pb : Surface pressure (Pa) |
---|
1712 | !- lwdown : Downward long wave radiation (W/m^2) |
---|
1713 | !- |
---|
1714 | !- From a WATCHOUT file : |
---|
1715 | !- SWnet : Net surface short-wave flux |
---|
1716 | !- Eair : Air potential energy |
---|
1717 | !- petAcoef : Coeficients A from the PBL resolution for T |
---|
1718 | !- peqAcoef : Coeficients A from the PBL resolution for q |
---|
1719 | !- petBcoef : Coeficients B from the PBL resolution for T |
---|
1720 | !- peqBcoef : Coeficients B from the PBL resolution for q |
---|
1721 | !- cdrag : Surface drag |
---|
1722 | !- ccanopy : CO2 concentration in the canopy |
---|
1723 | !- force_id : FLINCOM file id. |
---|
1724 | !- It is used to close the file at the end of the run. |
---|
1725 | !- wind_N_exists : if Wind_N and Wind_E are in the file (and not just Wind) |
---|
1726 | !- check : Prompt for reading |
---|
1727 | !--------------------------------------------------------------------- |
---|
1728 | IMPLICIT NONE |
---|
1729 | !- |
---|
1730 | INTEGER, INTENT(in) :: iim, jjm, ttm |
---|
1731 | INTEGER, INTENT(in) :: itb, ite |
---|
1732 | REAL, DIMENSION(iim,jjm), INTENT(out) :: zlev, zlev_uv, & |
---|
1733 | & swdown, rainf, snowf, tair, u, v, qair, pb, lwdown |
---|
1734 | ! for watchout files |
---|
1735 | REAL, DIMENSION(iim,jjm), INTENT(out) :: & |
---|
1736 | & SWnet, Eair, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, ccanopy |
---|
1737 | INTEGER, INTENT(in) :: force_id |
---|
1738 | ! if Wind_N and Wind_E are in the file (and not just Wind) |
---|
1739 | LOGICAL, INTENT(in) :: wind_N_exists |
---|
1740 | LOGICAL :: check |
---|
1741 | INTEGER :: i, j |
---|
1742 | REAL :: rau |
---|
1743 | |
---|
1744 | !- |
---|
1745 | !--------------------------------------------------------------------- |
---|
1746 | IF ( daily_interpol ) THEN |
---|
1747 | CALL flinget_buffer (force_id,'Tmin' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1748 | CALL forcing_zoom(data_full, tair) |
---|
1749 | CALL flinget_buffer (force_id,'precip' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1750 | CALL forcing_zoom(data_full, rainf) |
---|
1751 | ELSE |
---|
1752 | CALL flinget_buffer (force_id,'Tair' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1753 | CALL forcing_zoom(data_full, tair) |
---|
1754 | CALL flinget_buffer (force_id,'Snowf' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1755 | CALL forcing_zoom(data_full, snowf) |
---|
1756 | CALL flinget_buffer (force_id,'Rainf' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1757 | CALL forcing_zoom(data_full, rainf) |
---|
1758 | ENDIF |
---|
1759 | |
---|
1760 | |
---|
1761 | CALL flinget_buffer (force_id,'SWdown', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1762 | CALL forcing_zoom(data_full, swdown) |
---|
1763 | CALL flinget_buffer (force_id,'LWdown', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1764 | CALL forcing_zoom(data_full, lwdown) |
---|
1765 | |
---|
1766 | CALL flinget_buffer (force_id,'PSurf' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1767 | CALL forcing_zoom(data_full, pb) |
---|
1768 | CALL flinget_buffer (force_id,'Qair' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1769 | CALL forcing_zoom(data_full, qair) |
---|
1770 | !--- |
---|
1771 | IF ( wind_N_exists ) THEN |
---|
1772 | CALL flinget_buffer (force_id,'Wind_N', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1773 | CALL forcing_zoom(data_full, u) |
---|
1774 | CALL flinget_buffer (force_id,'Wind_E', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1775 | CALL forcing_zoom(data_full, v) |
---|
1776 | ELSE |
---|
1777 | CALL flinget_buffer (force_id,'Wind', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1778 | CALL forcing_zoom(data_full, u) |
---|
1779 | v=0.0 |
---|
1780 | ENDIF |
---|
1781 | |
---|
1782 | !- |
---|
1783 | !- Deal with the height of the atmospheric forcing varibles |
---|
1784 | !- |
---|
1785 | !---- |
---|
1786 | IF ( zheight ) THEN |
---|
1787 | zlev(:,:) = zlev_fixed |
---|
1788 | ELSE IF ( zsigma .OR. zhybrid ) THEN |
---|
1789 | DO i=1,iim |
---|
1790 | DO j=1,jjm |
---|
1791 | IF ( tair(i,j) < val_exp ) THEN |
---|
1792 | rau = pb(i,j)/(cte_molr*tair(i,j)) |
---|
1793 | |
---|
1794 | zlev(i,j) = (pb(i,j) - (zhybrid_a + zhybrid_b*pb(i,j)))/(rau * cte_grav) |
