1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : function_library |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Collection of functions that are used throughout the ORCHIDEE code |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION: Collection of modules to : (1) convert one variable into another i.e. basal area |
---|
12 | !! to diameter, diamter to tree height, diameter to crown area, etc. (2) ... |
---|
13 | !! |
---|
14 | !! RECENT CHANGE(S): None |
---|
15 | !! |
---|
16 | !! REFERENCE(S) : |
---|
17 | !! |
---|
18 | !! SVN : |
---|
19 | !! $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/branches/ORCHIDEE-DOFOCO/ORCHIDEE/src_stomate/stomate_prescribe.f90 $ |
---|
20 | !! $Date: 2013-01-04 16:50:56 +0100 (Fri, 04 Jan 2013) $ |
---|
21 | !! $Revision: 1126 $ |
---|
22 | !! \n |
---|
23 | !_ ================================================================================================================================ |
---|
24 | |
---|
25 | MODULE function_library |
---|
26 | |
---|
27 | ! modules used: |
---|
28 | |
---|
29 | !$ USE ioipsl_para |
---|
30 | USE pft_parameters |
---|
31 | USE constantes |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | |
---|
35 | ! private & public routines |
---|
36 | |
---|
37 | PRIVATE |
---|
38 | PUBLIC calculate_c0_alloc, wood_to_ba_eff_array, wood_to_ba_eff, wood_to_ba, & |
---|
39 | wood_to_height_eff, wood_to_height, wood_to_qmheight, wood_to_dia_eff, & |
---|
40 | wood_to_dia, wood_to_qmdia, wood_to_circ, wood_to_cn_array, & |
---|
41 | wood_to_cn, wood_to_cn_eff, wood_to_cv, wood_to_cv_eff, wood_to_volume, & |
---|
42 | biomass_to_lai, Nmax, Nmaxyield, Nminyield, distribute_mortality_biomass, & |
---|
43 | check_biomass_sync, biomass_to_coupled_lai, check_area |
---|
44 | |
---|
45 | CONTAINS |
---|
46 | |
---|
47 | !! ================================================================================================================================ |
---|
48 | !! FUNCTION : biomass_to_coupled_lai |
---|
49 | !! |
---|
50 | !>\BRIEF Calculate the coupled_LAI based on biomass and veget of each pft |
---|
51 | !! |
---|
52 | !! DESCRIPTION : Calculates the lai that coupled with the atmosphere |
---|
53 | !! |
---|
54 | !! |
---|
55 | !! |
---|
56 | !! RECENT CHANGE(S): None |
---|
57 | !! |
---|
58 | !! RETURN VALUE : ::coupled_lai (m2/m2) |
---|
59 | !! |
---|
60 | !! REFERENCE(S) : |
---|
61 | !! |
---|
62 | !! FLOWCHART : None |
---|
63 | !! \n |
---|
64 | !_ ================================================================================================================================ |
---|
65 | |
---|
66 | FUNCTION biomass_to_coupled_lai(biomass_leaf, veget, pft) |
---|
67 | |
---|
68 | !! 0. Variable and parameter declaration |
---|
69 | |
---|
70 | !! 0.1 Input variables |
---|
71 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
72 | REAL(r_std) :: veget !! 1-Pgap or the vegetation cover |
---|
73 | REAL(r_std) :: biomass_leaf !! Biomass of an individual tree within a circ |
---|
74 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
75 | |
---|
76 | !! 0.2 Output variables |
---|
77 | REAL(r_std) :: biomass_to_coupled_lai !! The fraction of the LAI that is assumed to interact |
---|
78 | !! with the atmosphere @tex $(m^{2} m^{-2})$ @endtex |
---|
79 | !! 0.3 Modified variables |
---|
80 | |
---|
81 | !! 0.4 Local variables |
---|
82 | REAL(r_std) :: lai !! Leaf area index |
---|
83 | !! @tex $(m^{2} m^{-2})$ @endtex |
---|
84 | !_ ================================================================================================================================ |
---|
85 | |
---|
86 | lai = biomass_to_lai(biomass_leaf, pft) |
---|
87 | |
---|
88 | !+++CHECK+++ |
---|
89 | ! In a closed canopy not all the leaves fully interact with the |
---|
90 | ! atmosphere because leaves can shelter each other. In a more |
---|
91 | ! open canopy most leaves can interact with the atmosphere. |
---|
92 | ! For the moment we are not clear how to calculate the fraction of |
---|
93 | ! the canopy that is coupled to the atmosphere. Also, based on the |
---|
94 | ! simulated evapotranspiration we need the entire canopy to be |
---|
95 | ! coupled to the atmosphere to obtain simulations which are close |
---|
96 | ! to the observations (Jung's upscaled product). |
---|
97 | IF (veget .GT. min_sechiba) THEN |
---|
98 | |
---|
99 | biomass_to_coupled_lai = lai |
---|
100 | |
---|
101 | ELSE |
---|
102 | |
---|
103 | ! There are so many gaps that veget is extremely small. It is fair to |
---|
104 | ! assume that the whole canopy is coupled to the atmosphere. |
---|
105 | biomass_to_coupled_lai = lai |
---|
106 | |
---|
107 | ENDIF |
---|
108 | |
---|
109 | END FUNCTION biomass_to_coupled_lai |
---|
110 | |
---|
111 | |
---|
112 | !! ================================================================================================================================ |
---|
113 | !! FUNCTION : calculate_c0_alloc |
---|
114 | !! |
---|
115 | !>\BRIEF Calculate the baseline root vs sapwood allocation |
---|
116 | !! |
---|
117 | !! DESCRIPTION : Calculates the baseline root vs sapwood allocation based on the |
---|
118 | !! parameters of the pipe model (hydraulic conductivities) and the |
---|
119 | !! turnover of the different components |
---|
120 | !! |
---|
121 | !! RECENT CHANGE(S): None |
---|
122 | !! |
---|
123 | !! RETURN VALUE : ::c0_alloc (m) |
---|
124 | !! |
---|
125 | !! REFERENCE(S) : |
---|
126 | !! |
---|
127 | !! FLOWCHART : None |
---|
128 | !! \n |
---|
129 | !_ ================================================================================================================================ |
---|
130 | |
---|
131 | FUNCTION calculate_c0_alloc(pts, pft, tau_eff_root, tau_eff_sap) |
---|
132 | |
---|
133 | !! 0. Variable and parameter declaration |
---|
134 | |
---|
135 | !! 0.1 Input variables |
---|
136 | |
---|
137 | INTEGER(i_std) :: pts !! Pixel number (-) |
---|
138 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
139 | REAL(r_std) :: tau_eff_root !! Effective longivety for leaves (days) |
---|
140 | REAL(r_std) :: tau_eff_sap !! Effective longivety for leaves (days) |
---|
141 | |
---|
142 | !! 0.2 Output variables |
---|
143 | |
---|
144 | REAL(r_std) :: calculate_c0_alloc !! quadratic mean height (m) |
---|
145 | |
---|
146 | !! 0.3 Modified variables |
---|
147 | |
---|
148 | !! 0.4 Local variables |
---|
149 | REAL(r_std) :: sapwood_density |
---|
150 | REAL(r_std) :: qm_dia !! quadratic mean diameter (m) |
---|
151 | |
---|
152 | !_ ================================================================================================================================ |
---|
153 | |
---|
154 | !! 1. Calculate c0_alloc |
---|
155 | IF ( is_tree(pft) ) THEN |
---|
156 | |
---|
157 | sapwood_density = deux * pipe_density(pft) / kilo_to_unit |
---|
158 | calculate_c0_alloc = sqrt(k_root(pft)/k_sap(pft)*tau_eff_sap/tau_eff_root*sapwood_density) |
---|
159 | |
---|
160 | ! Grasses and croplands |
---|
161 | ELSE |
---|
162 | |
---|
163 | !+++CHECK+++ |
---|
164 | ! Simply copied the same formulation as for trees but note |
---|
165 | ! that the sapwood in trees vs grasses and crops has a very |
---|
166 | ! meaning. In grasses and crops is structural carbon to ensure |
---|
167 | ! that the allocation works. In trees it really is the sapwood |
---|
168 | sapwood_density = deux * pipe_density(pft) / kilo_to_unit |
---|
169 | calculate_c0_alloc = sqrt(k_root(pft)/k_sap(pft)*tau_eff_sap/tau_eff_root*sapwood_density) |
---|
170 | !+++++++++++ |
---|
171 | |
---|
172 | ENDIF ! is_tree(j) |
---|
173 | |
---|
