1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : stomate_prescribe |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Initialize and update density, height, basal area and crown area. For the resource |
---|
10 | ! limited allocation and the allometric-based allocation |
---|
11 | !! |
---|
12 | !!\n DESCRIPTION: None |
---|
13 | !! |
---|
14 | !! RECENT CHANGE(S): None |
---|
15 | !! |
---|
16 | !! REFERENCE(S) : |
---|
17 | !! |
---|
18 | !! SVN : |
---|
19 | !! $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/branches/ORCHIDEE-DOFOCO/ORCHIDEE/src_stomate/stomate_prescribe.f90 $ |
---|
20 | !! $Date: 2013-01-04 16:50:56 +0100 (Fri, 04 Jan 2013) $ |
---|
21 | !! $Revision: 1126 $ |
---|
22 | !! \n |
---|
23 | !_ ================================================================================================================================ |
---|
24 | |
---|
25 | MODULE stomate_prescribe |
---|
26 | |
---|
27 | ! modules used: |
---|
28 | |
---|
29 | USE ioipsl_para |
---|
30 | USE stomate_data |
---|
31 | USE pft_parameters |
---|
32 | USE function_library, ONLY: calculate_c0_alloc |
---|
33 | USE constantes |
---|
34 | |
---|
35 | IMPLICIT NONE |
---|
36 | |
---|
37 | ! private & public routines |
---|
38 | |
---|
39 | PRIVATE |
---|
40 | PUBLIC prescribe_diagnostic, prescribe_prognostic, prescribe_clear |
---|
41 | |
---|
42 | ! first call |
---|
43 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
44 | !$OMP THREADPRIVATE(firstcall) |
---|
45 | |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | |
---|
49 | ! ================================================================================================================================= |
---|
50 | !! SUBROUTINE : prescribe_clear |
---|
51 | !! |
---|
52 | !>\BRIEF : Set the firstcall flag back to .TRUE. to prepare for the next simulation. |
---|
53 | !_================================================================================================================================= |
---|
54 | |
---|
55 | SUBROUTINE prescribe_clear |
---|
56 | firstcall=.TRUE. |
---|
57 | END SUBROUTINE prescribe_clear |
---|
58 | |
---|
59 | |
---|
60 | |
---|
61 | !! ================================================================================================================================ |
---|
62 | !! SUBROUTINE : prescribe_diagnostic |
---|
63 | !! |
---|
64 | !>\BRIEF Works only with static vegetation and agricultural PFT. Initialize biomass, |
---|
65 | !! density, crown area in the first call and update them in the following calls. |
---|
66 | !! |
---|
67 | !! DESCRIPTION (functional, design, flags): \n |
---|
68 | !! This module works only with static vegetation and agricultural PFT. In the first call, initialize |
---|
69 | !! density of individuals, biomass, crown area, and leaf age distribution to some reasonable value. |
---|
70 | !! In the following calls, these variables are updated. |
---|
71 | !! |
---|
72 | !! To fulfill these purposes, relationships from the pipe model are used: |
---|
73 | !! \latexonly |
---|
74 | !! \input{prescribe1.tex} |
---|
75 | !! \input{prescribe2.tex} |
---|
76 | !! \endlatexonly |
---|
77 | !! |
---|
78 | !! RECENT CHANGE(S): None |
---|
79 | !! |
---|
80 | !! MAIN OUTPUT VARIABLES(S): ::ind, ::cn_ind, ::leaf_frac |
---|
81 | !! |
---|
82 | !! REFERENCES : |
---|
83 | !! - Krinner, G., N. Viovy, et al. (2005). "A dynamic global vegetation model |
---|
84 | !! for studies of the coupled atmosphere-biosphere system." Global |
---|
85 | !! Biogeochemical Cycles 19: GB1015, doi:1010.1029/2003GB002199. |
---|
86 | !! - Sitch, S., B. Smith, et al. (2003), Evaluation of ecosystem dynamics, |
---|
87 | !! plant geography and terrestrial carbon cycling in the LPJ dynamic |
---|
88 | !! global vegetation model, Global Change Biology, 9, 161-185. |
---|
89 | !! |
---|
90 | !! FLOWCHART : None |
---|
91 | !! \n |
---|
92 | !_ ================================================================================================================================ |
---|
93 | |
---|
94 | SUBROUTINE prescribe_diagnostic (npts, veget_max, dt, PFTpresent, everywhere, & |
---|
95 | when_growthinit, biomass, leaf_frac, ind, cn_ind, & |
---|
96 | co2_to_bm) |
---|
97 | |
---|
98 | |
---|
99 | !! 0. Parameters and variables declaration |
---|
100 | |
---|
101 | !! 0.1 Input variables |
---|
102 | |
---|
103 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
104 | REAL(r_std), INTENT(in) :: dt !! time step (dt_days) |
---|
105 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_max !! "maximal" coverage fraction of a PFT |
---|
106 | !! (LAI -> infinity) on ground. |
---|
107 | !! (unitless;0-1) |
---|
108 | !! 0.2 Output variables |
---|
109 | |
---|
110 | !! 0.3 Modified variables |
---|
111 | |
---|
112 | LOGICAL, DIMENSION(npts,nvm), INTENT(inout) :: PFTpresent !! PFT present (0 or 1) |
---|
113 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: everywhere !! is the PFT everywhere in the grid box or |
---|
114 | !! very localized (after its introduction) |
---|
115 | !! (unitless;0-1) |
---|
116 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: when_growthinit !! how many days ago was the beginning of |
---|
117 | !! the growing season (days) |
---|
118 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), & |
---|
119 | INTENT(inout) :: biomass !! biomass @tex $(gC.m^{-2})$ @endtex |
---|
120 | REAL(r_std), DIMENSION(npts,nvm,nleafages), & |
---|
121 | INTENT(inout) :: leaf_frac !! fraction of leaves in leaf age |
---|
122 | !! class (unitless;0-1) |
---|
123 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: ind !! density of individuals |
---|
124 | !! @tex $(m^{-2})$ @endtex |
---|
125 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: cn_ind !! crown area per individual |
---|
126 | !! @tex $(m^{2})$ @endtex |
---|
127 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: co2_to_bm !! co2 taken up by carbohydrate |
---|
128 | !! reserve at the beginning of the |
---|
129 | !! growing season @tex (gC.m^{-2}dt^{-1})$ @endtex |
---|
130 | |
---|
131 | !! 0.4 Local variables |
---|
132 | |
---|
133 | REAL(r_std), DIMENSION(npts) :: dia !! stem diameter (m) |
---|
134 | REAL(r_std), DIMENSION(npts,nelements) :: woodmass !! woodmass @tex $(gC.m^{-2})$ @endtex |
---|
135 | REAL(r_std), DIMENSION(npts,nelements) :: woodmass_ind !! woodmass of an individual |
---|
136 | !! @tex $(gC.tree^{-1})$ @endtex |
---|
137 | INTEGER(i_std) :: i,j !! index (unitless) |
---|
138 | |
---|
139 | !_ ================================================================================================================================ |
---|
140 | |
---|
141 | !! 1. Calculations at every call of the routine |
---|
142 | |
---|
143 | DO j = 2,nvm |
---|
144 | |
---|
145 | ! only when the DGVM is not activated or agricultural PFT. |
---|
146 | IF ( ( .NOT. control%ok_dgvm .AND. control%ok_constant_mortality ) .OR. ( .NOT. natural(j) ) ) THEN |
---|
147 | |
---|
148 | !! 1.1 Update crown area |
---|
149 | cn_ind(:,j) = zero |
---|
150 | |
---|
151 | IF ( is_tree(j) ) THEN |
---|
152 | |
---|
153 | !! 1.1.1 Trees |
---|
154 | dia(:) = zero |
---|
155 | DO i = 1, npts ! loop over grid points |
---|
156 | |
---|
157 | IF ( veget_max(i,j) .GT. zero ) THEN |
---|
158 | |
---|
159 | !! 1.1.1.1 calculate wood mass on an area basis, which include sapwood and heartwood aboveground and belowground. |
---|
160 | woodmass(i,icarbon) = (biomass(i,j,isapabove,icarbon) + biomass(i,j,isapbelow,icarbon) + & |
---|
161 | biomass(i,j,iheartabove,icarbon) + biomass(i,j,iheartbelow,icarbon)) * veget_max(i,j) |
---|
162 | |
---|
163 | IF ( woodmass(i,icarbon) .GT. min_stomate ) THEN |
---|
164 | |
---|
165 | !! 1.1.1.2 calculate critical individual density |
---|
166 | !?? the logic for 1.1.3 and 1.1.2 is strange, it should be the case that first to calculate critical woodmass |
---|
167 | !??per individual, then calculate critical density. |
---|
168 | ! how to derive the following equation: |
---|
169 | ! first, TreeHeight=pipe_tune2 * Diameter^{pipe_tune3} |
---|
170 | ! we assume the tree is an ideal cylinder, so it volume is: |
---|
171 | ! Volume = pi*(Dia/2)^2*Height = pi/4 * Dia * pipe_tune2*Dia^{pipe_tune3} |
---|
172 | ! = pi/4 * pipe_tune2 * Dia^{2+pipe_tune3} |
---|
173 | ! last, the woodmass_per_individual = pipe_density * Volume = pipe_density*pi/4.*pipe_tune2 * Dia^{2+pipe_tune3} |
---|
174 | ind(i,j) = woodmass(i,icarbon) / & |
---|
175 | ( pipe_density(j)*pi/4.*pipe_tune2(j) * maxdia(j)**(2.+pipe_tune3(j)) ) |
---|
176 | |
---|
177 | |
---|
178 | !! 1.1.1.3 individual biomass corresponding to this critical density of individuals |
---|
179 | woodmass_ind(i,icarbon) = woodmass(i,icarbon) / ind(i,j) |
---|
180 | |
---|
181 | !! 1.1.1.4 calculate stem diameter per individual tree |
---|
182 | dia(i) = ( woodmass_ind(i,icarbon) / ( pipe_density(j) * pi/4. * pipe_tune2(j) ) ) ** & |
---|
183 | ( un / ( 2. + pipe_tune3(j) ) ) |
---|
184 | |
---|
185 | !! 1.1.1.5 calculate provisional tree crown area for per individual tree |
---|
186 | ! equation: CrownArea=pipe_tune1 * Diameter^{1.6} |
---|
187 | cn_ind(i,j) = pipe_tune1(j) * MIN( maxdia(j), dia(i) ) ** pipe_tune_exp_coeff(j) |
---|
188 | |
---|