---|
1795 | ELSE |
---|
1796 | zlev(i,j) = 0.0 |
---|
1797 | ENDIF |
---|
1798 | ENDDO |
---|
1799 | ENDDO |
---|
1800 | ELSE IF ( zlevels ) THEN |
---|
1801 | CALL flinget_buffer (force_id,'Levels', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1802 | CALL forcing_zoom(data_full, zlev) |
---|
1803 | ELSE |
---|
1804 | CALL ipslerr(3, 'forcing_just_read','No case for the vertical levels was specified.', & |
---|
1805 | & 'We cannot determine the height for T and Q.','stop readdim2') |
---|
1806 | ENDIF |
---|
1807 | |
---|
1808 | IF ( zsamelev_uv ) THEN |
---|
1809 | zlev_uv(:,:) = zlev(:,:) |
---|
1810 | ELSE |
---|
1811 | IF ( zheight ) THEN |
---|
1812 | zlev_uv(:,:) = zlevuv_fixed |
---|
1813 | ELSE IF ( zsigma .OR. zhybrid ) THEN |
---|
1814 | DO i=1,iim |
---|
1815 | DO j=1,jjm |
---|
1816 | IF ( tair(i,j) < val_exp ) THEN |
---|
1817 | rau = pb(i,j)/(cte_molr*tair(i,j)) |
---|
1818 | |
---|
1819 | zlev_uv(i,j) = (pb(i,j) - (zhybriduv_a + zhybriduv_b*pb(i,j)))/(rau * cte_grav) |
---|
1820 | ELSE |
---|
1821 | zlev_uv(i,j) = 0.0 |
---|
1822 | ENDIF |
---|
1823 | ENDDO |
---|
1824 | ENDDO |
---|
1825 | ELSE IF ( zlevels ) THEN |
---|
1826 | CALL flinget_buffer (force_id,'Levels_uv', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1827 | CALL forcing_zoom(data_full, zlev_uv) |
---|
1828 | ELSE |
---|
1829 | CALL ipslerr(3, 'forcing_just_read','No case for the vertical levels was specified.', & |
---|
1830 | & 'We cannot determine the height for U and V.','stop readdim2') |
---|
1831 | ENDIF |
---|
1832 | ENDIF |
---|
1833 | !---- |
---|
1834 | IF ( is_watchout ) THEN |
---|
1835 | CALL flinget_buffer (force_id,'levels', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1836 | CALL forcing_zoom(data_full, zlev) |
---|
1837 | ! |
---|
1838 | ! If we are in WATHCOUT it means T,Q are at the same height as U,V |
---|
1839 | ! |
---|
1840 | zlev_uv(:,:) = zlev(:,:) |
---|
1841 | ! Net surface short-wave flux |
---|
1842 | CALL flinget_buffer (force_id,'SWnet', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1843 | CALL forcing_zoom(data_full, SWnet) |
---|
1844 | ! Air potential energy |
---|
1845 | CALL flinget_buffer (force_id,'Eair', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1846 | CALL forcing_zoom(data_full, Eair) |
---|
1847 | ! Coeficients A from the PBL resolution for T |
---|
1848 | CALL flinget_buffer (force_id,'petAcoef', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1849 | CALL forcing_zoom(data_full, petAcoef) |
---|
1850 | ! Coeficients A from the PBL resolution for q |
---|
1851 | CALL flinget_buffer (force_id,'peqAcoef', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1852 | CALL forcing_zoom(data_full, peqAcoef) |
---|
1853 | ! Coeficients B from the PBL resolution for T |
---|
1854 | CALL flinget_buffer (force_id,'petBcoef', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1855 | CALL forcing_zoom(data_full, petBcoef) |
---|
1856 | ! Coeficients B from the PBL resolution for q |
---|
1857 | CALL flinget_buffer (force_id,'peqBcoef', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1858 | CALL forcing_zoom(data_full, peqBcoef) |
---|
1859 | ! Surface drag |
---|
1860 | CALL flinget_buffer (force_id,'cdrag', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1861 | CALL forcing_zoom(data_full, cdrag) |
---|
1862 | ! CO2 concentration in the canopy |
---|
1863 | CALL flinget_buffer (force_id,'ccanopy', iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1864 | CALL forcing_zoom(data_full, ccanopy) |
---|
1865 | ENDIF |
---|
1866 | ! |
---|
1867 | !---- |
---|
1868 | IF (check) WRITE(numout,*) 'Variables have been extracted between ',itb,' and ',ite,' iterations of the forcing file.' |
---|
1869 | !------------------------- |
---|
1870 | END SUBROUTINE forcing_just_read |
---|
1871 | !===================================================================== |
---|
1872 | |
---|
1873 | !- |
---|
1874 | SUBROUTINE forcing_just_read_tmax & |
---|
1875 | & (iim, jjm, ttm, itb, ite, tmax, force_id ) |
---|
1876 | !--------------------------------------------------------------------- |
---|
1877 | !- iim : Size of the grid in x |
---|
1878 | !- jjm : size of the grid in y |
---|
1879 | !- ttm : number of time steps in all in the forcing file |
---|