174 | END FUNCTION calculate_c0_alloc |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | !! ================================================================================================================================ |
---|
179 | !! FUNCTION : wood_to_ba_eff_array |
---|
180 | !! |
---|
181 | !>\BRIEF Calculate the effective basal area from woody biomass making use of allometric relationships. |
---|
182 | !! |
---|
183 | !! DESCRIPTION : Calculate basal area of an individual tree from the woody biomass of that tree making |
---|
184 | !! use of allometric relationships. Effective basal area accounts for both above and below ground carbon |
---|
185 | !! and is the basis for the application of the rule of Deleuze and Dhote |
---|
186 | !! |
---|
187 | !! RECENT CHANGE(S): None |
---|
188 | !! |
---|
189 | !! RETURN VALUE : effective basal area (m2 ind-1) |
---|
190 | !! |
---|
191 | !! REFERENCE(S) : |
---|
192 | !! |
---|
193 | !! FLOWCHART : None |
---|
194 | !! \n |
---|
195 | !_ ================================================================================================================================ |
---|
196 | |
---|
197 | FUNCTION wood_to_ba_eff_array(biomass_temp, npts, pft) |
---|
198 | |
---|
199 | !! 0. Variable and parameter declaration |
---|
200 | |
---|
201 | !! 0.1 Input variables |
---|
202 | |
---|
203 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
204 | INTEGER(i_std) :: npts !! Number of pixels |
---|
205 | REAL(r_std), DIMENSION(:,:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
206 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
207 | |
---|
208 | !! 0.2 Output variables |
---|
209 | |
---|
210 | REAL(r_std), DIMENSION(npts,ncirc) :: wood_to_ba_eff_array !! Effective basal area of an individual tree within a circ |
---|
211 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
212 | |
---|
213 | !! 0.3 Modified variables |
---|
214 | |
---|
215 | !! 0.4 Local variables |
---|
216 | INTEGER(i_std) :: l !! Index |
---|
217 | REAL(r_std), DIMENSION(npts) :: woodmass_ind !! Woodmass of an individual tree |
---|
218 | !! @tex $(gC ind{-1})$ @endtex |
---|
219 | |
---|
220 | !_ ================================================================================================================================ |
---|
221 | |
---|
222 | !! 1. Calculate effective basal area from woodmass |
---|
223 | |
---|
224 | IF ( is_tree(pft) ) THEN |
---|
225 | |
---|
226 | DO l = 1,ncirc |
---|
227 | |
---|
228 | ! Woodmass of an individual tree. Note that for the effective basal area |
---|
229 | ! both the above and belowground biomass are used. |
---|
230 | woodmass_ind(:) = biomass_temp(:,l,isapabove) + biomass_temp(:,l,isapbelow) + & |
---|
231 | biomass_temp(:,l,iheartabove) + biomass_temp(:,l,iheartbelow) |
---|
232 | |
---|
233 | ! Basal area of that individual (m2 ind-1) |
---|
234 | wood_to_ba_eff_array(:,l) = (pi/4*(woodmass_ind(:)/& |
---|
235 | (tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft))) & |
---|
236 | **(2./pipe_tune3(pft)))**(pipe_tune3(pft)/(pipe_tune3(pft)+2)) |
---|
237 | |
---|
238 | ENDDO |
---|
239 | |
---|
240 | ELSE |
---|
241 | |
---|
242 | WRITE(numout,*) 'function wood_to_ba_eff_array is not defined for this PFT' |
---|
243 | WRITE(numout,*) 'pft ',pft |
---|
244 | CALL ipslerr_p (3,'wood_to_ba_eff_array', & |
---|
245 | 'wood_to_ba_eff_array is not defined for this PFT.', & |
---|
246 | 'See the output file for more details.','') |
---|
247 | |
---|
248 | |
---|
249 | ENDIF |
---|
250 | |
---|
251 | END FUNCTION wood_to_ba_eff_array |
---|
252 | |
---|
253 | |
---|
254 | !! ================================================================================================================================ |
---|
255 | !! FUNCTION : wood_to_ba_eff |
---|
256 | !! |
---|
257 | !>\BRIEF Calculate effective basal area from woody biomass making use of allometric relationships |
---|
258 | !! |
---|
259 | !! DESCRIPTION : Calculate basal area of an individual tree from the woody biomass of that tree making |
---|
260 | !! use of allometric relationships. Effective basal area accounts for both above and below ground carbon |
---|
261 | !! and is the basis for the application of the rule of Deleuze and Dhote. |
---|
262 | !! (i) woodmass = tree_ff * pipe_density*ba*height |
---|
263 | !! (ii) height = pipe_tune2 * sqrt(4/pi*ba) ** pipe_tune_3 |
---|
264 | !! |
---|
265 | !! RECENT CHANGE(S): None |
---|
266 | !! |
---|
267 | !! RETURN VALUE : effective basal area (m2 ind-1) |
---|
268 | !! |
---|
269 | !! REFERENCE(S) : |
---|
270 | !! |
---|
271 | !! FLOWCHART : None |
---|
272 | !! \n |
---|
273 | !_ ================================================================================================================================ |
---|
274 | |
---|
275 | FUNCTION wood_to_ba_eff(biomass_temp, pft) |
---|
276 | |
---|
277 | !! 0. Variable and parameter declaration |
---|
278 | |
---|
279 | !! 0.1 Input variables |
---|
280 | |
---|
281 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
282 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
283 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
284 | |
---|
285 | !! 0.2 Output variables |
---|
286 | |
---|
287 | REAL(r_std), DIMENSION(ncirc) :: wood_to_ba_eff !! Effective basal area of an individual tree within a circ |
---|
288 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
289 | |
---|
290 | !! 0.3 Modified variables |
---|
291 | |
---|
292 | !! 0.4 Local variables |
---|
293 | INTEGER(i_std) :: l !! Index |
---|
294 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
295 | !! @tex $(gC ind^{-1})$ @endtex |
---|
296 | |
---|
297 | !_ ================================================================================================================================ |
---|
298 | |
---|
299 | !! 1. Calculate basal area from woodmass |
---|
300 | |
---|
301 | IF ( is_tree(pft) ) THEN |
---|
302 | |
---|
303 | DO l = 1,ncirc |
---|
304 | |
---|
305 | ! Woodmass of an individual tree |
---|
306 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,isapbelow) + & |
---|
307 | biomass_temp(l,iheartabove) + biomass_temp(l,iheartbelow) |
---|
308 | |
---|
309 | ! Basal area of that individual (m2 ind-1) |
---|
310 | wood_to_ba_eff(l) = (pi/4*(woodmass_ind/(tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft))) & |
---|
311 | **(2./pipe_tune3(pft)))**(pipe_tune3(pft)/(pipe_tune3(pft)+2)) |
---|
312 | |
---|
313 | ENDDO |
---|
314 | |
---|
315 | ELSE |
---|
316 | |
---|
317 | WRITE(numout,*) 'pft ',pft |
---|
318 | CALL ipslerr_p (3,'wood_to_ba_eff', & |
---|
319 | 'wood_to_ba_eff is not defined for this PFT.', & |
---|
320 | 'See the output file for more details.','') |
---|
321 | |
---|
322 | ENDIF |
---|
323 | |
---|
324 | END FUNCTION wood_to_ba_eff |
---|
325 | |
---|
326 | |
---|
327 | |
---|
328 | !! ================================================================================================================================ |
---|
329 | !! FUNCTION : wood_to_ba |
---|
330 | !! |
---|
331 | !>\BRIEF Calculate basal area from woody biomass making use of allometric relationships |
---|
332 | !! |
---|
333 | !! DESCRIPTION : Calculate basal area of an individual tree from the woody biomass of that tree making |
---|
334 | !! use of allometric relationships given below. Here basal area is defined in line with its classical |
---|
335 | !! forestry meaning. |
---|
336 | !! (i) woodmass = tree_ff * pipe_density*ba*height |
---|
337 | !! (ii) height = pipe_tune2 * sqrt(4/pi*ba) ** pipe_tune_3 |
---|
338 | !! |
---|
339 | !! RECENT CHANGE(S): None |
---|
340 | !! |
---|
341 | !! RETURN VALUE : basal area (m2 ind-1) |
---|
342 | !! |
---|
343 | !! REFERENCE(S) : |
---|
344 | !! |
---|
345 | !! FLOWCHART : None |
---|
346 | !! \n |
---|