189 | !! 1.1.1.6 If total tree crown area for this tree PFT exceeds its veget_max, tree density is recalculated. |
---|
190 | IF ( cn_ind(i,j) * ind(i,j) .GT. 1.002* veget_max(i,j) ) THEN |
---|
191 | |
---|
192 | ind(i,j) = veget_max(i,j) / cn_ind(i,j) |
---|
193 | |
---|
194 | ELSE |
---|
195 | |
---|
196 | ind(i,j) = ( veget_max(i,j) / ( pipe_tune1(j) * (woodmass(i,icarbon)/(pipe_density(j)*pi/4.*pipe_tune2(j))) & |
---|
197 | & **(pipe_tune_exp_coeff(j)/(2.+pipe_tune3(j))) ) ) & |
---|
198 | & ** (1./(1.-(pipe_tune_exp_coeff(j)/(2.+pipe_tune3(j))))) |
---|
199 | woodmass_ind(i,icarbon) = woodmass(i,icarbon) / ind(i,j) |
---|
200 | dia(i) = ( woodmass_ind(i,icarbon) / ( pipe_density(j) * pi/4. * pipe_tune2(j) ) ) ** & |
---|
201 | & ( un / ( 2. + pipe_tune3(j) ) ) |
---|
202 | cn_ind(i,j) = pipe_tune1(j) * MIN( maxdia(j), dia(i) ) ** pipe_tune_exp_coeff(j) |
---|
203 | |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ELSE ! woodmass=0 => impose some value |
---|
207 | |
---|
208 | dia(:) = maxdia(j) |
---|
209 | cn_ind(i,j) = pipe_tune1(j) * MIN( maxdia(j), dia(i) ) ** pipe_tune_exp_coeff(j) |
---|
210 | |
---|
211 | ENDIF ! IF ( woodmass .GT. min_stomate ) |
---|
212 | |
---|
213 | ENDIF ! veget_max .GT. 0. |
---|
214 | |
---|
215 | ENDDO ! loop over grid points |
---|
216 | |
---|
217 | !! 1.2 grasses: crown area always set to 1m**2 |
---|
218 | ELSE |
---|
219 | |
---|
220 | WHERE ( veget_max(:,j) .GT. zero ) |
---|
221 | |
---|
222 | cn_ind(:,j) = un |
---|
223 | |
---|
224 | ENDWHERE |
---|
225 | |
---|
226 | ENDIF !IF ( is_tree(j) ) |
---|
227 | |
---|
228 | !! 1.3 density of individuals |
---|
229 | WHERE ( veget_max(:,j) .GT. zero ) |
---|
230 | |
---|
231 | ind(:,j) = veget_max(:,j) / cn_ind(:,j) |
---|
232 | |
---|
233 | ELSEWHERE |
---|
234 | |
---|
235 | ind(:,j) = zero |
---|
236 | |
---|
237 | ENDWHERE |
---|
238 | |
---|
239 | ENDIF ! IF ( ( .NOT. control%ok_dgvm .AND. control%ok_constant_mortality ) .OR. ( .NOT. natural(j) ) ) |
---|
240 | |
---|
241 | ENDDO ! loop over PFTs |
---|
242 | |
---|
243 | |
---|
244 | !! 2. If it's the first call for this module, |
---|
245 | |
---|
246 | IF (( firstcall ) .AND. (TRIM(stom_restname_in) == 'NONE')) THEN |
---|
247 | |
---|
248 | ! impose some biomass if zero and PFT prescribed |
---|
249 | WRITE(numout,*) 'prescribe:' |
---|
250 | WRITE(numout,*) ' > Imposing initial biomass for prescribed trees, '// & |
---|
251 | 'initial reserve mass for prescribed grasses.' |
---|
252 | WRITE(numout,*) ' > Declaring prescribed PFTs present.' |
---|
253 | |
---|
254 | DO j = 2,nvm ! loop over PFTs |
---|
255 | |
---|
256 | DO i = 1, npts ! loop over grid points |
---|
257 | |
---|
258 | ! is vegetation static or PFT agricultural? |
---|
259 | ! Static vegetation or agricultural PFT |
---|
260 | IF ( ( .NOT. control%ok_dgvm ) .OR. & |
---|
261 | ( ( .NOT. natural(j) ) .AND. ( veget_max(i,j) .GT. min_stomate ) ) ) THEN |
---|
262 | |
---|
263 | |
---|
264 | !! 2.1 if tree biomass is extremely small, prescribe the biomass by assuming they have sapling biomass, |
---|
265 | !! which is a constant in the model then set all the leaf age as 1. |
---|
266 | !! if tree PFT and biomass too small, prescribe the biomass to a value. |
---|
267 | IF ( is_tree(j) .AND. ( veget_max(i,j) .GT. min_stomate ) .AND. & |
---|
268 | ( SUM( biomass(i,j,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
269 | |
---|
270 | !!? here the code is redundant, as "veget_max(i,j) .GT. min_stomate" is already met in the above if |
---|
271 | !!? condition. |
---|
272 | IF (veget_max(i,j) .GT. min_stomate) THEN |
---|
273 | |
---|
274 | biomass(i,j,:,:) = (bm_sapl_rescale * bm_sapl_old(j,:,:) * ind(i,j)) / veget_max(i,j) |
---|
275 | |
---|
276 | ELSE |
---|
277 | |
---|
278 | biomass(i,j,:,:) = zero |
---|
279 | |
---|
280 | ENDIF |
---|
281 | |
---|
282 | ! set leaf age classes |
---|
283 | leaf_frac(i,j,:) = zero |
---|
284 | leaf_frac(i,j,1) = un |
---|
285 | |
---|
286 | ! set time since last beginning of growing season |
---|
287 | when_growthinit(i,j) = large_value |
---|
288 | |
---|
289 | ! seasonal trees: no leaves at beginning |
---|
290 | IF ( pheno_model(j) .NE. 'none' ) THEN |
---|
291 | |
---|
292 | biomass(i,j,ileaf,icarbon) = zero |
---|
293 | leaf_frac(i,j,1) = zero |
---|
294 | |
---|
295 | ENDIF |
---|
296 | |
---|
297 | co2_to_bm(i,j) = co2_to_bm(i,j) + ( SUM(biomass(i,j,:,icarbon)) / dt ) |
---|
298 | |
---|
299 | ENDIF |
---|
300 | |
---|
301 | !! 2.2 for grasses, set only the carbon reserve pool to "sapling" carbon reserve pool. |
---|
302 | !! and set all leaf age to 1. |
---|
303 | IF ( ( .NOT. is_tree(j) ) .AND. ( veget_max(i,j) .GT. min_stomate ) .AND. & |
---|
304 | ( SUM( biomass(i,j,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
305 | |
---|
306 | !+++++ CHECK MJM ++++++ |
---|
307 | ! bm_sapl will also be a function of the circumference class...just using the first class right now |
---|
308 | biomass(i,j,icarbres,:) = bm_sapl_old(j,icarbres,:) * ind(i,j) / veget_max(i,j) |
---|
309 | |
---|
310 | ! set leaf age classes |
---|
311 | leaf_frac(i,j,:) = zero |
---|
312 | leaf_frac(i,j,1) = un |
---|
313 | |
---|
314 | ! set time since last beginning of growing season |
---|
315 | when_growthinit(i,j) = large_value |
---|
316 | |
---|
317 | co2_to_bm(i,j) = co2_to_bm(i,j) + ( biomass(i,j,icarbres,icarbon) / dt ) |
---|
318 | |
---|
319 | ENDIF |
---|
320 | |
---|
321 | !! 2.3 declare all PFTs with positive veget_max as present everywhere in that grid box |
---|
322 | IF ( veget_max(i,j) .GT. min_stomate ) THEN |
---|
323 | |
---|
324 | PFTpresent(i,j) = .TRUE. |
---|
325 | everywhere(i,j) = un |
---|
326 | |
---|
327 | ENDIF |
---|
328 | |
---|
329 | ENDIF ! not control%ok_dgvm or agricultural |
---|
330 | |
---|
331 | ENDDO ! loop over grid points |
---|
332 | |
---|
333 | ENDDO ! loop over PFTs |
---|
334 | |
---|
335 | firstcall = .FALSE. |
---|
336 | |
---|
337 | ENDIF |
---|
338 | |
---|
339 | END SUBROUTINE prescribe_diagnostic |
---|
340 | |
---|
341 | |
---|
342 | !! ================================================================================================================================ |
---|
343 | !! SUBROUTINE : prescribe_prognostic |
---|
344 | !! |
---|
345 | !>\BRIEF Works only with static vegetation and agricultural PFT. Initialize biomass, |
---|
346 | !! density, presence in the first call and update them in the following. |
---|
347 | !! |
---|
348 | !! DESCRIPTION (functional, design, flags): \n |
---|
349 | !! This module works only with static vegetation and agricultural PFT. |
---|
350 | !! In the first call, initialize density of individuals, biomass, |
---|
351 | !! and leaf age distribution to some reasonable value. In the following calls, |
---|
352 | !! these variables are updated. |
---|
353 | !! |
---|
354 | !! To fulfill these purposes, pipe model are used: |
---|
355 | !! \latexonly |
---|
356 | !! \input{prescribe1.tex} |
---|
357 | !! \input{prescribe2.tex} |
---|
358 | !! \endlatexonly |
---|
359 | !! |
---|
360 | !! RECENT CHANGE(S): None |
---|
361 | !! |
---|
362 | !! MAIN OUTPUT VARIABLES(S): ::ind, ::cn_ind, ::leaf_frac |
---|
363 | !! |
---|
364 | !! REFERENCES : |
---|
365 | !! - Krinner, G., N. Viovy, et al. (2005). "A dynamic global vegetation model |
---|
366 | !! for studies of the coupled atmosphere-biosphere system." Global |
---|
367 | !! Biogeochemical Cycles 19: GB1015, doi:1010.1029/2003GB002199. |
---|
368 | !! - Sitch, S., B. Smith, et al. (2003), Evaluation of ecosystem dynamics, |
---|
369 | !! plant geography and terrestrial carbon cycling in the LPJ dynamic |
---|
370 | !! global vegetation model, Global Change Biology, 9, 161-185. |
---|
371 | !! - McDowell, N., Barnard, H., Bond, B.J., Hinckley, T., Hubbard, R.M., Ishii, |
---|
372 | !! H., Köstner, B., Magnani, F. Marshall, J.D., Meinzer, F.C., Phillips, N., |
---|
373 | !! Ryan, M.G., Whitehead D. 2002. The relationship between tree height and leaf |
---|
374 | !! area: sapwood area ratio. Oecologia, 132:12â20. |
---|
375 | !! - Novick, K., Oren, R., Stoy, P., Juang, F.-Y., Siqueira, M., Katul, G. 2009. |
---|
376 | !! The relationship between reference canopy conductance and simplified hydraulic |
---|
377 | !! architecture. Advances in water resources 32, 809-819. |
---|
378 | !! |
---|
379 | !! FLOWCHART : None |
---|
380 | !! \n |
---|
381 | !_ ================================================================================================================================ |
---|
382 | |
---|
383 | SUBROUTINE prescribe_prognostic (npts, veget_max, veget, dt, PFTpresent, & |
---|
384 | everywhere, when_growthinit, biomass, leaf_frac, & |
---|
385 | ind, circ_class_n, circ_class_biomass, co2_to_bm, & |
---|
386 | forest_managed, KF, & |
---|
387 | senescence, age, npp_longterm, lm_lastyearmax, & |
---|
388 | tau_eff_leaf, tau_eff_sap, tau_eff_root, k_latosa_adapt,& |
---|
389 | lpft_replant) |
---|
390 | |
---|
391 | !! 0. Parameters and variables declaration |
---|
392 | |
---|
393 | !! 0.1 Input variables |
---|
394 | |
---|
395 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
396 | INTEGER(i_std), DIMENSION (:,:), INTENT(in) :: forest_managed !! forest management flag |
---|
397 | REAL(r_std), INTENT(in) :: dt !! time step (dt_days) |
---|