1880 | !- itb, ite : index of respectively begin and end of read for each variable |
---|
1881 | !- tmax : 2m air temperature (K) |
---|
1882 | !- force_id : FLINCOM file id. |
---|
1883 | !- It is used to close the file at the end of the run. |
---|
1884 | !--------------------------------------------------------------------- |
---|
1885 | IMPLICIT NONE |
---|
1886 | !- |
---|
1887 | INTEGER, INTENT(in) :: iim, jjm, ttm |
---|
1888 | INTEGER, INTENT(in) :: itb, ite |
---|
1889 | REAL, DIMENSION(iim,jjm), INTENT(out) :: tmax |
---|
1890 | INTEGER, INTENT(in) :: force_id |
---|
1891 | !- |
---|
1892 | !--------------------------------------------------------------------- |
---|
1893 | CALL flinget_buffer (force_id,'Tmax' , iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
1894 | CALL forcing_zoom(data_full, tmax) |
---|
1895 | !------------------------- |
---|
1896 | END SUBROUTINE forcing_just_read_tmax |
---|
1897 | !===================================================================== |
---|
1898 | |
---|
1899 | !- |
---|
1900 | SUBROUTINE forcing_landind(iim, jjm, tair, check, nbindex, kindex, i_test, j_test) |
---|
1901 | !--- |
---|
1902 | !--- This subroutine finds the indices of the land points over which the land |
---|
1903 | !--- surface scheme is going to run. |
---|
1904 | !--- |
---|
1905 | IMPLICIT NONE |
---|
1906 | !- |
---|
1907 | !- ARGUMENTS |
---|
1908 | !- |
---|
1909 | INTEGER, INTENT(IN) :: iim, jjm |
---|
1910 | REAL, INTENT(IN) :: tair(iim,jjm) |
---|
1911 | INTEGER, INTENT(OUT) :: i_test, j_test, nbindex |
---|
1912 | INTEGER, INTENT(OUT) :: kindex(iim*jjm) |
---|
1913 | LOGICAL :: check |
---|
1914 | !- |
---|
1915 | !- LOCAL |
---|
1916 | INTEGER :: i, j, ig |
---|
1917 | !- |
---|
1918 | !- |
---|
1919 | ig = 0 |
---|
1920 | i_test = 0 |
---|
1921 | j_test = 0 |
---|
1922 | !--- |
---|
1923 | IF (MINVAL(tair(:,:)) < 100.) THEN |
---|
1924 | !----- In this case the 2m temperature is in Celsius |
---|
1925 | DO j=1,jjm |
---|
1926 | DO i=1,iim |
---|
1927 | IF (tair(i,j) < 100.) THEN |
---|
1928 | ig = ig+1 |
---|
1929 | kindex(ig) = (j-1)*iim+i |
---|
1930 | ! |
---|
1931 | ! Here we find at random a land-point on which we can do |
---|
1932 | ! some printouts for test. |
---|
1933 | ! |
---|
1934 | IF (ig .GT. (iim*jjm)/2 .AND. i_test .LT. 1) THEN |
---|
1935 | i_test = i |
---|
1936 | j_test = j |
---|
1937 | IF (check) THEN |
---|
1938 | WRITE(numout,*) 'The test point chosen for output is : ', i_test, j_test |
---|
1939 | ENDIF |
---|
1940 | ENDIF |
---|
1941 | ENDIF |
---|
1942 | ENDDO |
---|
1943 | ENDDO |
---|
1944 | ELSE |
---|
1945 | !----- 2m temperature is in Kelvin |
---|
1946 | DO j=1,jjm |
---|
1947 | DO i=1,iim |
---|
1948 | IF (tair(i,j) < 500.) THEN |
---|
1949 | ig = ig+1 |
---|
1950 | kindex(ig) = (j-1)*iim+i |
---|
1951 | ! |
---|
1952 | ! Here we find at random a land-point on which we can do |
---|
1953 | ! some printouts for test. |
---|
1954 | ! |
---|
1955 | IF (ig .GT. (iim*jjm)/2 .AND. i_test .LT. 1) THEN |
---|
1956 | i_test = i |
---|
1957 | j_test = j |
---|
1958 | IF (check) THEN |
---|
1959 | WRITE(numout,*) 'The test point chosen for output is : ', i_test, j_test |
---|
1960 | ENDIF |
---|
1961 | ENDIF |
---|
1962 | ENDIF |
---|
1963 | ENDDO |
---|
1964 | ENDDO |
---|
1965 | ENDIF |
---|
1966 | !--- |
---|
1967 | nbindex = ig |
---|
1968 | !--- |
---|
1969 | END SUBROUTINE forcing_landind |
---|
1970 | !- |
---|
1971 | !===================================================================== |
---|
1972 | !- |
---|
1973 | SUBROUTINE forcing_grid(iim,jjm,llm,lon,lat,init_f) |
---|
1974 | !- |
---|
1975 | !- This subroutine calculates the longitudes and latitudes of the model grid. |
---|
1976 | !- |
---|
1977 | IMPLICIT NONE |
---|
1978 | !- |
---|
1979 | INTEGER, INTENT(in) :: iim, jjm, llm |
---|
1980 | LOGICAL, INTENT(in) :: init_f |
---|
1981 | REAL, DIMENSION(iim,jjm), INTENT(out) :: lon, lat |
---|
1982 | !- |
---|
1983 | INTEGER :: i,j |
---|
1984 | !- |
---|
1985 | !- Should be unified one day |
---|
1986 | !- |
---|
1987 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_grid : options : ', weathergen, interpol |
---|
1988 | !- |
---|
1989 | IF ( weathergen ) THEN |
---|
1990 | IF (init_f) THEN |
---|
1991 | DO i = 1, iim |
---|
1992 | lon(i,:) = limit_west + merid_res/2. + & |