347 | !_ ================================================================================================================================ |
---|
348 | |
---|
349 | FUNCTION wood_to_ba(biomass_temp, pft) |
---|
350 | |
---|
351 | !! 0. Variable and parameter declaration |
---|
352 | |
---|
353 | !! 0.1 Input variables |
---|
354 | |
---|
355 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
356 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
357 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
358 | |
---|
359 | !! 0.2 Output variables |
---|
360 | |
---|
361 | REAL(r_std), DIMENSION(ncirc) :: wood_to_ba !! Basal area of an individual tree within a circ |
---|
362 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
363 | |
---|
364 | !! 0.3 Modified variables |
---|
365 | |
---|
366 | !! 0.4 Local variables |
---|
367 | INTEGER(i_std) :: l !! Index |
---|
368 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
369 | !! @tex $(gC ind^{-1})$ @endtex |
---|
370 | |
---|
371 | !_ ================================================================================================================================ |
---|
372 | |
---|
373 | !! 1. Calculate basal area from woodmass |
---|
374 | |
---|
375 | IF ( is_tree(pft) ) THEN |
---|
376 | |
---|
377 | DO l = 1,ncirc |
---|
378 | |
---|
379 | ! Woodmass of an individual tree |
---|
380 | woodmass_ind = biomass_temp(l,iheartabove) + biomass_temp(l,isapabove) |
---|
381 | |
---|
382 | |
---|
383 | ! Basal area of that individual (m2 ind-1) |
---|
384 | wood_to_ba(l) = (pi/4*(woodmass_ind/(tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft))) & |
---|
385 | **(2./pipe_tune3(pft)))**(pipe_tune3(pft)/(pipe_tune3(pft)+2)) |
---|
386 | |
---|
387 | ENDDO |
---|
388 | |
---|
389 | ELSE |
---|
390 | |
---|
391 | WRITE(numout,*) 'pft ',pft |
---|
392 | CALL ipslerr_p (3,'wood_to_ba', & |
---|
393 | 'wood_to_ba is not defined for this PFT.', & |
---|
394 | 'See the output file for more details.','') |
---|
395 | |
---|
396 | ENDIF |
---|
397 | |
---|
398 | END FUNCTION wood_to_ba |
---|
399 | |
---|
400 | |
---|
401 | !! ================================================================================================================================ |
---|
402 | !! FUNCTION : wood_to_height_eff |
---|
403 | !! |
---|
404 | !>\BRIEF Calculate the effective tree height from woody biomass making use of allometric relationships |
---|
405 | !! |
---|
406 | !! DESCRIPTION : Calculate the effective height of an individual tree from the woody biomass of that tree making |
---|
407 | !! use of allometric relationships. Effective height makes use of both above and belowground biomass and is |
---|
408 | !! used in the calculation of the allocation according to deleuze and dhote, hydraulic architecture because also |
---|
409 | !! the height of the belowground part should be included. |
---|
410 | !! (i) height(:) = pipe_tune2(j)*(4/pi*ba(:))**(pipe_tune3(j)/2) and |
---|
411 | !! (ii) woodmass_ind = tree_ff*pipe_density*ba*height |
---|
412 | !! |
---|
413 | !! RECENT CHANGE(S): None |
---|
414 | !! |
---|
415 | !! RETURN VALUE : height (m) |
---|
416 | !! |
---|
417 | !! REFERENCE(S) : |
---|
418 | !! |
---|
419 | !! FLOWCHART : None |
---|
420 | !! \n |
---|
421 | !_ ================================================================================================================================ |
---|
422 | |
---|
423 | FUNCTION wood_to_height_eff(biomass_temp, pft) |
---|
424 | |
---|
425 | !! 0. Variable and parameter declaration |
---|
426 | |
---|
427 | !! 0.1 Input variables |
---|
428 | |
---|
429 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
430 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
431 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
432 | |
---|
433 | !! 0.2 Output variables |
---|
434 | |
---|
435 | REAL(r_std), DIMENSION(ncirc) :: wood_to_height_eff !! Effective height of an individual tree within a circ |
---|
436 | !! class (m) |
---|
437 | |
---|
438 | !! 0.3 Modified variables |
---|
439 | |
---|
440 | !! 0.4 Local variables |
---|
441 | INTEGER(i_std) :: l !! Index |
---|
442 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
443 | !! @tex $(gC ind{-1})$ @endtex |
---|
444 | |
---|
445 | CHARACTER(len=256) :: tmp_var_name !! temporal variable for a text reading (from run.def) |
---|
446 | REAL(r_std) :: tmp_ratio !! temporal variable for adjusting the height |
---|
447 | !_ ================================================================================================================================ |
---|
448 | |
---|
449 | !! 1. Calculate height from woodmass |
---|
450 | |
---|
451 | IF ( is_tree(pft) ) THEN |
---|
452 | |
---|
453 | DO l = 1,ncirc |
---|
454 | |
---|
455 | ! Woodmass of an individual tree. Both above and belowground biomass are used |
---|
456 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,isapbelow) + & |
---|
457 | biomass_temp(l,iheartabove) + biomass_temp(l,iheartbelow) |
---|
458 | |
---|
459 | ! Height of that individual |
---|
460 | wood_to_height_eff(l) = (((woodmass_ind/(tree_ff(pft)*pipe_density(pft))*4/pi)**(pipe_tune3(pft)/2))& |
---|
461 | *pipe_tune2(pft))**(1/(pipe_tune3(pft)/2+1)) |
---|
462 | |
---|
463 | !+++++++ TEMP ++++++++++ |
---|
464 | ! This code is only used evaluation of the performance of the multi-layer energy budget. |
---|
465 | ! To reduce the complexity of the tests we want to impose the LAI and its vertical distribution. |
---|
466 | ! The solution is not very elegant but it works. (To start the simulation, a retsart file with height stand is suggested) |
---|
467 | ! This part of code use the CIRC_HEIGHT_RATIO to adjust the original heigth in each circonferance class. |
---|
468 | ! By doing so, the canopy sturcture can be adjust to match the site level observations. |
---|
469 | IF (ld_fake_height) THEN |
---|
470 | ! WRITE(numout,*)'+++ fake wood to height function +++' |
---|
471 | !set initial the tmp_ratio reaul to 1.0 |
---|
472 | tmp_ratio=1.0 |
---|
473 | WRITE(tmp_var_name, '(A19,I5.5)') "CIRC_HEIGHT_RATIO__", l |
---|
474 | CALL getin_p(TRIM(tmp_var_name), tmp_ratio) |
---|
475 | wood_to_height_eff(l) =tmp_ratio*wood_to_height_eff(l) |
---|
476 | ! WRITE(numout,*) 'SET CIRC_', l, '_HEIGHT = ', wood_to_height_eff(l) |
---|
477 | ENDIF |
---|
478 | !++++++++++++++++++++++ |
---|
479 | |
---|
480 | ENDDO |
---|
481 | |
---|
482 | ELSE |
---|
483 | |
---|
484 | WRITE(numout,*) 'pft ',pft |
---|
485 | CALL ipslerr_p (3,'wood_to_height_eff', & |
---|
486 | 'wood_to_height_eff is not defined for this PFT.', & |
---|
487 | 'See the output file for more details.','') |
---|
488 | |
---|
489 | ENDIF |
---|
490 | |
---|
491 | END FUNCTION wood_to_height_eff |
---|
492 | |
---|
493 | |
---|
494 | !! ================================================================================================================================ |
---|
495 | !! FUNCTION : wood_to_height |
---|
496 | !! |
---|
497 | !>\BRIEF Calculate tree height from woody biomass making use of allometric relationships |
---|
498 | !! |
---|
499 | !! DESCRIPTION : Calculate height of an individual tree from the woody biomass of that tree making |
---|
500 | !! use of allometric relationships. This is the height used in forestry and for calculating the aerodynamic |
---|
501 | !! interactions |
---|
502 | !! (i) height(:) = pipe_tune2(j)*(4/pi*ba(:))**(pipe_tune3(j)/2) and |
---|
503 | !! (ii) woodmass_ind = tree_ff*pipe_density*ba*height |
---|
504 | !! |
---|
505 | !! RECENT CHANGE(S): None |
---|
506 | !! |
---|
507 | !! RETURN VALUE : height (m) |
---|
508 | !! |
---|
509 | !! REFERENCE(S) : |
---|
510 | !! |
---|
511 | !! FLOWCHART : None |
---|
512 | !! \n |
---|