398 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: veget_max !! "maximal" coverage fraction of a PFT |
---|
399 | !! (LAI -> infinity) on ground. May sum to |
---|
400 | !! less than unity if the pixel has |
---|
401 | !! nobio area. (unitless; 0-1) |
---|
402 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: veget !! Fraction of vegetation type including |
---|
403 | !! non-biological fraction (unitless) |
---|
404 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: tau_eff_root !! Effective root turnover time that accounts |
---|
405 | !! waterstress (days) |
---|
406 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: tau_eff_sap !! Effective sapwood turnover time that accounts |
---|
407 | !! waterstress (days) |
---|
408 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: tau_eff_leaf !! Effective leaf turnover time that accounts |
---|
409 | !! waterstress (days) |
---|
410 | LOGICAL, DIMENSION(npts,nvm), OPTIONAL, INTENT(in):: lpft_replant !! Set to true if a PFT has been clearcut |
---|
411 | !! and needs to be replaced by another species |
---|
412 | |
---|
413 | |
---|
414 | !! 0.2 Output variables |
---|
415 | |
---|
416 | |
---|
417 | !! 0.3 Modified variables |
---|
418 | |
---|
419 | LOGICAL, DIMENSION(:,:), INTENT(inout) :: PFTpresent !! PFT present (0 or 1) |
---|
420 | LOGICAL, DIMENSION(:,:), INTENT(inout) :: senescence !! Flag for setting senescence stage (only |
---|
421 | !! for deciduous trees) |
---|
422 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: everywhere !! is the PFT everywhere in the grid box or |
---|
423 | !! very localized (after its introduction) (?) |
---|
424 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: when_growthinit !! how many days ago was the beginning of |
---|
425 | !! the growing season (days) |
---|
426 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: ind !! Density of individuals at the stand level |
---|
427 | !! @tex $(m^{-2})$ @endtex |
---|
428 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: npp_longterm !! "long term" net primary productivity |
---|
429 | !! @tex ($gC m^{-2} year^{-1}$) @endtex |
---|
430 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: age !! mean age (years) |
---|
431 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: lm_lastyearmax !! last year's maximum leaf mass for each PFT |
---|
432 | !! @tex ($gC m^{-2}$) @endtex |
---|
433 | REAL(r_std), DIMENSION(:,:,:), INTENT(inout) :: circ_class_n !! Number of individuals in each circ class |
---|
434 | !! @tex $(ind m^{-2})$ @endtex |
---|
435 | REAL(r_std), DIMENSION(:,:,:,:), INTENT(inout) :: biomass !! Stand level biomass |
---|
436 | !! tex $(gC.m^{-2})$ @endtex |
---|
437 | REAL(r_std), DIMENSION(:,:,:,:,:), INTENT(inout) :: circ_class_biomass !! Biomass components of the model tree |
---|
438 | !! within a circumference class |
---|
439 | !! class @tex $(g C ind^{-1})$ @endtex |
---|
440 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: co2_to_bm !! CO2 taken from the atmosphere to get C |
---|
441 | !! to create the seedlings |
---|
442 | !! @tex (gC.m^{-2}dt^{-1})$ @endtex |
---|
443 | REAL(r_std), DIMENSION(:,:,:), INTENT(inout) :: leaf_frac !! fraction of leaves in leaf age |
---|
444 | !! class (unitless;0-1) |
---|
445 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: KF !! Scaling factor to convert sapwood mass |
---|
446 | !! into leaf mass (m) - this variable is |
---|
447 | !! passed to other routines |
---|
448 | REAL(r_std), DIMENSION(:,:), INTENT(inout) :: k_latosa_adapt !! Leaf to sapwood area adapted for long |
---|
449 | !! term water stress (m) |
---|
450 | |
---|
451 | |
---|
452 | !! 0.4 Local variables |
---|
453 | |
---|
454 | REAL(r_std), DIMENSION(npts,nvm) :: c0_alloc !! Root to sapwood tradeoff parameter |
---|
455 | INTEGER(i_std) :: ipts, ivm, ipar !! index (unitless) |
---|
456 | INTEGER(i_std) :: icir, iele, imbc !! index (unitless) |
---|
457 | INTEGER(i_std) :: deb,fin, imaxt !! index (unitless) |
---|
458 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements) :: sync_biomass !! Temporary stand level biomass |
---|
459 | !! @tex $(gC.m^{-2})$ @endtex |
---|
460 | REAL(r_std), DIMENSION(npts,nvm) :: sync_ind !! Temporary density of individuals at the |
---|
461 | !! stand level @tex $(m^{-2})$ @endtex |
---|
462 | REAL(r_std), DIMENSION(npts,nvm) :: k_latosa !! Height dependent base value to calculate |
---|
463 | !! KF (-) |
---|
464 | REAL(r_std), DIMENSION(nvm,ncirc,nparts,nelements) :: bm_sapl !! Sapling biomass for the functional |
---|
465 | !! allocation with a dimension for the |
---|
466 | !! circumference classes |
---|
467 | !! @tex $(gC.ind^{-1})$ @endtex |
---|
468 | REAL(r_std), DIMENSION(npts,nvm) :: LF !! Scaling factor to convert sapwood mass |
---|
469 | !! into root mass (unitless) |
---|
470 | REAL(r_std), DIMENSION(npts,nvm) :: lstress_fac !! Light stress factor, based on total |
---|
471 | !! transmitted light (unitless, 0-1) |
---|
472 | REAL(r_std), DIMENSION(npts,nvm,ncirc) :: circ_class !! circumference of individual trees |
---|
473 | REAL(r_std) :: lambda !! lambda of the truncated exponential |
---|
474 | !! distribution of initial diameters |
---|
475 | !! (1/cm**2). Parameterized based on Dhote |
---|
476 | !! (2003): lambda = sqrt(2)/Dg and |
---|
477 | !! Dginit = 1 cm. |
---|
478 | REAL(r_std) :: p_max !! Cumulated probability level at which the |
---|
479 | !! exponential distribution truncated |
---|
480 | !! (dimensionless, 0-1) |
---|
481 | REAL(r_std),DIMENSION(ncirc) :: circ_ij0 !! Circumference of all individual trees |
---|
482 | REAL(r_std),DIMENSION(ncirc) :: height_ij0 !! Height of each Circumference of all |
---|
483 | !! individual trees |
---|
484 | !! for 1 ha at gridpoint i and for PFT j |
---|
485 | !! (m). As above, 0 is before thinning |
---|
486 | REAL(r_std), DIMENSION(nparts) :: bm_init !! Biomass needed to initiate the next |
---|
487 | !! planting @tex $(gC m^{-2})$ @endtex |
---|
488 | REAL(r_std), DIMENSION(ncirc) :: nb_trees_i !! Number of trees in each twentith |
---|
489 | !! circumference quantile of the |
---|
490 | !! distribution (ind) |
---|
491 | REAL(r_std) :: excedent !! Number of trees after truncation to be |
---|
492 | !! reallocated to smaller quantiles of the |
---|
493 | !! distribution (ind) |
---|
494 | REAL(r_std) :: max_circ_init !! Maximum initial circumferences of the |
---|
495 | !! truncated exponential distribution (cm) |
---|
496 | REAL(r_std), DIMENSION(ncirc) :: ave_tree_height !! The height of the ideal tree in each |
---|
497 | !! circumference class of the |
---|
498 | !! distribution (ind)...not saved since |
---|
499 | !! it should only be used for prescribing |
---|
500 | REAL(r_std), DIMENSION(npts,nvm,nmbcomp,nelements) :: check_intern !! Contains the components of the internal |
---|
501 | !! mass balance chech for this routine |
---|
502 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
503 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: closure_intern !! Check closure of internal mass balance |
---|
504 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
505 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: pool_start !! Start and end pool of this routine |
---|
506 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
507 | REAL(r_std), DIMENSION(npts,nvm,nelements) :: pool_end !! Start and end pool of this routine |
---|
508 | !! @tex $(gC pixel^{-1} dt^{-1})$ @endtex |
---|
509 | REAL(r_std) :: delta_KF !! Difference between new and old estimate |
---|
510 | !! of KF while iterating |
---|
511 | REAL(r_std) :: min_height_init |
---|
512 | REAL(r_std) :: max_height_init |
---|
513 | REAL(r_std) :: sapwood_density |
---|
514 | REAL(r_std) :: dia_init |
---|
515 | REAL(r_std) :: wood_init |
---|
516 | REAL(r_std), DIMENSION(ncirc) :: height_dist |
---|
517 | INTEGER(i_std) :: iloop |
---|
518 | |
---|
519 | !_ ================================================================================================================================ |
---|
520 | |
---|
521 | !! 1. Initialize biomass at first call |
---|
522 | |
---|
523 | !! 1.1.1 Initialize check for mass balance closure |
---|
524 | ! The mass balance is calculated at the end of this routine |
---|
525 | ! in section 4 |
---|
526 | ! Initial biomass pool |
---|
527 | pool_start(:,:,:) = zero |
---|
528 | DO ipar = 1,nparts |
---|
529 | DO iele = 1,nelements |
---|
530 | pool_start(:,:,iele) = pool_start(:,:,iele) + & |
---|
531 | (biomass(:,:,ipar,iele) * veget_max(:,:)) |
---|
532 | ENDDO |
---|
533 | ENDDO |
---|
534 | |
---|
535 | ! co2_to_bm is has as intent inout, the variable accumulates |
---|
536 | ! carbon over the course of a day. Use the difference between |
---|
537 | ! start and the end of this routine |
---|
538 | check_intern(:,:,iatm2land,icarbon) = - un * co2_to_bm(:,:) * veget_max(:,:) * dt |
---|
539 | |
---|
540 | ! Prescribe was taken out of the first call loop. Because of the firstcall here, |
---|
541 | ! nothing was done when the vegetation was killed in lpj_gap and the vegetation |
---|
542 | ! thus stayed dead forever. We want it to regrow. So instead, let's loop over |
---|
543 | ! every point and PFT. If there is supposed to be vegetation here (according to |
---|