---|
1993 | FLOAT(i-1)*(limit_east-limit_west)/FLOAT(iim) |
---|
1994 | ENDDO |
---|
1995 | !- |
---|
1996 | DO j = 1, jjm |
---|
1997 | lat(:,j) = limit_north - zonal_res/2. - & |
---|
1998 | FLOAT(j-1)*(limit_north-limit_south)/FLOAT(jjm) |
---|
1999 | ENDDO |
---|
2000 | ELSE |
---|
2001 | IF (is_root_prc) THEN |
---|
2002 | DO i = 1, iim_g |
---|
2003 | lon_g(i,:) = limit_west + merid_res/2. + & |
---|
2004 | FLOAT(i-1)*(limit_east-limit_west)/FLOAT(iim_g) |
---|
2005 | ENDDO |
---|
2006 | !- |
---|
2007 | DO j = 1, jjm_g |
---|
2008 | lat_g(:,j) = limit_north - zonal_res/2. - & |
---|
2009 | FLOAT(j-1)*(limit_north-limit_south)/FLOAT(jjm_g) |
---|
2010 | ENDDO |
---|
2011 | ENDIF |
---|
2012 | CALL bcast(lon_g) |
---|
2013 | CALL bcast(lat_g) |
---|
2014 | lon=lon_g(:,jj_para_begin(mpi_rank):jj_para_end(mpi_rank)) |
---|
2015 | lat=lat_g(:,jj_para_begin(mpi_rank):jj_para_end(mpi_rank)) |
---|
2016 | ENDIF |
---|
2017 | !- |
---|
2018 | ELSEIF ( interpol ) THEN |
---|
2019 | !- |
---|
2020 | CALL forcing_zoom(lon_full, lon) |
---|
2021 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_grid : out of zoom on lon' |
---|
2022 | CALL forcing_zoom(lat_full, lat) |
---|
2023 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_grid : out of zoom on lat' |
---|
2024 | |
---|
2025 | ELSE |
---|
2026 | CALL ipslerr_p(3,'forcing_grid','Neither interpolation nor weather generator is specified.','','') |
---|
2027 | ENDIF |
---|
2028 | |
---|
2029 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'forcing_grid : ended' |
---|
2030 | |
---|
2031 | END SUBROUTINE forcing_grid |
---|
2032 | !- |
---|
2033 | !===================================================================== |
---|
2034 | !- |
---|
2035 | SUBROUTINE forcing_zoom(x_f, x_z) |
---|
2036 | !- |
---|
2037 | !- This subroutine takes the slab of data over which we wish to run the model. |
---|
2038 | !- |
---|
2039 | IMPLICIT NONE |
---|
2040 | !- |
---|
2041 | REAL, INTENT(IN) :: x_f(iim_full, jjm_full) |
---|
2042 | REAL, INTENT(OUT) :: x_z(iim_zoom, jjm_zoom) |
---|
2043 | !- |
---|
2044 | INTEGER :: i,j |
---|
2045 | !- |
---|
2046 | DO i=1,iim_zoom |
---|
2047 | DO j=1,jjm_zoom |
---|
2048 | x_z(i,j) = x_f(i_index(i),j_index(j)) |
---|
2049 | ENDDO |
---|
2050 | ENDDO |
---|
2051 | !- |
---|
2052 | END SUBROUTINE forcing_zoom |
---|
2053 | |
---|
2054 | !- |
---|
2055 | !===================================================================== |
---|
2056 | !- |
---|
2057 | |
---|
2058 | SUBROUTINE forcing_vertical_ioipsl(force_id) |
---|
2059 | ! |
---|
2060 | !- This subroutine explores the forcing file to decide what information is available |
---|
2061 | !- on the vertical coordinate. |
---|
2062 | ! |
---|
2063 | INTEGER, INTENT(IN) :: force_id |
---|
2064 | ! |
---|
2065 | LOGICAL :: var_exists, vara_exists, varb_exists, varuv_exists |
---|
2066 | LOGICAL :: foundvar |
---|
2067 | LOGICAL :: levlegacy |
---|
2068 | |
---|
2069 | ! |
---|
2070 | !- Set all the defaults |
---|
2071 | ! |
---|
2072 | zfixed=.FALSE. |
---|
2073 | zsigma=.FALSE. |
---|
2074 | zhybrid=.FALSE. |
---|
2075 | zlevels=.FALSE. |
---|
2076 | zheight=.FALSE. |
---|
2077 | zsamelev_uv = .TRUE. |
---|
2078 | levlegacy = .FALSE. |
---|
2079 | ! |
---|
2080 | foundvar = .FALSE. |
---|
2081 | ! |
---|
2082 | !- We have a forcing file to explore so let us see if we find any of the conventions |
---|
2083 | !- which allow us to find the height of T,Q,U and V. |
---|
2084 | ! |
---|
2085 | IF ( force_id > 0 ) THEN |
---|
2086 | ! |
---|
2087 | ! Case for sigma levels |
---|
2088 | ! |
---|
2089 | IF ( .NOT. foundvar ) THEN |
---|
2090 | CALL flinquery_var(force_id, 'Sigma', var_exists) |
---|
2091 | CALL flinquery_var(force_id, 'Sigma_uv', varuv_exists) |
---|
2092 | IF ( var_exists ) THEN |
---|
2093 | foundvar = .TRUE. |
---|
2094 | zsigma = .TRUE. |
---|
2095 | IF ( varuv_exists ) zsamelev_uv = .FALSE. |
---|
2096 | ENDIF |
---|
2097 | ENDIF |
---|
2098 | ! |
---|
2099 | ! Case for Hybrid levels |
---|
2100 | ! |
---|
2101 | IF ( .NOT. foundvar ) THEN |
---|
2102 | CALL flinquery_var(force_id, 'HybSigA', vara_exists) |
---|
2103 | IF ( vara_exists ) THEN |
---|
2104 | CALL flinquery_var(force_id, 'HybSigB', varb_exists) |
---|
2105 | IF ( varb_exists ) THEN |
---|