513 | !_ ================================================================================================================================ |
---|
514 | |
---|
515 | FUNCTION wood_to_height(biomass_temp, pft) |
---|
516 | |
---|
517 | !! 0. Variable and parameter declaration |
---|
518 | |
---|
519 | !! 0.1 Input variables |
---|
520 | |
---|
521 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
522 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
523 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
524 | |
---|
525 | !! 0.2 Output variables |
---|
526 | |
---|
527 | REAL(r_std), DIMENSION(ncirc) :: wood_to_height !! Height of an individual tree within a circ |
---|
528 | !! class (m) |
---|
529 | |
---|
530 | !! 0.3 Modified variables |
---|
531 | |
---|
532 | !! 0.4 Local variables |
---|
533 | INTEGER(i_std) :: l !! Index |
---|
534 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
535 | !! @tex $(gC ind{-1})$ @endtex |
---|
536 | |
---|
537 | !_ ================================================================================================================================ |
---|
538 | |
---|
539 | !! 1. Calculate height from woodmass |
---|
540 | |
---|
541 | IF ( is_tree(pft) ) THEN |
---|
542 | |
---|
543 | DO l = 1,ncirc |
---|
544 | |
---|
545 | ! Woodmass of an individual tree (only the aboveground component) |
---|
546 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,iheartabove) |
---|
547 | |
---|
548 | ! Height of that individual |
---|
549 | wood_to_height(l) = (((woodmass_ind/(tree_ff(pft)*pipe_density(pft))*4/pi)**(pipe_tune3(pft)/2))& |
---|
550 | *pipe_tune2(pft))**(1/(pipe_tune3(pft)/2+1)) |
---|
551 | |
---|
552 | ENDDO |
---|
553 | |
---|
554 | ELSE |
---|
555 | |
---|
556 | WRITE(numout,*) 'pft ',pft |
---|
557 | CALL ipslerr_p (3,'wood_to_height', & |
---|
558 | 'wood_to_height is not defined for this PFT.', & |
---|
559 | 'See the output file for more details.','') |
---|
560 | |
---|
561 | ENDIF |
---|
562 | |
---|
563 | END FUNCTION wood_to_height |
---|
564 | |
---|
565 | |
---|
566 | !! ================================================================================================================================ |
---|
567 | !! FUNCTION : wood_to_qmheight |
---|
568 | !! |
---|
569 | !>\BRIEF Calculate the quadratic mean height from the biomass |
---|
570 | !! |
---|
571 | !! DESCRIPTION : Calculates the quadratic mean height from the biomass |
---|
572 | !! |
---|
573 | !! RECENT CHANGE(S): None |
---|
574 | !! |
---|
575 | !! RETURN VALUE : ::qm_height (m) |
---|
576 | !! |
---|
577 | !! REFERENCE(S) : |
---|
578 | !! |
---|
579 | !! FLOWCHART : None |
---|
580 | !! \n |
---|
581 | !_ ================================================================================================================================ |
---|
582 | |
---|
583 | FUNCTION wood_to_qmheight(biomass_temp, ind, pft) |
---|
584 | |
---|
585 | !! 0. Variable and parameter declaration |
---|
586 | |
---|
587 | !! 0.1 Input variables |
---|
588 | |
---|
589 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
590 | REAL(r_std), DIMENSION(ncirc,nparts) :: biomass_temp !! Biomass of the leaves @tex $(gC m^{-2})$ @endtex |
---|
591 | REAL(r_std), DIMENSION(ncirc) :: ind !! Number of individuals @tex $(m^{-2})$ @endtex |
---|
592 | |
---|
593 | |
---|
594 | !! 0.2 Output variables |
---|
595 | |
---|
596 | REAL(r_std) :: wood_to_qmheight !! quadratic mean height (m) |
---|
597 | |
---|
598 | !! 0.3 Modified variables |
---|
599 | |
---|
600 | !! 0.4 Local variables |
---|
601 | REAL(r_std), DIMENSION(ncirc) :: circ_class_ba !! basal area for each circ_class @tex $(m^{2})$ @endtex |
---|
602 | REAL(r_std) :: qm_dia !! quadratic mean diameter (m) |
---|
603 | |
---|
604 | !_ ================================================================================================================================ |
---|
605 | |
---|
606 | !! 1. Calculate qm_height from the biomass |
---|
607 | IF ( is_tree(pft) ) THEN |
---|
608 | |
---|
609 | ! Basal area at the tree level (m2 tree-1) |
---|
610 | circ_class_ba(:) = wood_to_ba(biomass_temp(:,:),pft) |
---|
611 | |
---|
612 | IF (SUM(ind(:)) .NE. zero) THEN |
---|
613 | |
---|
614 | qm_dia = SQRT( 4/pi*SUM(circ_class_ba(:)*ind(:))/SUM(ind(:)) ) |
---|
615 | |
---|
616 | ELSE |
---|
617 | |
---|
618 | qm_dia = zero |
---|
619 | |
---|
620 | ENDIF |
---|
621 | |
---|
622 | wood_to_qmheight = pipe_tune2(pft)*(qm_dia**pipe_tune3(pft)) |
---|
623 | |
---|
624 | |
---|
625 | ! Grasses and croplands |
---|
626 | ELSE |
---|
627 | |
---|
628 | ! Calculate height as a function of the leaf and structural biomass. Use structural |
---|
629 | ! biomass to make sure that the grasslands have a roughness length during the winter |
---|
630 | ! If the biomass increases, vegetation height will increase as well. Divide by |
---|
631 | ! ind(ipts,j) to obtain the height of the individual. biomass(ileaf) is in gC m-2 |
---|
632 | ! whereas qm is the height of the individual. |
---|
633 | IF (SUM(ind(:)) .NE. zero) THEN |
---|
634 | |
---|
635 | wood_to_qmheight = SUM(biomass_temp(:,ileaf) + biomass_temp(:,isapabove)) / & |
---|
636 | SUM(ind(:)) * sla(pft) * lai_to_height(pft) |
---|
637 | |
---|
638 | ELSE |
---|
639 | |
---|
640 | wood_to_qmheight = zero |
---|
641 | |
---|
642 | ENDIF |
---|
643 | |
---|
644 | ENDIF ! is_tree(j) |
---|
645 | |
---|
646 | END FUNCTION wood_to_qmheight |
---|
647 | |
---|
648 | |
---|
649 | |
---|
650 | !! ================================================================================================================================ |
---|
651 | !! FUNCTION : wood_to_dia_eff |
---|
652 | !! |
---|
653 | !>\BRIEF Calculate effective diameter from woody biomass making use of allometric relationships |
---|
654 | !! |
---|
655 | !! DESCRIPTION : Calculate the effective diameter of an individual tree from the woody biomass of that tree making |
---|
656 | !! use of allometric relationships. Effective diameter accounts for both above and belowground biomass. |
---|
657 | !! (i) woodmass_ind = tree_ff * pipe_density * height * pi/4*dia**2 |
---|
658 | !! (ii) height = pipe_tune2 * dia * pipe_tune3 |
---|
659 | !! |
---|
660 | !! RECENT CHANGE(S): None |
---|
661 | !! |
---|
662 | !! RETURN VALUE : diameter (m) |
---|
663 | !! |
---|
664 | !! REFERENCE(S) : |
---|
665 | !! |
---|
666 | !! FLOWCHART : None |
---|
667 | !! \n |
---|
668 | !_ ================================================================================================================================ |
---|
669 | |
---|
670 | FUNCTION wood_to_dia_eff(biomass_temp, pft) |
---|
671 | |
---|
672 | !! 0. Variable and parameter declaration |
---|
673 | |
---|
674 | !! 0.1 Input variables |
---|
675 | |
---|
676 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
677 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
678 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
679 | |
---|
680 | !! 0.2 Output variables |
---|
681 | |
---|
682 | REAL(r_std), DIMENSION(ncirc) :: wood_to_dia_eff !! Diameter of an individual tree within a circ |
---|
683 | !! class (m) |
---|
684 | |
---|
685 | !! 0.3 Modified variables |
---|
686 | |
---|
687 | !! 0.4 Local variables |
---|
688 | INTEGER(i_std) :: l !! Index |
---|
689 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
690 | !! @tex $(gC ind^{-1})$ @endtex |
---|
691 | |
---|
692 | !_ ================================================================================================================================ |
---|
693 | |
---|
694 | !! 1. Calculate basal area from woodmass |
---|
695 | |
---|
696 | IF ( is_tree(pft) ) THEN |
---|
697 | |
---|
698 | DO l = 1,ncirc |
---|
699 | |
---|
700 | ! Woodmass of an individual tree |
---|