544 | ! veget_max) but there isn't (according to ind), then we grow it. |
---|
545 | DO ivm = 2,nvm ! Loop over PFTs |
---|
546 | |
---|
547 | DO ipts = 1, npts ! Loop over pixels |
---|
548 | |
---|
549 | ! If we are regrowing different species after managed forests |
---|
550 | ! are killed/die, we sometimes need to prevent them regrowing. |
---|
551 | ! This is only true if they die in the middle of the year due to natural |
---|
552 | ! causes, in which case they will be replanted at the end of the year. |
---|
553 | ! This loop checks to see if we regrow this PFT now or later. We can |
---|
554 | ! regrow a PFT after lpft_replant is set back to false so before that |
---|
555 | ! we need to process all the information such that the correct species |
---|
556 | ! will be regrown. lpft_replant is an optional variable. First test |
---|
557 | ! whether it is present. |
---|
558 | IF(lchange_species)THEN |
---|
559 | IF(PRESENT(lpft_replant))THEN |
---|
560 | IF(lpft_replant(ipts,ivm))THEN |
---|
561 | CYCLE |
---|
562 | ENDIF |
---|
563 | ENDIF |
---|
564 | ENDIF |
---|
565 | |
---|
566 | ! We are supposed to have vegetation, but we don't have any: prescribe some. |
---|
567 | IF((veget_max(ipts,ivm) .GT. min_stomate) .AND. (ind(ipts,ivm) .LE. min_stomate))THEN |
---|
568 | |
---|
569 | ! Initilaize tree level variables |
---|
570 | circ_class_n(ipts,ivm,:) = zero |
---|
571 | biomass(ipts,ivm,:,:) = zero |
---|
572 | circ_class_biomass(ipts,ivm,:,:,:) = zero |
---|
573 | |
---|
574 | ! Assume that there is no memory for k_latosa between |
---|
575 | ! different generations (this is probably true when trees |
---|
576 | ! are planted but seems less likely for natural regeneration |
---|
577 | ! Allowing for memory has caused problems with the LAI from |
---|
578 | ! the second generation onwards |
---|
579 | k_latosa_adapt(ipts,ivm) = k_latosa_min(ivm) |
---|
580 | |
---|
581 | ! Write output |
---|
582 | IF (ld_presc) THEN |
---|
583 | WRITE(numout,*) 'Prescribe (stomate_prescribe.f90):' |
---|
584 | WRITE(numout,*) ' > Imposing initial biomass for prescribed trees, '// & |
---|
585 | 'initial reserve mass for prescribed grasses.' |
---|
586 | WRITE(numout,*) ' > Declaring prescribed PFTs present.' |
---|
587 | WRITE(numout,*) ' > Grid point: ',ipts,' PFT Type: ',ivm |
---|
588 | ENDIF |
---|
589 | |
---|
590 | !! 2. Calculate the vegetation characteristics of a newly established vegetation |
---|
591 | |
---|
592 | !! 2.1 Stress factors |
---|
593 | |
---|
594 | ! Note that light and water stress have an opposite effect on KF. Waterstress |
---|
595 | ! will decrease KF because more C should be allocated to the roots. Light |
---|
596 | ! stress will increase KF because more C should be allocated to the leaves. |
---|
597 | |
---|
598 | ! We will need the c0_alloc, it only depends on PFT and the effective |
---|
599 | ! longiveties |
---|
600 | c0_alloc(ipts,ivm) = calculate_c0_alloc(ipts, ivm, tau_eff_root(ipts,ivm), & |
---|
601 | tau_eff_sap(ipts,ivm)) |
---|
602 | |
---|
603 | ! Lightstress varies from 0 to 1 and is calculated from the canopy structure (veget) |
---|
604 | ! Given that there is no vegetation at this point, the lightstress cannot be calculated |
---|
605 | ! and is set to 1. However as soon as we grow a canopy it will experience light stress |
---|
606 | ! and so KF should be adjusted. If this is not done, we can't prescribe tall vegetation |
---|
607 | ! which is a useful feature to speed up optimisation and testing. We will have iterate |
---|
608 | ! over light stress and KF to prescribe vegetation that is in balance with its |
---|
609 | ! light environment. |
---|
610 | lstress_fac(ipts,ivm) = un |
---|
611 | |
---|
612 | ! Initial vegetation has to be prescribed only when the vegetation is static |
---|
613 | IF ( ( .NOT. control%ok_dgvm ) .AND. & |
---|
614 | ( veget_max(ipts,ivm) .GT. min_stomate ) ) THEN |
---|
615 | |
---|
616 | !! 2.2 Initialize woody PFT's |
---|
617 | ! Use veget_max to check whether the PFT is present. If the PFT is present but it has no |
---|
618 | ! biomass, prescribe its biomass (gC m-{2}). |
---|
619 | IF ( is_tree(ivm) .AND. & |
---|
620 | ( veget_max(ipts,ivm) .GT. min_stomate ) .AND. & |
---|
621 | ( SUM( biomass(ipts,ivm,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
622 | |
---|
623 | ! PFT is present so it needs to be initialized |
---|
624 | IF (veget_max(ipts,ivm) .GT. min_stomate) THEN |
---|
625 | |
---|
626 | ! The forest stand starts with the number of individuals as prescribed in constantes_mtc.f90 |
---|
627 | ! This number is defined per hectare whereas these calculations are per m2 |
---|
628 | ind(ipts,ivm) = nmaxtrees(ivm) * ha_to_m2 |
---|
629 | |
---|
630 | !! 2.3 Initialize height distribution |
---|
631 | ! Initializing height distribution...I've taken this from the circumference initilization of Valentin |
---|
632 | ! we want ncirc bins between height_init_min and height_init_max |
---|
633 | lambda = SQRT(2.0_r_std)/pi |
---|
634 | min_height_init = height_init_min(ivm) |
---|
635 | max_height_init = height_init_max(ivm) |
---|
636 | p_max = 100./nmaxtrees(ivm) |
---|
637 | height_dist(:) = zero |
---|
638 | |
---|
639 | !! 2.4 Calculate height distribution |
---|
640 | |
---|
641 | !! 2.4.1 Height distribution of a high stand |
---|
642 | ! Deterministic initial distribution following a truncated exponential law |
---|
643 | ! if they are coppices, we handle this differently |
---|
644 | |
---|
645 | !++++ CHECK+++++ |
---|
646 | ! I am treating SRC the same way as everything else for now. |
---|
647 | !IF (forest_managed(ipts,ivm) .NE. ifm_src) THEN |
---|
648 | nb_trees_i(:) = 0 |
---|
649 | |
---|
650 | ! The distribution is truncated when P(X>max_circ_init)<p_max |
---|
651 | ! The circumference distribution is divided into ncirc quantiles of equal height range. |
---|
652 | ! An integer number of trees is |
---|
653 | ! allocated to each quantile according to the truncated exponential distribution. |
---|
654 | DO icir = 1,ncirc ! loop over circumference quantiles |
---|
655 | |
---|
656 | nb_trees_i(icir) = NINT(nmaxtrees(ivm)*& |
---|
657 | (EXP(-lambda*max_height_init*(icir-1)/ncirc)-EXP(-lambda*max_height_init*icir/ncirc))) |
---|
658 | ! this array is going to be used to create the sapling for this class so that we can create |
---|
659 | ! the total amount of biomass |
---|
660 | ! in this class...after this we will always calculate the height/circ/diam/whatever |
---|
661 | ! from the biomass in the class |
---|
662 | ave_tree_height(icir)=min_height_init+(REAL(icir,r_std)-0.5_r_std)*& |
---|
663 | (max_height_init-min_height_init)/REAL(ncirc,r_std) |
---|
664 | |
---|
665 | ! I am changing this so that our lowest class is min_height_init and our biggest class |
---|
666 | ! is max_height_init. With this change, we can use the same code the redistribute |
---|
667 | ! the trees if the biomass in one of our height classes is equal to zero later on due to mortality or |
---|
668 | ! thinning. |
---|
669 | !+++ This caused some strange behavior, so change it back for now. |
---|
670 | ! ave_tree_height(icir)=min_height_init+REAL(icir-1,r_std)/REAL(ncirc-1,r_std)*& |
---|
671 | ! (max_height_init-min_height_init) |
---|
672 | |
---|
673 | ENDDO |
---|
674 | |
---|
675 | excedent = REAL(nmaxtrees(ivm) - SUM(nb_trees_i)) |
---|
676 | nb_trees_i = nb_trees_i + FLOOR(excedent/ncirc) |
---|
677 | nb_trees_i(1) = nb_trees_i(1) + NINT(excedent)-ncirc*FLOOR(excedent/ncirc) |
---|
678 | |
---|
679 | IF (ld_presc) THEN |
---|
680 | WRITE(numout,*)"min initial height ",min_height_init,'max initial height ',max_height_init |
---|
681 | WRITE(numout,*)'nb_trees_i',nb_trees_i |
---|
682 | ENDIF |
---|
683 | |
---|
684 | ! ENDIF ! check FM type |
---|
685 | |
---|
686 | ! we need to store the number of trees that we have per square meter for each circumference class |
---|
687 | circ_class_n(ipts,ivm,:) = REAL(nb_trees_i(:),r_std) * ha_to_m2 |
---|
688 | |
---|
689 | !! 2.4.2 Circumference distribution of a coppice |
---|
690 | ! I'm not see why this should be any different than a standard prescribe. |
---|
691 | ! Ideally, the plantings should be stems 20-25 cm long stuck into the soil, |
---|
692 | ! but the allocation scheme will have the same issues with this that it does |
---|
693 | ! with planting a small sapling, i.e. it won't like it. The stems do not |
---|
694 | ! follow standard allocation rules. Then again, neither do coppices. |
---|
695 | |
---|
696 | !!$ IF (forest_managed(ipts,ivm) == ifm_src) THEN |
---|
697 | !!$ CALL ipslerr(3,'stomate_prescribe.f90','Problem with SRC','','') |
---|
698 | !!$ ENDIF |
---|
699 | |
---|
700 | !! 2.5 Allocation factors |
---|
701 | ! Sapwood to root ratio |
---|
702 | ! Following Magnani et al. 2000 "In order to decreases hydraulic resistance, |
---|
703 | ! the investment of carbon in fine roots or sapwood yields to the plant very |
---|
704 | ! different returns, both because of different hydraulic conductivities and |
---|
705 | ! because of the strong impact of plant height on shoot resistance. On the |
---|
706 | ! other hand, fine roots and sapwood have markedly different longevities and |
---|
707 | ! the cost of production, discounted for turnover, will differ accordingly. |