2106 | var_exists=.TRUE. |
---|
2107 | ELSE |
---|
2108 | CALL ipslerr ( 3, 'forcing_vertical_ioipsl','Missing the B coefficient for', & |
---|
2109 | & 'Hybrid vertical levels for T and Q','stop readdim2') |
---|
2110 | ENDIF |
---|
2111 | ENDIF |
---|
2112 | CALL flinquery_var(force_id, 'HybSigA_uv', vara_exists) |
---|
2113 | IF ( vara_exists ) THEN |
---|
2114 | CALL flinquery_var(force_id, 'HybSigB_uv', varb_exists) |
---|
2115 | IF ( varb_exists ) THEN |
---|
2116 | varuv_exists=.TRUE. |
---|
2117 | ELSE |
---|
2118 | CALL ipslerr ( 3, 'forcing_vertical_ioipsl','Missing the B coefficient for', & |
---|
2119 | & 'Hybrid vertical levels for U and V','stop readdim2') |
---|
2120 | ENDIF |
---|
2121 | ENDIF |
---|
2122 | IF ( var_exists ) THEN |
---|
2123 | foundvar = .TRUE. |
---|
2124 | zhybrid = .TRUE. |
---|
2125 | IF ( varuv_exists ) zsamelev_uv = .FALSE. |
---|
2126 | ENDIF |
---|
2127 | ENDIF |
---|
2128 | ! |
---|
2129 | ! Case for levels (i.e. a 2d time varying field with the height in meters) |
---|
2130 | ! |
---|
2131 | IF ( .NOT. foundvar ) THEN |
---|
2132 | CALL flinquery_var(force_id, 'Levels', var_exists) |
---|
2133 | CALL flinquery_var(force_id, 'Levels_uv', varuv_exists) |
---|
2134 | IF ( var_exists ) THEN |
---|
2135 | foundvar = .TRUE. |
---|
2136 | zlevels = .TRUE. |
---|
2137 | IF ( varuv_exists ) zsamelev_uv = .FALSE. |
---|
2138 | ENDIF |
---|
2139 | ENDIF |
---|
2140 | ! |
---|
2141 | ! Case where a fixed height is provided in meters |
---|
2142 | ! |
---|
2143 | IF ( .NOT. foundvar ) THEN |
---|
2144 | CALL flinquery_var(force_id, 'Height_Lev1', var_exists) |
---|
2145 | CALL flinquery_var(force_id, 'Height_Levuv', varuv_exists) |
---|
2146 | IF ( var_exists ) THEN |
---|
2147 | foundvar = .TRUE. |
---|
2148 | zheight = .TRUE. |
---|
2149 | IF ( varuv_exists ) zsamelev_uv = .FALSE. |
---|
2150 | ENDIF |
---|
2151 | ENDIF |
---|
2152 | ! |
---|
2153 | ! Case where a fixed height is provided in meters in the lev variable |
---|
2154 | ! |
---|
2155 | IF ( .NOT. foundvar ) THEN |
---|
2156 | CALL flinquery_var(force_id, 'lev', var_exists) |
---|
2157 | IF ( var_exists ) THEN |
---|
2158 | foundvar = .TRUE. |
---|
2159 | zheight = .TRUE. |
---|
2160 | levlegacy = .TRUE. |
---|
2161 | ENDIF |
---|
2162 | ENDIF |
---|
2163 | ! |
---|
2164 | ENDIF |
---|
2165 | ! |
---|
2166 | ! We found forcing variables so we need to extract the values if we are dealing with constant values (i.e. all |
---|
2167 | ! except the case zlevels |
---|
2168 | ! |
---|
2169 | IF ( foundvar .AND. .NOT. zlevels ) THEN |
---|
2170 | ! |
---|
2171 | IF ( zheight ) THEN |
---|
2172 | ! |
---|
2173 | ! Constant height |
---|
2174 | ! |
---|
2175 | IF ( levlegacy ) THEN |
---|
2176 | CALL flinget (force_id,'lev',1, 1, 1, 1, 1, 1, zlev_fixed) |
---|
2177 | ELSE |
---|
2178 | CALL flinget (force_id,'Height_Lev1',1, 1, 1, 1, 1, 1, zlev_fixed) |
---|
2179 | IF ( .NOT. zsamelev_uv ) THEN |
---|
2180 | CALL flinget (force_id,'Height_Levuv',1, 1, 1, 1, 1, 1, zlevuv_fixed) |
---|
2181 | ENDIF |
---|
2182 | ENDIF |
---|
2183 | WRITE(numout,*) "forcing_vertical_ioipsl : case ZLEV : Read from forcing file :", zlev_fixed, zlevuv_fixed |
---|
2184 | ! |
---|
2185 | ELSE IF ( zsigma .OR. zhybrid ) THEN |
---|
2186 | ! |
---|
2187 | ! Sigma or hybrid levels |
---|
2188 | ! |
---|
2189 | IF ( zsigma ) THEN |
---|
2190 | CALL flinget (force_id,'Sigma',1, 1, 1, 1, 1, 1, zhybrid_b) |
---|
2191 | zhybrid_a = zero |
---|
2192 | IF ( .NOT. zsamelev_uv ) THEN |
---|
2193 | CALL flinget (force_id,'Sigma_uv',1, 1, 1, 1, 1, 1, zhybriduv_b) |
---|
2194 | zhybriduv_a = zero |
---|
2195 | ENDIF |
---|
2196 | ELSE |
---|
2197 | CALL flinget (force_id,'HybSigB',1, 1, 1, 1, 1, 1, zhybrid_b) |
---|
2198 | CALL flinget (force_id,'HybSigA',1, 1, 1, 1, 1, 1, zhybrid_a) |
---|
2199 | IF ( .NOT. zsamelev_uv ) THEN |
---|
2200 | CALL flinget (force_id,'HybSigB_uv',1, 1, 1, 1, 1, 1, zhybriduv_b) |
---|
2201 | CALL flinget (force_id,'HybSigA_uv',1, 1, 1, 1, 1, 1, zhybriduv_a) |
---|
2202 | ENDIF |
---|
2203 | ENDIF |
---|
2204 | WRITE(numout,*) "forcing_vertical_ioipsl : case Pressure coordinates : " |
---|
2205 | WRITE(numout,*) "Read from forcing file :", zhybrid_b, zhybrid_a, zhybriduv_b, zhybriduv_a |
---|
2206 | ELSE |
---|
2207 | ! |
---|
2208 | ! Why are we here ??? |