701 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,isapbelow) + & |
---|
702 | biomass_temp(l,iheartabove) + biomass_temp(l,iheartbelow) |
---|
703 | |
---|
704 | ! Basal area of that individual (m2 ind-1) |
---|
705 | wood_to_dia_eff(l) = (4/pi*woodmass_ind/(tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft))) ** & |
---|
706 | (1./(2+pipe_tune3(pft))) |
---|
707 | |
---|
708 | ENDDO |
---|
709 | |
---|
710 | ELSE |
---|
711 | |
---|
712 | WRITE(numout,*) 'pft ',pft |
---|
713 | CALL ipslerr_p (3,'wood_to_dia_eff', & |
---|
714 | 'wood_to_dia_eff is not defined for this PFT.', & |
---|
715 | 'See the output file for more details.','') |
---|
716 | |
---|
717 | ENDIF |
---|
718 | |
---|
719 | END FUNCTION wood_to_dia_eff |
---|
720 | |
---|
721 | |
---|
722 | |
---|
723 | !! ================================================================================================================================ |
---|
724 | !! FUNCTION : wood_to_dia |
---|
725 | !! |
---|
726 | !>\BRIEF Calculate diameter from woody biomass making use of allometric relationships |
---|
727 | !! |
---|
728 | !! DESCRIPTION : Calculate diameter of an individual tree from the woody biomass of that tree making |
---|
729 | !! use of allometric relationships. Makes only use of the aboveground biomass and relates to the |
---|
730 | !! typical forestry diameter (but not normalized at 1.3 m) |
---|
731 | !! (i) woodmass_ind = tree_ff * pipe_density * height * pi/4*dia**2 |
---|
732 | !! (ii) height = pipe_tune2 * dia * pipe_tune3 |
---|
733 | !! |
---|
734 | !! RECENT CHANGE(S): None |
---|
735 | !! |
---|
736 | !! RETURN VALUE : diameter (m) |
---|
737 | !! |
---|
738 | !! REFERENCE(S) : |
---|
739 | !! |
---|
740 | !! FLOWCHART : None |
---|
741 | !! \n |
---|
742 | !_ ================================================================================================================================ |
---|
743 | |
---|
744 | FUNCTION wood_to_dia(biomass_temp, pft) |
---|
745 | |
---|
746 | !! 0. Variable and parameter declaration |
---|
747 | |
---|
748 | !! 0.1 Input variables |
---|
749 | |
---|
750 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
751 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
752 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
753 | |
---|
754 | !! 0.2 Output variables |
---|
755 | |
---|
756 | REAL(r_std), DIMENSION(ncirc) :: wood_to_dia !! Diameter of an individual tree within a circ |
---|
757 | !! class (m) |
---|
758 | |
---|
759 | !! 0.3 Modified variables |
---|
760 | |
---|
761 | !! 0.4 Local variables |
---|
762 | INTEGER(i_std) :: l !! Index |
---|
763 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
764 | !! @tex $(gC ind^{-1})$ @endtex |
---|
765 | |
---|
766 | !_ ================================================================================================================================ |
---|
767 | |
---|
768 | !! 1. Calculate basal area from woodmass |
---|
769 | |
---|
770 | IF ( is_tree(pft) ) THEN |
---|
771 | |
---|
772 | DO l = 1,ncirc |
---|
773 | |
---|
774 | ! Woodmass of an individual tree |
---|
775 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,iheartabove) |
---|
776 | |
---|
777 | ! Basal area of that individual (m2 ind-1) |
---|
778 | wood_to_dia(l) = (4/pi*woodmass_ind/(tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft))) ** & |
---|
779 | (1./(2+pipe_tune3(pft))) |
---|
780 | |
---|
781 | ENDDO |
---|
782 | |
---|
783 | ELSE |
---|
784 | |
---|
785 | WRITE(numout,*) 'pft ',pft |
---|
786 | CALL ipslerr_p (3,'wood_to_dia', & |
---|
787 | 'wood_to_dia is not defined for this PFT.', & |
---|
788 | 'See the output file for more details.','') |
---|
789 | |
---|
790 | ENDIF |
---|
791 | |
---|
792 | END FUNCTION wood_to_dia |
---|
793 | |
---|
794 | |
---|
795 | !! ================================================================================================================================ |
---|
796 | !! FUNCTION : wood_to_qmdia |
---|
797 | !! |
---|
798 | !>\BRIEF Calculate the quadratic mean diameter from the biomass |
---|
799 | !! |
---|
800 | !! DESCRIPTION : Calculates the quadratic mean diameter from the aboveground biomss |
---|
801 | !! |
---|
802 | !! RECENT CHANGE(S): None |
---|
803 | !! |
---|
804 | !! RETURN VALUE : ::qm_dia (m) |
---|
805 | !! |
---|
806 | !! REFERENCE(S) : |
---|
807 | !! |
---|
808 | !! FLOWCHART : None |
---|
809 | !! \n |
---|
810 | !_ ================================================================================================================================ |
---|
811 | |
---|
812 | FUNCTION wood_to_qmdia(biomass_temp, ind, pft) |
---|
813 | |
---|
814 | !! 0. Variable and parameter declaration |
---|
815 | |
---|
816 | !! 0.1 Input variables |
---|
817 | |
---|
818 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
819 | REAL(r_std), DIMENSION(ncirc,nparts) :: biomass_temp !! Biomass of the leaves @tex $(gC m^{-2})$ @endtex |
---|
820 | REAL(r_std), DIMENSION(ncirc) :: ind !! Number of individuals @tex $(m^{-2})$ @endtex |
---|
821 | |
---|
822 | !! 0.2 Output variables |
---|
823 | |
---|
824 | REAL(r_std) :: wood_to_qmdia !! quadratic mean diameter (m) |
---|
825 | |
---|
826 | !! 0.3 Modified variables |
---|
827 | |
---|
828 | !! 0.4 Local variables |
---|
829 | REAL(r_std), DIMENSION(ncirc) :: circ_class_ba !! basal area for each circ_class @tex $(m^{2})$ @endtex |
---|
830 | |
---|
831 | !_ ================================================================================================================================ |
---|
832 | |
---|
833 | !! 1. Calculate qm_dia from the biomass |
---|
834 | IF ( is_tree(pft) ) THEN |
---|
835 | |
---|
836 | ! Basal area at the tree level (m2 tree-1) |
---|
837 | circ_class_ba(:) = wood_to_ba(biomass_temp(:,:),pft) |
---|
838 | |
---|
839 | IF (SUM(ind(:)) .NE. zero) THEN |
---|
840 | |
---|
841 | wood_to_qmdia = SQRT( 4/pi*SUM(circ_class_ba(:)*ind(:))/SUM(ind(:)) ) |
---|
842 | |
---|
843 | ELSE |
---|
844 | |
---|
845 | wood_to_qmdia = zero |
---|
846 | |
---|
847 | ENDIF |
---|
848 | |
---|
849 | |
---|
850 | ! Grasses and croplands |
---|
851 | ELSE |
---|
852 | |
---|
853 | wood_to_qmdia = zero |
---|
854 | |
---|
855 | ENDIF ! is_tree(pft) |
---|
856 | |
---|
857 | END FUNCTION wood_to_qmdia |
---|
858 | |
---|
859 | |
---|
860 | !! ================================================================================================================================ |
---|
861 | !! FUNCTION : wood_to_circ |
---|
862 | !! |
---|
863 | !>\BRIEF Calculate circumference from woody biomass making use of allometric relationships |
---|
864 | !! |
---|
865 | !! DESCRIPTION : All this does it computer the diameter using a different routine, and then |
---|
866 | !! convert that into a circumference. |
---|
867 | !! |
---|
868 | !! RECENT CHANGE(S): None |
---|
869 | !! |
---|
870 | !! RETURN VALUE : circumference (m) |
---|
871 | !! |
---|
872 | !! REFERENCE(S) : |
---|
873 | !! |
---|
874 | !! FLOWCHART : None |
---|
875 | !! \n |
---|
876 | !_ ================================================================================================================================ |
---|
877 | |
---|
878 | FUNCTION wood_to_circ(biomass_temp, pft) |
---|
879 | |
---|
880 | !! 0. Variable and parameter declaration |
---|
881 | |
---|
882 | !! 0.1 Input variables |
---|
883 | |
---|
884 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
885 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
886 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
887 | |
---|
888 | !! 0.2 Output variables |
---|
889 | |
---|
890 | REAL(r_std), DIMENSION(ncirc) :: wood_to_circ !! Circumference of an individual tree within a circ |
---|
891 | !! class (m) |