---|
708 | ! Optimal growth under hydraulic constraints requires that the ratio of marginal |
---|
709 | ! hydraulic returns to marginal annual cost for carbon investment in either roots |
---|
710 | ! or sapwood be the same (Bloom, Chapin & Mooney 1985; Case & Fair 1989). This |
---|
711 | ! is formalized in equation (13) and further derived to obtain equation (17) |
---|
712 | ! in Magnani et al 2000. The latter is implemented here. |
---|
713 | ! Pipe_density is given in gC/m-3, convert to kg/m-3. And apply equation (17) |
---|
714 | ! in Magnani et al 2000. Note that c0_alloc was calculated at the start of this |
---|
715 | ! routine. The calculation itself is done in function_library |
---|
716 | |
---|
717 | ! Calculate leaf area to sapwood area |
---|
718 | ! To be consistent with the hydraulic limitations and pipe theory, |
---|
719 | ! k_latosa is calculated from equation (18) in Magnani et al. |
---|
720 | ! To do so, total hydraulic resistance and tree height need to known. This |
---|
721 | ! poses a problem as the resistance depends on the leaf area and the leaf |
---|
722 | ! area on the resistance. There is no independent equation and equations 12 |
---|
723 | ! and 18 depend on each other and substitution would be circular. Hence |
---|
724 | ! prescribed k_latosa values were obtained from observational records |
---|
725 | ! and are given in mtc_parameters.f90. |
---|
726 | |
---|
727 | ! The relationship between height and k_latosa as reported in McDowell |
---|
728 | ! et al 2002 and Novick et al 2009 is implemented to adjust k_latosa for |
---|
729 | ! the height of the stand. This did NOT result in a realistic model behavior |
---|
730 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * & |
---|
731 | !!$ (k_latosa_max(ivm) - (latosa_height(ivm) * & |
---|
732 | !!$ (SUM( nb_trees_i(:) * ave_tree_height(:) ) / SUM( nb_trees_i(:) )))) |
---|
733 | |
---|
734 | ! Alternatively, k_latosa is also reported to be a function of diameter |
---|
735 | ! (i.e. stand thinning, Simonin et al 2006, Tree Physiology, 26:493-503). |
---|
736 | ! Here the relationship with thinning was interpreted as a realtionship with |
---|
737 | ! light stress. Note that light stress cannot be calculated at this time in |
---|
738 | ! the model because there is no canopy (that's why we are in prescribe!) and |
---|
739 | ! so there is no lightstress. lstress was therefore set to one (see above). |
---|
740 | ! We prefered this redundancy in the code because it makes it clear that |
---|
741 | ! k_latosa is calculated in the same way in prescribe.f90 and growth_fun_all.f90 |
---|
742 | ! +++CHECK+++ |
---|
743 | ! How do we want to deal with waterstress |
---|
744 | !!$ k_latosa(ipts,ivm) = k_latosa_min(ivm) + & |
---|
745 | !!$ (wstress_fac(ipts,ivm) * lstress_fac(ipts,ivm) * & |
---|
746 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm))) |
---|
747 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * (k_latosa_min(ivm) + & |
---|
748 | !!$ (lstress_fac(ipts,ivm) * & |
---|
749 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
750 | k_latosa(ipts,ivm) = (k_latosa_adapt(ipts,ivm) + & |
---|
751 | (lstress_fac(ipts,ivm) * & |
---|
752 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
753 | ! ++++++++++++ |
---|
754 | |
---|
755 | |
---|
756 | ! Also k_latosa has been reported to be a function of CO2 concentration |
---|
757 | ! (Atwell et al. 2003, Tree Physiology, 23:13-21 and Pakati et al. 2000, |
---|
758 | ! Global Change Biology, 6:889-897). This effect is not accounted for in |
---|
759 | ! the current code |
---|
760 | |
---|
761 | ! Calculate conversion coefficient for sapwood area to leaf area |
---|
762 | ! (1) The scaling parameter between leaf and sapwood mass is derived from |
---|
763 | ! LA_ind = k_latosa * SA_ind, where LA_ind = leaf area of an individual, SA_ind is the |
---|
764 | ! sapwood area of an individual and k_latosa a pipe-model parameter |
---|
765 | ! (2) LA_ind = Cl * sla |
---|
766 | ! (3) Cs = SA_ind * height * wooddensity * tree_ff |
---|
767 | ! Substitute (2) and (3) in (1) |
---|
768 | ! Cl = Cs * k1 / (wooddensity * sla * tree_ff * height) |
---|
769 | ! Cl = Cs*KF/height, where KF is in (m) |
---|
770 | ! KF is passed to the allocation routine and it is saved in the restart file. |
---|
771 | KF(ipts,ivm) = k_latosa(ipts,ivm) / ( sla(ivm) * pipe_density(ivm) * tree_ff(ivm)) |
---|
772 | |
---|
773 | ! Initialize delta_KF to get the DO WHILE started |
---|
774 | delta_KF = un |
---|
775 | |
---|
776 | iloop=0 |
---|
777 | DO WHILE (delta_KF .GT. max_delta_KF) |
---|
778 | |
---|
779 | ! If there is a WHILE loop, there always needs to be a check on the number |
---|
780 | ! of loops to make sure we don't get stuck in an infinite loop. This |
---|
781 | ! number is completely arbitrary. |
---|
782 | iloop=iloop+1 |
---|
783 | IF(iloop > 1000)THEN |
---|
784 | WRITE(numout,*) 'Taking too long to converge the delta_KF loop in prescribe!' |
---|
785 | WRITE(numout,*) 'iloop,delta_KF,max_delta_KF,ivm,ipts: ',& |
---|
786 | iloop,delta_KF,max_delta_KF,ivm,ipts |
---|
787 | CALL ipslerr_p (3,'stomate_prescribe',& |
---|
788 | 'Taking too long to converge the delta_KF','','') |
---|
789 | |
---|
790 | ENDIF |
---|
791 | |
---|
792 | !! 2.6 Create saplings for each height class |
---|
793 | ! Now we create the saplings for each class, based on the height |
---|
794 | DO icir = 1,ncirc |
---|
795 | |
---|
796 | ! The assumption we make is that we plant trees of 2 to 3 years old rather than |
---|
797 | ! growing trees from seeds. The allometric relationship between height and |
---|
798 | ! diameter is derived from mature tree and likely unrealistic for saplings. |
---|
799 | ! The height of the saplings is prescribed and determines the reserves which are |
---|
800 | ! especially important for deciduous species which need to survive on their |
---|
801 | ! reserves for the first year (new phenology scheme requires annual mean values |
---|
802 | ! to get started) |
---|
803 | dia_init = ( ave_tree_height(icir) / pipe_tune2(ivm) ) ** ( 1. / pipe_tune3(ivm) ) |
---|
804 | wood_init = ( ave_tree_height(icir) * pi / 4. * (dia_init) ** 2. ) * & |
---|
805 | pipe_density(ivm) * tree_ff(ivm) |
---|
806 | |
---|
807 | ! The woody biomass is contained in four components. Thus, wood_init = isapabove + |
---|
808 | ! isapbelow + iheartabove + iheartbelow. Given that isapbelow = isapbelow and |
---|
809 | ! iheartabove = iheartbelow = bm_sapl_heartabove*isapabove. If bm_sapl_heartbelow = |
---|
810 | ! bm_sapl_heartabove = 0.2, then isapabove = wood_init/2.4 |
---|
811 | bm_sapl(ivm,icir,isapabove,icarbon) = wood_init / (2. + bm_sapl_heartabove + bm_sapl_heartbelow) |
---|
812 | bm_sapl(ivm,icir,isapbelow,icarbon) = bm_sapl(ivm,icir,isapabove,icarbon) |
---|
813 | bm_sapl(ivm,icir,iheartabove,icarbon) = bm_sapl_heartabove * bm_sapl(ivm,icir,isapabove,icarbon) |
---|
814 | bm_sapl(ivm,icir,iheartbelow,icarbon) = bm_sapl_heartbelow * bm_sapl(ivm,icir,isapbelow,icarbon) |
---|
815 | |
---|
816 | ! Use the allometric relationships to calculate initial leaf and root mass |
---|
817 | bm_sapl(ivm,icir,ileaf,icarbon) = ( bm_sapl(ivm,icir,isapabove,icarbon) + & |
---|
818 | bm_sapl(ivm,icir,isapbelow,icarbon) ) * KF(ipts,ivm) / ave_tree_height(icir) |
---|
819 | !+++CHECK+++ |
---|
820 | !How do we want to deal with water stress? wstress is accounted for through c0 |
---|
821 | !!$ bm_sapl(ivm,icir,iroot,icarbon) = bm_sapl(ivm,icir,ileaf,icarbon) / ( KF(ipts,ivm) * c0_alloc(ivm) ) |
---|
822 | bm_sapl(ivm,icir,iroot,icarbon) = bm_sapl(ivm,icir,ileaf,icarbon) / & |
---|
823 | ( KF(ipts,ivm) * c0_alloc(ipts,ivm) ) |
---|
824 | !+++++++++++ |
---|
825 | |
---|
826 | ! Write initial values |
---|
827 | IF (ld_presc) THEN |
---|
828 | WRITE(numout,*) ' Circumference class: ',icir,' PFT type: ',ivm |
---|
829 | WRITE(numout,*) ' root to sapwood tradeoff p :', c0_alloc(ipts,ivm) |
---|
830 | WRITE(numout,*) 'height_init, dia_init, wood_init, ', & |
---|
831 | ave_tree_height(icir) , dia_init, wood_init |
---|
832 | WRITE(numout,*) 'pipe_density, ',pipe_density(ivm) |
---|
833 | ENDIF |
---|
834 | |
---|
835 | !++++++ CHECK ++++++ |
---|
836 | ! The carbohydrate reserves do not seem to be set before this line. This |
---|
837 | ! is a problem since it then uses an unitililized value. Therefore, I |
---|
838 | ! will initilize it. |
---|
839 | ! Should this really be zero? If so the code below is nonesensical and icarbres |
---|
840 | ! could be omitted. nonesensical code = 2 * (bm_sapl(ivm,icir,icarbres,icarbon) + & |
---|
841 | ! bm_sapl(ivm,icir,ileaf,icarbon) + bm_sapl(ivm,icir,iroot,icarbon)) |
---|
842 | bm_sapl(ivm,icir,icarbres,icarbon)=zero |
---|
843 | !++++++++++++++++++ |
---|
844 | |
---|
845 | ! Pools that are defined in the same way for trees and grasses |
---|
846 | bm_sapl(ivm,icir,ifruit,icarbon) = zero |
---|
847 | |
---|
848 | !+++CHECK+++ |
---|
849 | ! There is an inconsistency in the calculation - most pools are in gN |
---|
850 | ! but leaves is in gC. The correction is proposed, that implies that |
---|
851 | ! the parameter labile_reserve will need to be tuned |
---|
852 | !!$ bm_sapl(ivm,icir,ilabile,icarbon) = labile_to_total * & |
---|