---|
2209 | ! |
---|
2210 | CALL ipslerr ( 3, 'forcing_vertical_ioipsl','What is the option used to describe the height of', & |
---|
2211 | & 'the atmospheric forcing ?','Please check your forcing file.') |
---|
2212 | ENDIF |
---|
2213 | ENDIF |
---|
2214 | ! |
---|
2215 | !- We have no forcing file to explore or we did not find anything. So revert back to the run.def and |
---|
2216 | !- read what has been specified by the user. |
---|
2217 | ! |
---|
2218 | IF ( force_id < 0 .OR. .NOT. foundvar ) THEN |
---|
2219 | ! |
---|
2220 | !- |
---|
2221 | !Config Key = HEIGHT_LEV1 |
---|
2222 | !Config Desc = Height at which T and Q are given |
---|
2223 | !Config Def = 2.0 |
---|
2224 | !Config If = offline mode |
---|
2225 | !Config Help = The atmospheric variables (temperature and specific |
---|
2226 | !Config humidity) are measured at a specific level. |
---|
2227 | !Config The height of this level is needed to compute |
---|
2228 | !Config correctly the turbulent transfer coefficients. |
---|
2229 | !Config Look at the description of the forcing |
---|
2230 | !Config DATA for the correct value. |
---|
2231 | !Config Units = [m] |
---|
2232 | !- |
---|
2233 | zlev_fixed = 2.0 |
---|
2234 | CALL getin('HEIGHT_LEV1', zlev_fixed) |
---|
2235 | |
---|
2236 | !- |
---|
2237 | !Config Key = HEIGHT_LEVW |
---|
2238 | !Config Desc = Height at which the wind is given |
---|
2239 | !Config Def = 10.0 |
---|
2240 | !Config If = offline mode |
---|
2241 | !Config Help = The height at which wind is needed to compute |
---|
2242 | !Config correctly the turbulent transfer coefficients. |
---|
2243 | !Config Units= [m] |
---|
2244 | !- |
---|
2245 | zlevuv_fixed = 10.0 |
---|
2246 | CALL getin('HEIGHT_LEVW', zlevuv_fixed) |
---|
2247 | |
---|
2248 | zheight = .TRUE. |
---|
2249 | |
---|
2250 | IF ( ABS(zlevuv_fixed-zlev_fixed) > EPSILON(zlev_fixed)) THEN |
---|
2251 | zsamelev_uv = .FALSE. |
---|
2252 | ENDIF |
---|
2253 | |
---|
2254 | CALL ipslerr ( 2, 'forcing_vertical_ioipsl','The height of the atmospheric forcing variables', & |
---|
2255 | & 'was not found in the netCDF file.','Thus the values in run.def were used ... or their defaults.') |
---|
2256 | ENDIF |
---|
2257 | |
---|
2258 | END SUBROUTINE forcing_vertical_ioipsl |
---|
2259 | |
---|
2260 | !- |
---|
2261 | !===================================================================== |
---|
2262 | !- |
---|
2263 | |
---|
2264 | SUBROUTINE domain_size (limit_west, limit_east, limit_north, limit_south, & |
---|
2265 | & iim_f, jjm_f, lon, lat, iim, jjm, iind, jind) |
---|
2266 | |
---|
2267 | IMPLICIT NONE |
---|
2268 | ! |
---|
2269 | ! ARGUMENTS |
---|
2270 | ! |
---|
2271 | REAL, INTENT(inout) :: limit_west,limit_east,limit_north,limit_south |
---|
2272 | INTEGER, INTENT(in) :: iim_f, jjm_f |
---|
2273 | REAL, INTENT(in) :: lon(iim_f, jjm_f), lat(iim_f, jjm_f) |
---|
2274 | INTEGER, INTENT(out) :: iim,jjm |
---|
2275 | INTEGER, INTENT(out) :: iind(iim_f), jind(jjm_f) |
---|
2276 | ! |
---|
2277 | ! LOCAL |
---|
2278 | ! |
---|
2279 | INTEGER :: i, j |
---|
2280 | REAL :: lolo |
---|
2281 | LOGICAL :: over_dateline = .FALSE. |
---|
2282 | ! |
---|
2283 | ! |
---|
2284 | IF ( ( ABS(limit_east) .GT. 180. ) .OR. & |
---|
2285 | ( ABS(limit_west) .GT. 180. ) ) THEN |
---|
2286 | WRITE(numout,*) 'Limites Ouest, Est: ',limit_west,limit_east |
---|
2287 | CALL ipslerr_p (3,'domain_size', & |
---|
2288 | & 'Longitudes problem.','In run.def file :', & |
---|
2289 | & 'limit_east > 180. or limit_west > 180.') |
---|
2290 | ENDIF |
---|
2291 | ! |
---|
2292 | IF ( limit_west .GT. limit_east ) over_dateline = .TRUE. |
---|
2293 | ! |
---|
2294 | IF ( ( limit_south .LT. -90. ) .OR. & |
---|
2295 | ( limit_north .GT. 90. ) .OR. & |
---|
2296 | ( limit_south .GE. limit_north ) ) THEN |
---|
2297 | WRITE(numout,*) 'Limites Nord, Sud: ',limit_north,limit_south |
---|
2298 | CALL ipslerr_p (3,'domain_size', & |
---|
2299 | & 'Latitudes problem.','In run.def file :', & |
---|
2300 | & 'limit_south < -90. or limit_north > 90. or limit_south >= limit_north') |
---|
2301 | ENDIF |
---|
2302 | ! |
---|
2303 | ! Here we assume that the grid of the forcing data is regular. Else we would have |
---|
2304 | ! to do more work to find the index table. |
---|
2305 | ! |
---|
2306 | iim = 0 |
---|