---|
892 | |
---|
893 | !! 0.3 Modified variables |
---|
894 | |
---|
895 | !! 0.4 Local variables |
---|
896 | |
---|
897 | !_ ================================================================================================================================ |
---|
898 | |
---|
899 | !! 1. Calculate diameter from woodmass |
---|
900 | |
---|
901 | wood_to_circ(:)=val_exp |
---|
902 | |
---|
903 | wood_to_circ(:)=wood_to_dia(biomass_temp(:,:),pft) |
---|
904 | |
---|
905 | ! convert to a circumference (m) |
---|
906 | wood_to_circ(:) = wood_to_circ(:)*pi |
---|
907 | |
---|
908 | END FUNCTION wood_to_circ |
---|
909 | |
---|
910 | |
---|
911 | |
---|
912 | !! ================================================================================================================================ |
---|
913 | !! FUNCTION : wood_to_cn_array |
---|
914 | !! |
---|
915 | !>\BRIEF Calculate crown area from woody biomass making use of allometric relationships |
---|
916 | !! |
---|
917 | !! DESCRIPTION : Calculate crown area of an individual tree from the woody biomass of that tree |
---|
918 | !! making use of allometric relationship that relates crown area (cn) to diameter (dia) as |
---|
919 | !! pipe_tune1*dia**pipe_tune_exp_coeff where the pipe_tune parameters are pft-specific. |
---|
920 | !! (i) Basal area is written as a function of wood_mass: woodmass_ind = tree_ff*pipe_density*ba*height |
---|
921 | !! (ii) height = pipe_tune2*sqrt(4/pi*ba)**pipe_tune3 |
---|
922 | !! (iii) cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
923 | !! |
---|
924 | !! RECENT CHANGE(S): None |
---|
925 | !! |
---|
926 | !! RETURN VALUE : crown area (m2 ind-1) |
---|
927 | !! |
---|
928 | !! REFERENCE(S) : |
---|
929 | !! |
---|
930 | !! FLOWCHART : None |
---|
931 | !! \n |
---|
932 | !_ ================================================================================================================================ |
---|
933 | |
---|
934 | FUNCTION wood_to_cn_array(biomass_temp, npts, pft) |
---|
935 | |
---|
936 | !! 0. Variable and parameter declaration |
---|
937 | |
---|
938 | !! 0.1 Input variables |
---|
939 | |
---|
940 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
941 | INTEGER(i_std) :: npts !! Pixel(s), this variable defines the dimensions of ba |
---|
942 | REAL(r_std), DIMENSION(:,:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
943 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
944 | |
---|
945 | |
---|
946 | !! 0.2 Output variables |
---|
947 | |
---|
948 | REAL(r_std), DIMENSION(npts,ncirc) :: wood_to_cn_array !! Crown area of an individual tree @tex $(m^{2} ind{-1})$ @endtex |
---|
949 | |
---|
950 | !! 0.3 Modified variables |
---|
951 | |
---|
952 | !! 0.4 Local variables |
---|
953 | |
---|
954 | INTEGER(i_std) :: l !! index |
---|
955 | REAL(r_std), DIMENSION(npts) :: woodmass_ind !! Woodmass of an individual tree @tex $(gC ind{-1})$ @endtex |
---|
956 | |
---|
957 | !_ ================================================================================================================================ |
---|
958 | |
---|
959 | !! 1. Calculate crown area from basal area |
---|
960 | |
---|
961 | IF ( is_tree(pft) ) THEN |
---|
962 | |
---|
963 | DO l = 1,ncirc |
---|
964 | |
---|
965 | ! Woodmass of an individual tree |
---|
966 | woodmass_ind(:) = biomass_temp(:,l,isapabove) + biomass_temp(:,l,iheartabove) |
---|
967 | |
---|
968 | ! Crown area of that individual |
---|
969 | ! cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
970 | wood_to_cn_array(:,l) = pipe_tune1(pft) * SQRT( 4/pi*(pi/4*(woodmass_ind(:)/& |
---|
971 | (tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft)))**(2./pipe_tune3(pft)))**& |
---|
972 | (pipe_tune3(pft)/(pipe_tune3(pft)+2)) ) ** pipe_tune_exp_coeff(pft) |
---|
973 | |
---|
974 | ENDDO |
---|
975 | |
---|
976 | ELSE |
---|
977 | |
---|
978 | WRITE(numout,*) 'pft ',pft |
---|
979 | CALL ipslerr_p (3,'wood_to_cn_array', & |
---|
980 | 'wood_to_cn_array is not defined for this PFT.', & |
---|
981 | 'See the output file for more details.','') |
---|
982 | |
---|
983 | ENDIF |
---|
984 | |
---|
985 | END FUNCTION wood_to_cn_array |
---|
986 | |
---|
987 | |
---|
988 | !! ================================================================================================================================ |
---|
989 | !! FUNCTION : wood_to_cn |
---|
990 | !! |
---|
991 | !>\BRIEF Calculate crown area from woody biomass making use of allometric relationships |
---|
992 | !! |
---|
993 | !! DESCRIPTION : Calculate crown area of an individual tree from the woody biomass of that tree |
---|
994 | !! making use of allometric relationship that relates crown area (cn) to diameter (dia) as |
---|
995 | !! pipe_tune1*dia**pipe_tune_exp_coeff where the pipe_tune parameters are pft-specific. |
---|
996 | !! (i) Basal area is written as a function of wood_mass: woodmass_ind = tree_ff*pipe_density*ba*height |
---|
997 | !! (ii) height = pipe_tune2*sqrt(4/pi*ba)**pipe_tune3 |
---|
998 | !! (iii) cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
999 | !! |
---|
1000 | !! RECENT CHANGE(S): None |
---|
1001 | !! |
---|
1002 | !! RETURN VALUE : crown area (m2 ind-1) |
---|
1003 | !! |
---|
1004 | !! REFERENCE(S) : |
---|
1005 | !! |
---|
1006 | !! FLOWCHART : None |
---|
1007 | !! \n |
---|
1008 | !_ ================================================================================================================================ |
---|
1009 | |
---|
1010 | FUNCTION wood_to_cn(biomass_temp, pft) |
---|
1011 | |
---|
1012 | !! 0. Variable and parameter declaration |
---|
1013 | |
---|
1014 | !! 0.1 Input variables |
---|
1015 | |
---|
1016 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
1017 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! biomass of an individual tree within a circ |
---|
1018 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
1019 | |
---|
1020 | !! 0.2 Output variables |
---|
1021 | |
---|
1022 | REAL(r_std), DIMENSION(ncirc) :: wood_to_cn !! Crown area of an individual tree within a circ |
---|
1023 | !! class @tex $(m^{2} ind-1)$ @endtex |
---|
1024 | |
---|
1025 | !! 0.3 Modified variables |
---|
1026 | |
---|
1027 | !! 0.4 Local variables |
---|
1028 | INTEGER(i_std) :: l !! Index |
---|
1029 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
1030 | !! @tex $(gC ind{-1})$ @endtex |
---|
1031 | |
---|
1032 | !_ ================================================================================================================================ |
---|
1033 | |
---|
1034 | !! 1. Calculate crown area from woodmass |
---|
1035 | |
---|
1036 | IF ( is_tree(pft) ) THEN |
---|
1037 | |
---|
1038 | DO l = 1,ncirc |
---|
1039 | |
---|
1040 | ! Woodmass of an individual tree |
---|
1041 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,iheartabove) |
---|
1042 | |
---|
1043 | ! Crown area of that individual |
---|
1044 | ! cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
1045 | wood_to_cn(l) = pipe_tune1(pft) * SQRT( 4/pi*(pi/4*(woodmass_ind/& |
---|
1046 | (tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft)))**(2./pipe_tune3(pft)))**& |
---|
1047 | (pipe_tune3(pft)& |
---|
1048 | /(pipe_tune3(pft)+2)) ) ** pipe_tune_exp_coeff(pft) |
---|
1049 | |
---|
1050 | ENDDO |
---|
1051 | |
---|
1052 | ELSE |
---|
1053 | |
---|
1054 | WRITE(numout,*) 'pft ',pft |
---|
1055 | CALL ipslerr_p (3,'wood_to_cn', & |
---|
1056 | 'wood_to_cn is not defined for this PFT.', & |
---|
1057 | 'See the output file for more details.','') |
---|
1058 | |
---|
1059 | ENDIF |
---|
1060 | |
---|
1061 | END FUNCTION wood_to_cn |
---|
1062 | |
---|
1063 | !! ================================================================================================================================ |