853 | !!$ (bm_sapl(ivm,icir,ileaf,icarbon) / cn_leaf_prescribed(ivm) + & |
---|
854 | !!$ fcn_root(ivm) * bm_sapl(ivm,icir,iroot,icarbon) + fcn_wood(ivm) * & |
---|
855 | !!$ (bm_sapl(ivm,icir,isapabove,icarbon) + bm_sapl(ivm,icir,isapbelow,icarbon) + & |
---|
856 | !!$ bm_sapl(ivm,icir,icarbres,icarbon))) |
---|
857 | |
---|
858 | bm_sapl(ivm,icir,ilabile,icarbon) = labile_to_total * (bm_sapl(ivm,icir,ileaf,icarbon) + & |
---|
859 | fcn_root(ivm) * bm_sapl(ivm,icir,iroot,icarbon) + fcn_wood(ivm) * & |
---|
860 | (bm_sapl(ivm,icir,isapabove,icarbon) + bm_sapl(ivm,icir,isapbelow,icarbon) + & |
---|
861 | bm_sapl(ivm,icir,icarbres,icarbon))) |
---|
862 | !+++++++++++ |
---|
863 | |
---|
864 | ! Avoid deciduous PFTs to have leaves out at establishment |
---|
865 | ! Whether the saplings have leaves or don't have leaves the first year doesn't really matter |
---|
866 | ! Either the approach is correct in the northern hemisphere or in the southern hemisphere. Note |
---|
867 | ! that the resource limitation approach starts with the sapling having leaves. |
---|
868 | ! Anyhow, a spin-up is needed to avoid issues with the initial conditions |
---|
869 | IF ( pheno_type(ivm) .NE. 1 ) THEN |
---|
870 | |
---|
871 | ! Not evergreen. Deciduous PFTs now need to survive an extra year before bud burst. To |
---|
872 | ! ensure survival there are several options: (a) either the height of the initial |
---|
873 | ! vegetation is increased (this results in more reserves) or (b) the reserves could be |
---|
874 | ! increased. The second option may result in numerical issues further down |
---|
875 | ! the code as the optimal reserve level is calculated from the other biomass pools. |
---|
876 | ! Also some initial tests showed that higher results simply resulted in more respiration. |
---|
877 | ! Use taller trees to start with. |
---|
878 | bm_sapl(ivm,icir,icarbres,icarbon) = (bm_sapl(ivm,icir,icarbres,icarbon) + & |
---|
879 | bm_sapl(ivm,icir,ileaf,icarbon) + bm_sapl(ivm,icir,iroot,icarbon)) |
---|
880 | bm_sapl(ivm,icir,ileaf,icarbon) = zero |
---|
881 | bm_sapl(ivm,icir,iroot,icarbon) = zero |
---|
882 | |
---|
883 | ! When deciduous trees have no leaves they are senescent |
---|
884 | senescence(ipts,ivm) = .TRUE. |
---|
885 | |
---|
886 | ELSE |
---|
887 | |
---|
888 | ! Initilize carbohydrate reserves for evergreen PFTs |
---|
889 | bm_sapl(ivm,icir,icarbres,icarbon) = zero |
---|
890 | |
---|
891 | ! Evergreen trees never go into senescence |
---|
892 | senescence(ipts,ivm) = .FALSE. |
---|
893 | |
---|
894 | ENDIF |
---|
895 | |
---|
896 | IF (ld_presc) THEN |
---|
897 | WRITE(numout,*) ' sapling biomass (gC):',icir,ivm,ipts |
---|
898 | WRITE(numout,*) ' leaves: (::bm_sapl(ivm,icir,ileaf,icarbon))',& |
---|
899 | bm_sapl(ivm,icir,ileaf,icarbon) |
---|
900 | WRITE(numout,*) ' sap above ground: (::bm_sapl(ivm,icir,ispabove,icarbon)):',& |
---|
901 | bm_sapl(ivm,icir,isapabove,icarbon) |
---|
902 | WRITE(numout,*) ' sap below ground: (::bm_sapl(ivm,icir,isapbelow,icarbon))',& |
---|
903 | bm_sapl(ivm,icir,isapbelow,icarbon) |
---|
904 | WRITE(numout,*) ' heartwood above ground: (::bm_sapl(ivm,icir,iheartabove,icarbon))',& |
---|
905 | bm_sapl(ivm,icir,iheartabove,icarbon) |
---|
906 | WRITE(numout,*) ' heartwood below ground: (::bm_sapl(ivm,icir,iheartbelow,icarbon))',& |
---|
907 | bm_sapl(ivm,icir,iheartbelow,icarbon) |
---|
908 | WRITE(numout,*) ' roots: (::bm_sapl(ivm,icir,iroot,icarbon))',& |
---|
909 | bm_sapl(ivm,icir,iroot,icarbon) |
---|
910 | WRITE(numout,*) ' fruits: (::bm_sapl(ivm,icir,ifruit,icarbon))',& |
---|
911 | bm_sapl(ivm,icir,ifruit,icarbon) |
---|
912 | WRITE(numout,*) ' carbohydrate reserve: (::bm_sapl(ivm,icir,icarbres,icarbon))',& |
---|
913 | bm_sapl(ivm,icir,icarbres,icarbon) |
---|
914 | WRITE(numout,*) ' labile reserve: (::bm_sapl(ivm,icir,ilabile,icarbon))',& |
---|
915 | bm_sapl(ivm,icir,ilabile,icarbon) |
---|
916 | ENDIF |
---|
917 | |
---|
918 | ENDDO |
---|
919 | |
---|
920 | IF (ld_presc) THEN |
---|
921 | WRITE(numout,*)'Initial distribution, method 2',ivm |
---|
922 | WRITE(numout,*)'Average trees height (m): ',ave_tree_height(:) |
---|
923 | WRITE(numout,*) 'lambda',lambda,'nmaxtrees(ivm)',nmaxtrees(ivm) |
---|
924 | ENDIF |
---|
925 | |
---|
926 | !! 2.7 Determine the biomass in each circumference class. |
---|
927 | ! I do this based on the biomass in each sapling and the number of trees in each |
---|
928 | ! circumference class...we need the biomass in an average tree |
---|
929 | DO icir=1,ncirc |
---|
930 | |
---|
931 | circ_class_biomass(ipts,ivm,icir,:,icarbon) = bm_sapl(ivm,icir,:,icarbon) |
---|
932 | |
---|
933 | ENDDO |
---|
934 | |
---|
935 | ! Now the total biomass is just a sum over all of these |
---|
936 | DO ipar = 1,nparts |
---|
937 | |
---|
938 | biomass(ipts,ivm,ipar,icarbon)= & |
---|
939 | SUM(circ_class_biomass(ipts,ivm,:,ipar,icarbon)*circ_class_n(ipts,ivm,:)) |
---|
940 | |
---|
941 | ENDDO |
---|
942 | |
---|
943 | ! The light stress should be calculated making use of Pgap so it accounts for LAI |
---|
944 | ! crown dimensions and tree distribution. However, this would be computationally |
---|
945 | ! expensive so we just use a first order estimate based on light attenuation model |
---|
946 | ! by Lambert-Beer. When LAI is low, a lot of light reaches the forest floor and so |
---|
947 | ! KF should increase to make use of the available light by growing leaves |
---|
948 | lstress_fac = exp(-biomass(ipts,ivm,ileaf,icarbon) * sla(ivm) * 0.5) |
---|
949 | ! Causing large differences between first and second prescribe |
---|
950 | delta_KF = ABS (KF(ipts,ivm) - ((k_latosa_adapt(ipts,ivm) + & |
---|
951 | (lstress_fac(ipts,ivm) * (k_latosa_max(ivm)-k_latosa_min(ivm))))) / & |
---|
952 | ( sla(ivm) * tree_ff(ivm) * pipe_density(ivm) )) |
---|
953 | KF(ipts,ivm) = ((k_latosa_adapt(ipts,ivm) + & |
---|
954 | (lstress_fac(ipts,ivm) * & |
---|
955 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) / & |
---|
956 | ( sla(ivm) * tree_ff(ivm) * pipe_density(ivm) )) |
---|
957 | |
---|
958 | IF(ld_presc)THEN |
---|
959 | WRITE(numout,*) 'prescribe delta_KF, ', delta_KF |
---|
960 | WRITE(numout,*) 'prescribe lstress, ', lstress_fac |
---|
961 | ENDIF |
---|
962 | END DO |
---|
963 | |
---|
964 | IF (ld_presc) THEN |
---|
965 | WRITE(numout,*)'Initial biomass distribution' |
---|
966 | DO icir=1,ncirc |
---|
967 | WRITE(numout,*) circ_class_biomass(ipts,ivm,icir,:,icarbon),circ_class_n(ipts,ivm,icir) |
---|
968 | ENDDO |
---|
969 | WRITE(numout,*)'End initial biomass distribution',SUM(circ_class_n(ipts,ivm,:)) |
---|
970 | WRITE(numout,*)"biomass(ipts,ivm,:,icarbon)",biomass(ipts,ivm,:,icarbon) |
---|
971 | END IF |
---|
972 | |
---|
973 | IF (ivm .EQ. test_pft .AND. ld_presc) THEN |
---|
974 | WRITE(numout,*) 'Check prescribe' |
---|
975 | WRITE(numout,*) 'stomate_prescribe::init circ_class_n ',& |
---|
976 | ipts,ivm,circ_class_n(ipts,ivm,:) |
---|
977 | DO ipar = 1,nparts |
---|
978 | WRITE(numout,*) 'biomass vs circ_class_biomass (gC m-2), ',& |
---|
979 | ipts,ivm,ipar,biomass(ipts,ivm,ipar,icarbon), & |
---|
980 | SUM(circ_class_biomass(ipts,ivm,:,ipar,icarbon)*circ_class_n(ipts,ivm,:)) |
---|
981 | WRITE(numout,*) 'stomate_prescribe::init biomass ',& |
---|
982 | ipts,ivm,circ_class_biomass(ipts,ivm,:,ipar,icarbon) |
---|
983 | ENDDO |
---|
984 | ENDIF |
---|
985 | |
---|
986 | ! PFT is not present |
---|
987 | ELSE |
---|
988 | |
---|
989 | ! At the tree level |
---|
990 | circ_class_n(ipts,ivm,:) = zero |
---|
991 | circ_class_biomass(ipts,ivm,:,:,icarbon) = zero |
---|
992 | |
---|
993 | ! At the stand level |
---|
994 | biomass(ipts,ivm,:,icarbon) = zero |
---|
995 | ind(ipts,ivm) = zero |
---|
996 | |
---|
997 | ENDIF |
---|
998 | |
---|
999 | ! Set leaf age classes, all leaves are current year leaves |
---|
1000 | leaf_frac(ipts,ivm,:) = zero |
---|
1001 | leaf_frac(ipts,ivm,1) = un |
---|
1002 | |
---|
1003 | !+++CHECK+++ |
---|
1004 | ! Set time since last beginning of growing season but only |
---|
1005 | ! for the first day of the whole simulation. When the model |
---|
1006 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
1007 | ! time steps it should have a value. For trees without phenology |
---|
1008 | ! the growing season starts at the moment the PFT is prescribed |
---|
1009 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
1010 | when_growthinit(ipts,ivm) = 200 |
---|
1011 | ENDIF |
---|
1012 | !+++++++++++ |
---|
1013 | |
---|
1014 | ! Seasonal trees have no leaves at beginning |
---|
1015 | ! Saplings of evergreen trees have a leaf mass on day 1 and mass in the other components |
---|
1016 | ! saplings of deciduous trees have no leaves on day 1 but mass in the other components. |
---|
1017 | IF ( pheno_model(ivm) .NE. 'none' ) THEN |
---|
1018 | |
---|
1019 | ! Add the carbon from the leaves to the reserve pool |
---|
1020 | biomass(ipts,ivm,icarbres,icarbon) = biomass(ipts,ivm,icarbres,icarbon) + biomass(ipts,ivm,ileaf,icarbon) |
---|
1021 | biomass(ipts,ivm,ileaf,icarbon) = zero |
---|
1022 | leaf_frac(ipts,ivm,1) = zero |
---|
1023 | |
---|
1024 | !+++CHECK+++ |
---|
1025 | ! Set time since last beginning of growing season but only |
---|
1026 | ! for the first day of the whole simulation. When the model |
---|