2307 | DO i=1,iim_f |
---|
2308 | ! |
---|
2309 | lolo = lon(i,1) |
---|
2310 | IF ( lon(i,1) .GT. 180. ) lolo = lon(i,1) - 360. |
---|
2311 | IF ( lon(i,1) .LT. -180. ) lolo = lon(i,1) + 360. |
---|
2312 | ! |
---|
2313 | IF (lon(i,1) < limit_west) iim_g_begin = i+1 |
---|
2314 | IF (lon(i,1) < limit_east) iim_g_end = i |
---|
2315 | ! |
---|
2316 | IF ( over_dateline ) THEN |
---|
2317 | IF ( lolo .LE. limit_west .OR. lolo .GE. limit_east ) THEN |
---|
2318 | iim = iim + 1 |
---|
2319 | iind(iim) = i |
---|
2320 | ENDIF |
---|
2321 | ELSE |
---|
2322 | IF ( lolo .GE. limit_west .AND. lolo .LE. limit_east ) THEN |
---|
2323 | iim = iim + 1 |
---|
2324 | iind(iim) = i |
---|
2325 | ENDIF |
---|
2326 | ENDIF |
---|
2327 | ! |
---|
2328 | ENDDO |
---|
2329 | ! |
---|
2330 | jjm = 0 |
---|
2331 | DO j=1,jjm_f |
---|
2332 | IF (lat(1,j) > limit_north) jjm_g_begin = j+1 |
---|
2333 | IF (lat(1,j) > limit_south) jjm_g_end = j |
---|
2334 | ! |
---|
2335 | IF ( lat(1,j) .GE. limit_south .AND. lat(1,j) .LE. limit_north) THEN |
---|
2336 | jjm = jjm + 1 |
---|
2337 | jind(jjm) = j |
---|
2338 | ENDIF |
---|
2339 | ENDDO |
---|
2340 | ! |
---|
2341 | WRITE(numout,*) 'Domain zoom size: iim, jjm = ', iim, jjm |
---|
2342 | END SUBROUTINE domain_size |
---|
2343 | !- |
---|
2344 | !===================================================================== |
---|
2345 | !- |
---|
2346 | SUBROUTINE flinget_buffer(force_id, varname, iim_full, jjm_full, llm_full, ttm, itb, ite, data_full) |
---|
2347 | |
---|
2348 | !! This subroutine is a wrap of flinget/IOIPSL. The arguments are the same. |
---|
2349 | !! flinget_buffer will call flinget and buffer the forcing data localy in this subroutine. |
---|
2350 | !! According to the variable NBUFF set in run.def, several time steps can be read at the same time |
---|
2351 | !! from the forcing file. If NBUFF=0, the full forcing file is read. |
---|
2352 | !! The output, data_full, from this subroutine is always only one time step of corresponding to itb. |
---|
2353 | !! itb must be equal to ite. |
---|
2354 | |
---|
2355 | !! Input arguments |
---|
2356 | INTEGER, INTENT(in) :: force_id !! Id for forcing file |
---|
2357 | CHARACTER(len=*), INTENT(in) :: varname !! Name of current variable to be read |
---|
2358 | INTEGER, INTENT(in) :: iim_full, jjm_full, llm_full !! Horizontal and vertical domaine |
---|
2359 | INTEGER, INTENT(in) :: ttm !! Full lenght of forcing file |
---|
2360 | INTEGER, INTENT(in) :: itb, ite !! Time step to be read from forcing file. itb must be equal to ite |
---|
2361 | |
---|
2362 | !! Output argument |
---|
2363 | REAL, DIMENSION(iim_full, jjm_full), INTENT(out) :: data_full !! Data for time step itb. |
---|
2364 | |
---|
2365 | !! Define specific type to buffer data together with name and index |
---|
2366 | TYPE buffer_type |
---|
2367 | CHARACTER(len=20) :: name !! Name of variable in forcing file |
---|
2368 | INTEGER :: istart !! Start index of current buffered data |
---|
2369 | INTEGER :: iend !! End index of current buffered data |
---|
2370 | REAL, ALLOCATABLE, DIMENSION(:,:,:) :: data !! Data read from forcing file for intervall [istart,iend] |
---|
2371 | END TYPE buffer_type |
---|
2372 | |
---|
2373 | !! Local variables |
---|
2374 | INTEGER, PARAMETER :: maxvar=20 !! Max number of variables to be buffered |
---|
2375 | TYPE(buffer_type), DIMENSION(maxvar),SAVE :: data_buffer !! Containing all variables and the current buffered data |
---|
2376 | INTEGER, SAVE :: nbuff !! Number of time steps to be buffered |
---|
2377 | INTEGER, SAVE :: lastindex=0 !! Current number of variables stored in data_buffer |
---|
2378 | INTEGER, SAVE :: ttm0 !! Time lenght of forcing file, stored for test purpose |
---|
2379 | LOGICAL, SAVE :: first=.TRUE. !! First call to this subroutine |
---|
2380 | INTEGER :: index !! Index in data_buffer for current variable |
---|
2381 | INTEGER :: i, ierr !! Loop and error variables |
---|
2382 | |
---|
2383 | |
---|
2384 | !! 1. Initialization |
---|
2385 | IF (first) THEN |
---|
2386 | data_buffer(:)%name='undef' |
---|
2387 | ! Read NBUFF from run.def |
---|
2388 | ! Note that getin_p is not used because this subroutine might be called only by master process |
---|
2389 | |
---|
2390 | !Config Key = NBUFF |
---|