---|
1064 | !! FUNCTION : wood_to_cn_eff |
---|
1065 | !! |
---|
1066 | !>\BRIEF Calculate crown area from woody biomass making use of allometric relationships |
---|
1067 | !! |
---|
1068 | !! DESCRIPTION : Calculate crown area of an individual tree from the woody biomass of that tree |
---|
1069 | !! making use of allometric relationship that relates crown area (cn) to diameter (dia) as |
---|
1070 | !! pipe_tune1*dia**pipe_tune_exp_coeff where the pipe_tune parameters are pft-specific. |
---|
1071 | !! (i) Basal area is written as a function of wood_mass: woodmass_ind = tree_ff*pipe_density*ba*height |
---|
1072 | !! (ii) height = pipe_tune2*sqrt(4/pi*ba)**pipe_tune3 |
---|
1073 | !! (iii) cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
1074 | !! |
---|
1075 | !! NOTE: This is different from wood_to_cn because this uses both the aboveground and |
---|
1076 | !! belowground wood mass. |
---|
1077 | !! |
---|
1078 | !! RECENT CHANGE(S): None |
---|
1079 | !! |
---|
1080 | !! RETURN VALUE : crown area (m2 ind-1) |
---|
1081 | !! |
---|
1082 | !! REFERENCE(S) : |
---|
1083 | !! |
---|
1084 | !! FLOWCHART : None |
---|
1085 | !! \n |
---|
1086 | !_ ================================================================================================================================ |
---|
1087 | |
---|
1088 | FUNCTION wood_to_cn_eff(biomass_temp, pft) |
---|
1089 | |
---|
1090 | !! 0. Variable and parameter declaration |
---|
1091 | |
---|
1092 | !! 0.1 Input variables |
---|
1093 | |
---|
1094 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
1095 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! biomass of an individual tree within a circ |
---|
1096 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
1097 | |
---|
1098 | !! 0.2 Output variables |
---|
1099 | |
---|
1100 | REAL(r_std), DIMENSION(ncirc) :: wood_to_cn_eff !! Crown area of an individual tree within a circ |
---|
1101 | !! class @tex $(m^{2} ind-1)$ @endtex |
---|
1102 | |
---|
1103 | !! 0.3 Modified variables |
---|
1104 | |
---|
1105 | !! 0.4 Local variables |
---|
1106 | INTEGER(i_std) :: l !! Index |
---|
1107 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
1108 | !! @tex $(gC ind{-1})$ @endtex |
---|
1109 | |
---|
1110 | !_ ================================================================================================================================ |
---|
1111 | |
---|
1112 | !! 1. Calculate crown area from woodmass |
---|
1113 | |
---|
1114 | IF ( is_tree(pft) ) THEN |
---|
1115 | |
---|
1116 | DO l = 1,ncirc |
---|
1117 | |
---|
1118 | ! Woodmass of an individual tree |
---|
1119 | woodmass_ind = biomass_temp(l,isapabove) + biomass_temp(l,iheartabove) + & |
---|
1120 | biomass_temp(l,isapbelow) + biomass_temp(l,iheartbelow) |
---|
1121 | |
---|
1122 | ! Crown area of that individual |
---|
1123 | ! cn = pipe_tune1*sqrt(4/pi*ba)**pipe_tune_exp_coeff |
---|
1124 | wood_to_cn_eff(l) = pipe_tune1(pft) * SQRT( 4/pi*(pi/4*(woodmass_ind/& |
---|
1125 | (tree_ff(pft)*pipe_density(pft)*pipe_tune2(pft)))**(2./pipe_tune3(pft)))**& |
---|
1126 | (pipe_tune3(pft)& |
---|
1127 | /(pipe_tune3(pft)+2)) ) ** pipe_tune_exp_coeff(pft) |
---|
1128 | |
---|
1129 | ENDDO |
---|
1130 | |
---|
1131 | ELSE |
---|
1132 | |
---|
1133 | WRITE(numout,*) 'pft ',pft |
---|
1134 | CALL ipslerr_p (3,'wood_to_cn_eff', & |
---|
1135 | 'wood_to_cn_eff is not defined for this PFT.', & |
---|
1136 | 'See the output file for more details.','') |
---|
1137 | |
---|
1138 | ENDIF |
---|
1139 | |
---|
1140 | END FUNCTION wood_to_cn_eff |
---|
1141 | |
---|
1142 | |
---|
1143 | !! ================================================================================================================================ |
---|
1144 | !! FUNCTION : wood_to_cv |
---|
1145 | !! |
---|
1146 | !>\BRIEF Calculate crown volume from woody biomass making use of allometric relationships |
---|
1147 | !! |
---|
1148 | !! DESCRIPTION : Calculate basal areadiameter of an individual tree from the woody biomass of that tree making |
---|
1149 | !! use of allometric relationships: |
---|
1150 | !! (i) Basal area is written as a function of wood_mass: woodmass_ind = tree_ff*pipe_density*ba*height |
---|
1151 | !! (ii) height = pipe_tune2 * sqrt( 4/pi*ba ) ** pipe_tune3 |
---|
1152 | !! (iii) cn = pipe_tune1 * sqrt( 4/pi*ba ) ** pipe_tune_exp_coeff |
---|
1153 | !! (iv) cv = 4.0 / 3.0 * pi * ( SQRT( cn/pi ) ) ** 3 |
---|
1154 | !! |
---|
1155 | !! RECENT CHANGE(S): None |
---|
1156 | !! |
---|
1157 | !! RETURN VALUE : diameter (m3 ind-1) |
---|
1158 | !! |
---|
1159 | !! REFERENCE(S) : |
---|
1160 | !! |
---|
1161 | !! FLOWCHART : None |
---|
1162 | !! \n |
---|
1163 | !_ ================================================================================================================================ |
---|
1164 | |
---|
1165 | FUNCTION wood_to_cv(biomass_temp, pft) |
---|
1166 | |
---|
1167 | !! 0. Variable and parameter declaration |
---|
1168 | |
---|
1169 | !! 0.1 Input variables |
---|
1170 | |
---|
1171 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
1172 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
1173 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
1174 | |
---|
1175 | !! 0.2 Output variables |
---|
1176 | |
---|
1177 | REAL(r_std), DIMENSION(ncirc) :: wood_to_cv !! Crown volume of an individual tree |
---|
1178 | !! @tex $(m^{2} ind{-1})$ @endtex |
---|
1179 | |
---|
1180 | !! 0.3 Modified variables |
---|
1181 | |
---|
1182 | !! 0.4 Local variables |
---|
1183 | INTEGER(i_std) :: l !! Index |
---|
1184 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
1185 | !! @tex $(gC ind^{-1})$ @endtex |
---|
1186 | REAL(r_std), DIMENSION(ncirc) :: dia !! Diameter of an individual tree (m) |
---|
1187 | |
---|
1188 | !_ ================================================================================================================================ |
---|
1189 | |
---|
1190 | !! 1. Calculate crown volume from woodmass |
---|
1191 | |
---|
1192 | IF ( is_tree(pft) ) THEN |
---|
1193 | |
---|
1194 | ! Crown diameter of the individual tree (m2 ind-1) |
---|
1195 | dia(:) = (4./pi*wood_to_cn(biomass_temp(:,:),pft))**(1./2.) |
---|
1196 | wood_to_cv(:) = pi/6.*dia(:)**3. |
---|
1197 | ! WRITE(numout,*) 'wood_to_cv, ', wood_to_cv(:) |
---|
1198 | |
---|
1199 | ELSE |
---|
1200 | |
---|
1201 | WRITE(numout,*) 'pft ',pft |
---|
1202 | CALL ipslerr_p (3,'wood_to_cv', & |
---|
1203 | 'wood_to_cv is not defined for this PFT.', & |
---|
1204 | 'See the output file for more details.','') |
---|
1205 | |
---|
1206 | ENDIF |
---|
1207 | |
---|
1208 | END FUNCTION wood_to_cv |
---|
1209 | |
---|
1210 | !! ================================================================================================================================ |
---|
1211 | !! FUNCTION : wood_to_cv_eff |
---|
1212 | !! |
---|
1213 | !>\BRIEF Calculate crown volume from woody biomass making use of allometric relationships |
---|
1214 | !! |
---|
1215 | !! DESCRIPTION : Calculate basal areadiameter of an individual tree from the woody biomass of that tree making |
---|
1216 | !! use of allometric relationships: |
---|
1217 | !! (i) Basal area is written as a function of wood_mass: woodmass_ind = tree_ff*pipe_density*ba*height |
---|
1218 | !! (ii) height = pipe_tune2 * sqrt( 4/pi*ba ) ** pipe_tune3 |
---|
1219 | !! (iii) cn = pipe_tune1 * sqrt( 4/pi*ba ) ** pipe_tune_exp_coeff |
---|
1220 | !! (iv) cv = 4.0 / 3.0 * pi * ( SQRT( cn/pi ) ) ** 3 |
---|
1221 | !! |
---|
1222 | !! NOTE: the difference between this and wood_to_cv is that this include aboveground and belowground |
---|
1223 | !! biomass in the calculation |
---|
1224 | !! |
---|
1225 | !! RECENT CHANGE(S): None |