1027 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
1028 | ! time steps it should have a value. The phenology module |
---|
1029 | ! prevents leaf onset soon after senescence, by setting |
---|
1030 | ! ::when_growthinit to a value, leaf offset |
---|
1031 | ! will occur at the first opportunity |
---|
1032 | !!$ when_growthinit(ipts,ivm) = large_value |
---|
1033 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
1034 | when_growthinit(ipts,ivm) = 200 |
---|
1035 | ENDIF |
---|
1036 | !++++++++++++ |
---|
1037 | |
---|
1038 | ! Redundant, flag has already been set. When there are no leaves, the tree is in senescence |
---|
1039 | senescence(ipts,ivm) = .TRUE. |
---|
1040 | |
---|
1041 | ENDIF ! pheno_model(ivm) |
---|
1042 | |
---|
1043 | ! The biomass to build the saplings is taken from the atmosphere, keep track of |
---|
1044 | ! amount to calculate the C-balance closure |
---|
1045 | co2_to_bm(ipts,ivm) = co2_to_bm(ipts,ivm) + ( SUM(biomass(ipts,ivm,:,icarbon)) / dt ) |
---|
1046 | |
---|
1047 | ENDIF ! tree(ivm) |
---|
1048 | |
---|
1049 | !! 2.8 Initialize grassy PFTs |
---|
1050 | !! Use veget_max to check whether the PFT is present. If the PFT is present but it |
---|
1051 | !! has no biomass, prescribe its biomass (gC m-{2}). It is assumed that at day 1 |
---|
1052 | !! grasses have all their biomass in the reserve pool. The criteria exclude crops. |
---|
1053 | !! Crops are no longer prescribed but planted the day that begin_leaves is true. |
---|
1054 | |
---|
1055 | !+++TEMP+++ |
---|
1056 | IF(ld_presc .AND. test_pft == ivm)THEN |
---|
1057 | WRITE(numout,*) 'prescribe - total biomass, ',SUM(biomass(ipts,ivm,:,icarbon)) |
---|
1058 | ENDIF |
---|
1059 | !++++++++++ |
---|
1060 | |
---|
1061 | IF ( ( .NOT. is_tree(ivm) ) .AND. & |
---|
1062 | ( natural(ivm) ) .AND. & |
---|
1063 | ( veget_max(ipts,ivm) .GT. min_stomate ) .AND. & |
---|
1064 | ( SUM( biomass(ipts,ivm,:,icarbon) ) .LE. min_stomate ) ) THEN |
---|
1065 | |
---|
1066 | !+++TEMP+++ |
---|
1067 | IF(ld_presc .AND. test_pft == ivm)THEN |
---|
1068 | WRITE(numout,*) 'We will prescribe a new vegetation, the old one died' |
---|
1069 | ENDIF |
---|
1070 | !++++++++++ |
---|
1071 | |
---|
1072 | ! For grasses we assume that an individual grass is 1 m2 of grass. This is set |
---|
1073 | ! in nmaxtrees in pft_parameters.f90. It could be set to another value but |
---|
1074 | ! with the current code this should not have any meaning. The grassland |
---|
1075 | ! does not necessarily covers the whole 1 m2 so adjust for the canopy cover |
---|
1076 | ind(ipts,ivm) = nmaxtrees(ivm) * ha_to_m2 * canopy_cover(ivm) |
---|
1077 | |
---|
1078 | ! now we generate the size of a single grass sapling...this was all taken from |
---|
1079 | ! stomate_data.f90...we do not deal with circumference classes for grasses |
---|
1080 | ! and crops, but we want to keep the arrays the same as for the trees so |
---|
1081 | ! we put the sapling information into the first circumference class |
---|
1082 | |
---|
1083 | !+++CHECK+++ |
---|
1084 | ! Calculate the sapwood to leaf mass in a similar way as has been done for trees. |
---|
1085 | ! For trees this approach had been justified by observations. For grasses such |
---|
1086 | ! justification is not supported by observations but we didn't try to find it. |
---|
1087 | ! Needs more work by someone interested in grasses. There might be a more elegant |
---|
1088 | ! solution making use of a well observed parameter. |
---|
1089 | !!$ k_latosa(ipts,ivm) = k_latosa_min(ivm) + & |
---|
1090 | !!$ (wstress_fac(ipts,ivm) * lstress_fac(ipts,ivm) * & |
---|
1091 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm))) |
---|
1092 | !!$ k_latosa(ipts,ivm) = wstress_fac(ipts,ivm) * (k_latosa_min(ivm) + & |
---|
1093 | !!$ (lstress_fac(ipts,ivm) * & |
---|
1094 | !!$ (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
1095 | k_latosa(ipts,ivm) = (k_latosa_adapt(ipts,ivm) + & |
---|
1096 | (lstress_fac(ipts,ivm) * & |
---|
1097 | (k_latosa_max(ivm)-k_latosa_min(ivm)))) |
---|
1098 | |
---|
1099 | ! The mass of the structural carbon relates to the mass of the leaves through |
---|
1100 | ! a prescribed parameter ::k_latosa |
---|
1101 | KF(ipts,ivm) = k_latosa(ipts,ivm) |
---|
1102 | !+++++++++++ |
---|
1103 | |
---|
1104 | ! Calculate leaf to root area |
---|
1105 | LF(ipts,ivm) = c0_alloc(ipts,ivm) * KF(ipts,ivm) |
---|
1106 | |
---|
1107 | !---TEMP--- |
---|
1108 | IF(ld_presc .AND. test_pft == ivm)THEN |
---|
1109 | WRITE(numout,*) 'KF, ', k_latosa(ipts,ivm), KF(ipts,ivm) |
---|
1110 | WRITE(numout,*) 'LF, c0_alloc, ', c0_alloc(ipts,ivm) * KF(ipts,ivm), & |
---|
1111 | c0_alloc(ipts,ivm) |
---|
1112 | ENDIF |
---|
1113 | !---------- |
---|
1114 | |
---|
1115 | ! initialize everything to make sure there are not random values floating around |
---|
1116 | ! for ncirc != 1 |
---|
1117 | bm_sapl(ivm,:,:,icarbon) = val_exp |
---|
1118 | |
---|
1119 | ! Similar as for trees, the initial height of the vegetation was defined |
---|
1120 | bm_sapl(ivm,1,ileaf,icarbon) = height_init_min(ivm) / lai_to_height(ivm) / sla(ivm) |
---|
1121 | |
---|
1122 | ! Use allometric relationships to define the root mass based on leaf mass. Some |
---|
1123 | ! sapwood mass is needed to store the reserves. An arbitrairy fraction of 5% was |
---|
1124 | ! used |
---|
1125 | bm_sapl(ivm,1,iroot,icarbon) = bm_sapl(ivm,1,ileaf,icarbon) / LF(ipts,ivm) |
---|
1126 | bm_sapl(ivm,1,isapabove,icarbon) = bm_sapl(ivm,1,ileaf,icarbon) / KF(ipts,ivm) |
---|
1127 | |
---|
1128 | ! Some of the biomass components that exist for trees are undefined for grasses |
---|
1129 | bm_sapl(ivm,1,isapbelow,icarbon) = zero |
---|
1130 | bm_sapl(ivm,1,iheartabove,icarbon) = zero |
---|
1131 | bm_sapl(ivm,1,iheartbelow,icarbon) = zero |
---|
1132 | bm_sapl(ivm,1,ifruit,icarbon) = zero |
---|
1133 | bm_sapl(ivm,1,icarbres,icarbon) = zero |
---|
1134 | |
---|
1135 | ! Pools that are defined in the same way for trees and grasses |
---|
1136 | bm_sapl(ivm,1,ilabile,icarbon) = labile_to_total * (bm_sapl(ivm,1,ileaf,icarbon) + & |
---|
1137 | fcn_root(ivm) * bm_sapl(ivm,1,iroot,icarbon) + fcn_wood(ivm) * & |
---|
1138 | (bm_sapl(ivm,1,isapabove,icarbon) + bm_sapl(ivm,1,isapbelow,icarbon) + & |
---|
1139 | bm_sapl(ivm,1,icarbres,icarbon))) |
---|
1140 | |
---|
1141 | ! Avoid deciduous PFTs to have leaves out at establishment |
---|
1142 | ! Whether the saplings have leaves or don't have leaves the first year doesn't really matter |
---|
1143 | ! Either the approach is correct in the northern hemisphere or in the southern hemisphere. Note |
---|
1144 | ! that the resource limitation approach starts with the sapling having leaves. |
---|
1145 | ! Anyhow, a spin-up is needed to avoid issues with the initial conditions |
---|
1146 | IF ( pheno_type(ivm) .NE. 1 ) THEN |
---|
1147 | |
---|
1148 | ! Not evergreen. Deciduous PFTs now need to survive an extra year before bud burst. To |
---|
1149 | ! ensure survival there are several options: (a) either the height of the initial |
---|
1150 | ! vegetation is increased (this results in more reserves) or (b) the reserves could be |
---|
1151 | ! increased. The second option may result in result in numerical issues further down |
---|
1152 | ! the code as the optimal reserve level is calculated from the other biomass pools |
---|
1153 | bm_sapl(ivm,1,icarbres,icarbon) = bm_sapl(ivm,1,icarbres,icarbon) + bm_sapl(ivm,1,ileaf,icarbon) + & |
---|
1154 | bm_sapl(ivm,1,iroot,icarbon) |
---|
1155 | bm_sapl(ivm,1,ileaf,icarbon) = zero |
---|
1156 | bm_sapl(ivm,1,iroot,icarbon) = zero |
---|
1157 | |
---|
1158 | ! When there are no leaves, the crop/grass is in senescence |
---|
1159 | senescence(ipts,ivm) = .TRUE. |
---|
1160 | |
---|
1161 | ELSE |
---|
1162 | |
---|
1163 | ! Initilize carbohydrate reserves for evergreen PFTs |
---|
1164 | bm_sapl(ivm,1,icarbres,icarbon) = zero |
---|
1165 | |
---|
1166 | ! Evergreen plants never go into senescence |
---|
1167 | senescence(ipts,ivm) = .FALSE. |
---|
1168 | |
---|
1169 | ENDIF |
---|
1170 | |
---|
1171 | IF (ld_presc) THEN |
---|
1172 | WRITE(numout,*) ' sapling biomass (gC):',1,ivm,ipts |
---|
1173 | WRITE(numout,*) ' leaves: (::bm_sapl(ivm,1,ileaf,icarbon))',& |
---|
1174 | bm_sapl(ivm,1,ileaf,icarbon) |
---|
1175 | WRITE(numout,*) ' sap above ground: (::bm_sapl(ivm,1,ispabove,icarbon)):',& |
---|
1176 | bm_sapl(ivm,1,isapabove,icarbon) |
---|
1177 | WRITE(numout,*) ' sap below ground: (::bm_sapl(ivm,1,isapbelow,icarbon))',& |
---|
1178 | bm_sapl(ivm,1,isapbelow,icarbon) |
---|
1179 | WRITE(numout,*) ' heartwood above ground: (::bm_sapl(ivm,1,iheartabove,icarbon))',& |
---|
1180 | bm_sapl(ivm,1,iheartabove,icarbon) |
---|
1181 | WRITE(numout,*) ' heartwood below ground: (::bm_sapl(ivm,1,iheartbelow,icarbon))',& |
---|
1182 | bm_sapl(ivm,1,iheartbelow,icarbon) |
---|
1183 | WRITE(numout,*) ' roots: (::bm_sapl(ivm,1,iroot,icarbon))',& |
---|
1184 | bm_sapl(ivm,1,iroot,icarbon) |
---|
1185 | WRITE(numout,*) ' fruits: (::bm_sapl(ivm,1,ifruit,icarbon))',& |
---|
1186 | bm_sapl(ivm,1,ifruit,icarbon) |
---|
1187 | WRITE(numout,*) ' carbohydrate reserve: (::bm_sapl(ivm,1,icarbres,icarbon))',& |
---|
1188 | bm_sapl(ivm,1,icarbres,icarbon) |
---|
1189 | WRITE(numout,*) ' labile reserve: (::bm_sapl(ivm,1,ilabile,icarbon))',& |