2391 | !Config Desc = Number of time steps of data to buffer between each reading of the forcing file |
---|
2392 | !Config If = OFF_LINE |
---|
2393 | !Config Help = The full simulation time length will be read if NBUFF equal 0. NBUFF > 1 can be used for smaller regions or site simulations only. |
---|
2394 | !Config Def = 1 |
---|
2395 | !Config Units= - |
---|
2396 | |
---|
2397 | nbuff=1 |
---|
2398 | CALL getin('NBUFF', nbuff) |
---|
2399 | |
---|
2400 | IF (nbuff == 0 .OR. nbuff >ttm) THEN |
---|
2401 | ! Set nbuff as the full forcing file lenght |
---|
2402 | nbuff=ttm |
---|
2403 | ELSE IF (nbuff < 0) THEN |
---|
2404 | ! Negativ nbuff not possible |
---|
2405 | CALL ipslerr_p(3,'flinget_buffer','NBUFF must be a positiv number','Set NBUFF=0 for full simulation lenght','') |
---|
2406 | END IF |
---|
2407 | WRITE(numout,*)'flinget_buffer: NBUFF=',nbuff,' number of time step will be buffered' |
---|
2408 | WRITE(numout,*)'flinget_buffer: Choose a lower value for NBUFF if problem with memory' |
---|
2409 | |
---|
2410 | ! Save dimensions to check following timesteps |
---|
2411 | ! ttm is the full lenght of forcing file |
---|
2412 | ttm0=ttm |
---|
2413 | |
---|
2414 | first=.FALSE. |
---|
2415 | END IF |
---|
2416 | |
---|
2417 | !! 2. Coeherence tests on input arguments |
---|
2418 | IF (ttm /= ttm0) THEN |
---|
2419 | WRITE(numout,*)'Problem with ttm=',ttm,' ttm0=',ttm0 |
---|
2420 | CALL ipslerr_p(3,'flinget_buffer','Error with ttm and ttm0','','') |
---|
2421 | END IF |
---|
2422 | IF (itb /= ite) THEN |
---|
2423 | WRITE(numout,*) 'There is a problem. Why is itb not equal ite ?' |
---|
2424 | WRITE(numout,*) 'itb=',itb,' ite=',ite,' varname=',varname |
---|
2425 | CALL ipslerr_p(3,'flinget_buffer','ite not equal itb','','') |
---|
2426 | END IF |
---|
2427 | |
---|
2428 | |
---|
2429 | !! 3. Find index for current variable |
---|
2430 | index=0 |
---|
2431 | DO i=1, maxvar |
---|
2432 | IF ( trim(varname) == data_buffer(i)%name ) THEN |
---|
2433 | index=i |
---|
2434 | CYCLE |
---|
2435 | END IF |
---|
2436 | END DO |
---|
2437 | |
---|
2438 | !! 4. Initialize and allocate if necesary the current variable |
---|
2439 | IF ( index == 0 ) THEN |
---|
2440 | ! The variable was not found |
---|
2441 | ! This must be the first time for current variable |
---|
2442 | index=lastindex+1 |
---|
2443 | lastindex=index |
---|
2444 | IF (index > maxvar) CALL ipslerr_p(3,'flinget_buffer','to many variables','maxvar is too small','') |
---|
2445 | |
---|
2446 | ! Initialize the data_buffer for this index |
---|
2447 | data_buffer(index)%name=trim(varname) |
---|
2448 | ALLOCATE(data_buffer(index)%data(iim_full,jjm_full,nbuff),stat=ierr) |
---|
2449 | IF (ierr /= 0) CALL ipslerr_p(3,'flinget_buffer','pb alloc data_buffer%data','for variable=',varname) |
---|
2450 | data_buffer(index)%istart=0 |
---|
2451 | data_buffer(index)%iend=0 |
---|
2452 | END IF |
---|
2453 | |
---|
2454 | |
---|
2455 | !! 5. Call flinget if current time step (itb) is outside the buffered intervall |
---|
2456 | IF (( itb > data_buffer(index)%iend ) .OR. ( itb < data_buffer(index)%istart )) THEN |
---|
2457 | ! itb is not in the time slice previously read or it is the first time to read |
---|
2458 | ! Reading of forcing file will now be done |
---|
2459 | ! First recalculate index to be read |
---|
2460 | data_buffer(index)%istart = itb |
---|
2461 | data_buffer(index)%iend = itb + nbuff - 1 |
---|
2462 | |
---|
2463 | ! WRITE(numout,*) 'Now do flinget for ',varname,', itb=',itb,', istart=',& |
---|
2464 | ! data_buffer(index)%istart,', iend=',data_buffer(index)%iend |
---|
2465 | CALL flinget (force_id,varname, iim_full, jjm_full, llm_full, ttm, data_buffer(index)%istart, & |
---|
2466 | data_buffer(index)%iend, data_buffer(index)%data(:,:,:)) |
---|
2467 | END IF |
---|
2468 | |
---|
2469 | !! 6. Initialize the output variable with data from buffered variable |
---|
2470 | ! Find index for the time step corrsponding to itb in the time slice previously read from forcing file |
---|
2471 | i=itb-data_buffer(index)%istart+1 |
---|
2472 | ! Initialize output variable |
---|
2473 | data_full(:,:) = data_buffer(index)%data(:,:,i) |
---|
2474 | |
---|
2475 | |
---|
2476 | END SUBROUTINE flinget_buffer |
---|
2477 | !------------------ |
---|
2478 | END MODULE readdim2 |
---|