---|
1190 | bm_sapl(ivm,1,ilabile,icarbon) |
---|
1191 | ENDIF |
---|
1192 | |
---|
1193 | ! Write initial values |
---|
1194 | IF (ld_presc) THEN |
---|
1195 | WRITE(numout,*) ' root to sapwood tradeoff (LF) : ', c0_alloc(ipts,ivm) |
---|
1196 | WRITE(numout,*) ' grass sapling biomass: ',bm_sapl(ivm,1,:,icarbon) |
---|
1197 | ENDIF |
---|
1198 | |
---|
1199 | ! Initial biomass (g C m-2) |
---|
1200 | biomass(ipts,ivm,:,icarbon) = bm_sapl(ivm,1,:,icarbon) * ind(ipts,ivm) |
---|
1201 | IF (ld_presc) THEN |
---|
1202 | WRITE(numout,*) 'bm_grass, prescribe, ', biomass(ipts,ivm,:,icarbon) |
---|
1203 | ENDIF |
---|
1204 | |
---|
1205 | ! Synchronize biomass and circ_class_biomass (gC tree-1). This |
---|
1206 | ! allows to more easily check the mass balance closure |
---|
1207 | circ_class_biomass(ipts,ivm,1,:,icarbon) = bm_sapl(ivm,1,:,icarbon) |
---|
1208 | circ_class_n(ipts,ivm,1) = ind(ipts,ivm) |
---|
1209 | |
---|
1210 | ! Set leaf age classes -> all leaves will be current year leaves |
---|
1211 | leaf_frac(ipts,ivm,:) = zero |
---|
1212 | leaf_frac(ipts,ivm,1) = un |
---|
1213 | |
---|
1214 | ! Set time since last beginning of growing season but only |
---|
1215 | ! for the first day of the whole simulation. When the model |
---|
1216 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
1217 | ! time steps it should have a value. |
---|
1218 | !!$ when_growthinit(ipts,ivm) = large_value |
---|
1219 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
1220 | when_growthinit(ipts,ivm) = 200 |
---|
1221 | ENDIF |
---|
1222 | |
---|
1223 | ! The biomass to build the saplings is taken from the atmosphere, keep track of |
---|
1224 | ! amount to calculate the C-balance closure |
---|
1225 | co2_to_bm(ipts,ivm) = co2_to_bm(ipts,ivm) + ( SUM(biomass(ipts,ivm,:,icarbon)) / dt ) |
---|
1226 | |
---|
1227 | ELSEIF (.NOT. natural(ivm)) THEN |
---|
1228 | |
---|
1229 | ! Initialize croplands - else leaves_begin will never become true |
---|
1230 | ! Set time since last beginning of growing season but only |
---|
1231 | ! for the first day of the whole simulation. When the model |
---|
1232 | ! is initialized when_growthinit is set to undef. In subsequent |
---|
1233 | ! time steps it should have a value. |
---|
1234 | IF (when_growthinit(ipts,ivm) .EQ. undef) THEN |
---|
1235 | when_growthinit(ipts,ivm) = 200 |
---|
1236 | ENDIF |
---|
1237 | |
---|
1238 | ENDIF ! .NOT. tree(ivm) |
---|
1239 | |
---|
1240 | !! 2.3 Declare PFT present |
---|
1241 | !! Now that the PFT has biomass it should be declared 'present' |
---|
1242 | !! everywhere in that grid box. Assign some additional properties |
---|
1243 | PFTpresent(ipts,ivm) = .TRUE. |
---|
1244 | everywhere(ipts,ivm) = un |
---|
1245 | age(ipts,ivm) = zero |
---|
1246 | npp_longterm(ipts,ivm) = npp_longterm_init |
---|
1247 | lm_lastyearmax(ipts,ivm) = zero |
---|
1248 | |
---|
1249 | ENDIF ! not control%ok_dgvm or agricultural |
---|
1250 | |
---|
1251 | ENDIF ! IF (veget_max .GT. zero .AND. ind .EQ. zero) |
---|
1252 | |
---|
1253 | ENDDO ! loop over pixels |
---|
1254 | |
---|
1255 | ENDDO ! loop over PFTs |
---|
1256 | |
---|
1257 | !! 3. Scynchronize biomass and circ_class_biomass |
---|
1258 | |
---|
1259 | ! For trees both biomass and circ_class_biomass are recorded. Where biomass |
---|
1260 | ! contains the stand level biomass of the different components (gC m-2), |
---|
1261 | ! circ_class_biomass contains the biomass of a model tree in each circumference |
---|
1262 | ! class (gC tree-1). When multiplied with the number of trees in each circumference |
---|
1263 | ! class (::circ_class_n), biomass and circ_class_biomass should be identical. |
---|
1264 | ! This has been checked in all routines where biomass is calculated and at the |
---|
1265 | ! daily level consistency between both variables is maintained. However, due |
---|
1266 | ! to precision issues and the fact tha biomass and circ_class_biomass are |
---|
1267 | ! cumulative variables, the difference between both variables accumulates to |
---|
1268 | ! 0.00001 at the annual level. To avoid propagation of the precision error |
---|
1269 | ! both variables are synchronized daily. |
---|
1270 | |
---|
1271 | ! Initialze the variables for the synchronisation |
---|
1272 | sync_ind(:,:) = zero |
---|
1273 | sync_biomass(:,:,:,:) = zero |
---|
1274 | |
---|
1275 | ! Synchronize |
---|
1276 | DO ivm = 1,nvm |
---|
1277 | |
---|
1278 | IF (is_tree(ivm)) THEN |
---|
1279 | |
---|
1280 | DO icir = 1,ncirc |
---|
1281 | |
---|
1282 | ! Temporary stand density |
---|
1283 | sync_ind(:,ivm) = sync_ind(:,ivm) + circ_class_n(:,ivm,icir) |
---|
1284 | |
---|
1285 | DO iele = 1,nelements |
---|
1286 | |
---|
1287 | ! Temporary biomass |
---|
1288 | DO ipar = 1,nparts |
---|
1289 | |
---|
1290 | sync_biomass(:,ivm,ipar,iele) = sync_biomass(:,ivm,ipar,iele) + & |
---|
1291 | circ_class_n(:,ivm,icir) * circ_class_biomass(:,ivm,icir,ipar,iele) |
---|
1292 | |
---|
1293 | ENDDO ! nparts |
---|
1294 | |
---|
1295 | ENDDO ! nelements |
---|
1296 | |
---|
1297 | ENDDO ! ncirc |
---|
1298 | |
---|
1299 | ! Synchronize stand density |
---|
1300 | DO ipts = 1,npts |
---|
1301 | |
---|
1302 | DO iele = 1,nelements |
---|
1303 | |
---|
1304 | IF (ivm .EQ. test_pft .AND. ABS(sync_ind(ipts,ivm) - ind(ipts,ivm)) .GT. min_stomate ) THEN |
---|
1305 | |
---|
1306 | IF (ld_presc) THEN |
---|
1307 | WRITE(numout,*) 'Divergence of density between ::ind and ::circ_class_n' |
---|
1308 | WRITE(numout,*) 'This problem has been identified in stomate_prescribe but could' |
---|
1309 | WRITE(numout,*) 'be caused in any routine calculating stand density' |
---|
1310 | ENDIF |
---|
1311 | |
---|
1312 | ELSE |
---|
1313 | |
---|
1314 | ind(ipts,ivm) = sync_ind(ipts,ivm) |
---|
1315 | |
---|
1316 | ENDIF |
---|
1317 | |
---|
1318 | ! Synchronize biomass |
---|
1319 | IF (ld_presc .AND. ivm .EQ. test_pft)THEN |
---|
1320 | IF( SUM(biomass(ipts,ivm,:,iele)) .NE. zero)THEN |
---|
1321 | IF( SUM( ABS(sync_biomass(ipts,ivm,:,iele) - biomass(ipts,ivm,:,iele) ) ) / & |
---|
1322 | SUM(biomass(ipts,ivm,:,iele)) .GT. 0.0001 ) THEN |
---|
1323 | |
---|
1324 | WRITE(numout,*) 'Divergence of biomass between ::biomass and ::circ_class_biomass' |
---|
1325 | WRITE(numout,*) 'This problem has been identified in stomate_prescribe but could' |
---|
1326 | WRITE(numout,*) 'caused in any routine calculating biomass components' |
---|
1327 | WRITE(numout,*) '% divergence', ivm, & |
---|
1328 | SUM( ABS(sync_biomass(ipts,ivm,:,iele) - biomass(ipts,ivm,:,iele) ) ) / & |
---|
1329 | SUM(biomass(ipts,ivm,:,iele)), & |
---|
1330 | SUM(sync_biomass(ipts,ivm,:,iele)), SUM(biomass(ipts,ivm,:,iele)) |
---|
1331 | ENDIF |
---|
1332 | ENDIF |
---|
1333 | ENDIF |
---|
1334 | |
---|
1335 | biomass(ipts,ivm,:,iele) = sync_biomass(ipts,ivm,:,iele) |
---|
1336 | |
---|
1337 | |
---|
1338 | ENDDO ! nelements |
---|
1339 | |
---|
1340 | ENDDO ! npts |
---|
1341 | |
---|
1342 | ENDIF ! is_tree |
---|
1343 | |
---|
1344 | ENDDO ! # PFT's |
---|
1345 | |
---|
1346 | !! 4. Calculate components of the mass balance |
---|
1347 | |
---|
1348 | !! 4.1 Calculate final biomass |
---|
1349 | pool_end(:,:,:) = zero |
---|
1350 | DO ipar = 1,nparts |
---|
1351 | DO iele = 1,nelements |
---|
1352 | pool_end(:,:,iele) = pool_end(:,:,iele) + & |
---|
1353 | (biomass(:,:,ipar,iele) * veget_max(:,:)) |
---|
1354 | ENDDO |
---|
1355 | ENDDO |
---|
1356 | |
---|
1357 | !! 4.2 Calculate mass balance |
---|
1358 | check_intern(:,:,iatm2land,icarbon) = check_intern(:,:,iatm2land,icarbon) + & |
---|
1359 | co2_to_bm(:,:) * veget_max(:,:) * dt |
---|
1360 | check_intern(:,:,iland2atm,icarbon) = -un * zero |
---|
1361 | check_intern(:,:,ilat2out,icarbon) = zero |
---|
1362 | check_intern(:,:,ilat2in,icarbon) = -un * zero |
---|
1363 | check_intern(:,:,ipoolchange,icarbon) = -un * (pool_end(:,:,icarbon) - pool_start(:,:,icarbon)) |
---|
1364 | closure_intern = zero |
---|
1365 | DO imbc = 1,nmbcomp |
---|
1366 | closure_intern(:,:,icarbon) = closure_intern(:,:,icarbon) + check_intern(:,:,imbc,icarbon) |
---|
1367 | ENDDO |
---|
1368 | |
---|
1369 | !! 4.3 Write outcome of checks |
---|
1370 | DO ipts=1,npts |
---|
1371 | DO ivm=1,nvm |
---|
1372 | |
---|
1373 | ! Mass balance closure |
---|
1374 | IF(ABS(closure_intern(ipts,ivm,icarbon)) .LE. min_stomate)THEN |
---|
1375 | IF (ld_massbal) WRITE(numout,*) 'Mass balance closure in prescribe_prognostic' |
---|
1376 | ELSE |
---|
1377 | WRITE(numout,*) 'Error: mass balance is not closed in prescribe_prognostic' |
---|
1378 | WRITE(numout,*) ' ipts,ivm; ', ipts,ivm |
---|
1379 | WRITE(numout,*) ' Difference is, ', closure_intern(ipts,ivm,icarbon) |
---|
1380 | WRITE(numout,*) ' pool_end,pool_start: ', pool_end(ipts,ivm,icarbon), pool_start(ipts,ivm,icarbon) |
---|
1381 | WRITE(numout,*) ' check_intern,co2_to_bm,pool_end,veget_max: ', & |
---|
1382 | check_intern(ipts,ivm,iatm2land,icarbon),co2_to_bm(ipts,ivm), veget_max(ipts,ivm) |
---|
1383 | IF(ld_stop)THEN |
---|
1384 | CALL ipslerr_p (3,'prescribe_prognostic', 'Mass balance error.','','') |
---|
1385 | ENDIF |
---|
1386 | ENDIF |
---|
1387 | ENDDO |
---|
1388 | ENDDO |
---|
1389 | |
---|
1390 | END SUBROUTINE prescribe_prognostic |
---|
1391 | |
---|
1392 | END MODULE stomate_prescribe |
---|