---|
1226 | !! |
---|
1227 | !! RETURN VALUE : diameter (m3 ind-1) |
---|
1228 | !! |
---|
1229 | !! REFERENCE(S) : |
---|
1230 | !! |
---|
1231 | !! FLOWCHART : None |
---|
1232 | !! \n |
---|
1233 | !_ ================================================================================================================================ |
---|
1234 | |
---|
1235 | FUNCTION wood_to_cv_eff(biomass_temp, pft) |
---|
1236 | |
---|
1237 | !! 0. Variable and parameter declaration |
---|
1238 | |
---|
1239 | !! 0.1 Input variables |
---|
1240 | |
---|
1241 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
1242 | REAL(r_std), DIMENSION(:,:) :: biomass_temp !! Biomass of an individual tree within a circ |
---|
1243 | !! class @tex $(m^{2} ind^{-1})$ @endtex |
---|
1244 | |
---|
1245 | !! 0.2 Output variables |
---|
1246 | |
---|
1247 | REAL(r_std), DIMENSION(ncirc) :: wood_to_cv_eff !! Crown volume of an individual tree |
---|
1248 | !! @tex $(m^{2} ind{-1})$ @endtex |
---|
1249 | |
---|
1250 | !! 0.3 Modified variables |
---|
1251 | |
---|
1252 | !! 0.4 Local variables |
---|
1253 | INTEGER(i_std) :: l !! Index |
---|
1254 | REAL(r_std) :: woodmass_ind !! Woodmass of an individual tree |
---|
1255 | !! @tex $(gC ind^{-1})$ @endtex |
---|
1256 | REAL(r_std), DIMENSION(ncirc) :: dia !! Diameter of an individual tree (m) |
---|
1257 | |
---|
1258 | !_ ================================================================================================================================ |
---|
1259 | |
---|
1260 | !! 1. Calculate crown volume from woodmass |
---|
1261 | |
---|
1262 | IF ( is_tree(pft) ) THEN |
---|
1263 | |
---|
1264 | ! Crown diameter of the individual tree (m2 ind-1) |
---|
1265 | dia(:) = (4./pi*wood_to_cn_eff(biomass_temp(:,:),pft))**(1./2.) |
---|
1266 | wood_to_cv_eff(:) = pi/6.*dia(:)**3. |
---|
1267 | ! WRITE(numout,*) 'wood_to_cv_eff, ', wood_to_cv_eff(:) |
---|
1268 | |
---|
1269 | ELSE |
---|
1270 | |
---|
1271 | WRITE(numout,*) 'pft ',pft |
---|
1272 | CALL ipslerr_p (3,'wood_to_cv_eff', & |
---|
1273 | 'wood_to_cv_eff is not defined for this PFT.', & |
---|
1274 | 'See the output file for more details.','') |
---|
1275 | |
---|
1276 | ENDIF |
---|
1277 | |
---|
1278 | END FUNCTION wood_to_cv_eff |
---|
1279 | |
---|
1280 | |
---|
1281 | |
---|
1282 | !! ================================================================================================================================ |
---|
1283 | !! FUNCTION : wood_to_volume |
---|
1284 | !! |
---|
1285 | !>\BRIEF This allometric function computes volume as a function of |
---|
1286 | !! biomass at stand scale. Volume \f$(m^3 m^{-2}) = f(biomass (gC m^{-2}))\f$ |
---|
1287 | !! |
---|
1288 | !! DESCRIPTION : None |
---|
1289 | !! |
---|
1290 | !! RECENT CHANGE(S): None |
---|
1291 | !! |
---|
1292 | !! RETURN VALUE : biomass_to_volume |
---|
1293 | !! |
---|
1294 | !! REFERENCE(S) : See above, module description. |
---|
1295 | !! |
---|
1296 | !! FLOWCHART : None |
---|
1297 | !! \n |
---|
1298 | !_ ================================================================================================================================ |
---|
1299 | |
---|
1300 | FUNCTION wood_to_volume(biomass,pft,branch_ratio,inc_branches) |
---|
1301 | |
---|
1302 | !! 0. Variable and parameter declaration |
---|
1303 | |
---|
1304 | !! 0.1 Input variables |
---|
1305 | |
---|
1306 | REAL(r_std), DIMENSION(:) :: biomass !! Stand biomass @tex $(gC m^{-2})$ @endtex |
---|
1307 | REAL(r_std) :: branch_ratio !! Branch ratio of sap and heartwood biomass |
---|
1308 | !! unitless |
---|
1309 | INTEGER(i_std) :: pft !! Plant functional type (unitless) |
---|
1310 | INTEGER(i_std) :: inc_branches !! Include the branches in the volume calculation? |
---|
1311 | !! 0: exclude the branches from the volume calculation |
---|
1312 | !! (thus correct the biomass for the branch ratio) |
---|
1313 | !! 1: include the branches in the volume calculation |
---|
1314 | !! (thus use all aboveground biomass) |
---|
1315 | |
---|
1316 | |
---|
1317 | |
---|
1318 | !! 0.2 Output variables |
---|
1319 | |
---|
1320 | REAL(r_std) :: wood_to_volume !! The volume of wood per square meter |
---|
1321 | !! @tex $(m^3 m^{-2})$ @endtex |
---|
1322 | |
---|
1323 | !! 0.3 Modified variables |
---|
1324 | |
---|
1325 | !! 0.4 Local variables |
---|
1326 | |
---|
1327 | REAL(r_std) :: woody_biomass !! Woody biomass at the stand level |
---|
1328 | !! @tex $(gC m^{-2})$ @endtex |
---|
1329 | |
---|
1330 | !_ ================================================================================================================================ |
---|
1331 | |
---|
1332 | !! 1. Volume to biomass |
---|
1333 | |
---|
1334 | ! Woody biomass used in the calculation |
---|
1335 | IF (inc_branches .EQ. 0) THEN |
---|
1336 | |
---|
1337 | woody_biomass=(biomass(isapabove)+biomass(iheartabove))*(un - branch_ratio) |
---|
1338 | |
---|
1339 | ELSEIF (inc_branches .EQ. 1) THEN |
---|
1340 | |
---|
1341 | woody_biomass=(biomass(isapabove)+biomass(iheartabove)) |
---|
1342 | |
---|
1343 | ELSE |
---|
1344 | |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | ! Wood volume expressed in m**3 / m**2 |
---|
1348 | wood_to_volume = woody_biomass/(pipe_density(pft)) |
---|
1349 | |
---|
1350 | END FUNCTION wood_to_volume |
---|
1351 | |
---|
1352 | |
---|
1353 | |
---|
1354 | !! ================================================================================================================================ |
---|
1355 | !! FUNCTION : biomass_to_lai |
---|
1356 | !! |
---|
1357 | !>\BRIEF Calculate the LAI based on the leaf biomass |
---|
1358 | !! |
---|
1359 | !! DESCRIPTION : Calculates the LAI of a PFT/grid square based on the leaf biomass |
---|
1360 | !! |
---|
1361 | !! RECENT CHANGE(S): None |
---|
1362 | !! |
---|
1363 | !! RETURN VALUE : ::LAI [m**2 m**{-2}] |
---|
1364 | !! |
---|
1365 | !! REFERENCE(S) : |
---|
1366 | !! |
---|
1367 | !! FLOWCHART : None |
---|
1368 | !! \n |
---|
1369 | !_ ================================================================================================================================ |
---|
1370 | |
---|
1371 | FUNCTION biomass_to_lai(leaf_biomass, pft) |
---|
1372 | |
---|
1373 | !! 0. Variable and parameter declaration |
---|
1374 | |
---|
1375 | !! 0.1 Input variables |
---|
1376 | |
---|
1377 | INTEGER(i_std) :: pft !! PFT number (-) |
---|
1378 | REAL(r_std) :: leaf_biomass !! Biomass of the leaves |
---|
1379 | !! @tex $(gC m^{-2})$ @endtex |
---|
1380 | |
---|
1381 | |
---|
1382 | !! 0.2 Output variables |
---|
1383 | |
---|
1384 | REAL(r_std) :: biomass_to_lai !! Leaf area index |
---|
1385 | !! @tex $(m^{2} m^{-2})$ @endtex |
---|
1386 | |
---|
1387 | !! 0.3 Modified variables |
---|
1388 | |
---|
1389 | !! 0.4 Local variables |
---|
1390 | REAL(r_std) :: impose_lai !! LAI read from run.def |
---|
1391 | !_ ================================================================================================================================ |
---|
1392 | |
---|
1393 | !! 1. Calculate the LAI from the leaf biomass |
---|
1394 | |
---|
1395 | biomass_to_lai = leaf_biomass * sla(pft) |
---|
1396 | |
---|
1397 | !!$ !+++++++++ TEMP ++++++++++ |
---|
1398 | !!$ ! This is a perfect place to hack the code to make it run with |
---|
1399 | !!$ ! constant lai |
---|
1400 | !!$ WRITE(numout,*) 'WARNING ERROR: Using fake lai values for testing!' |
---|
1401 | !!$ biomass_to_lai=3.79052 |
---|
1402 | !!$ !+++++++++++++++++++++++++ |
---|
1403 | |
---|
1404 | !+++++++ TEMP ++++++++++ |
---|
1405 | ! This code is only used evaluation of the performance of the multi-layer energy budget. |
---|
1406 | ! To reduce the complexity of the tests we want to impose the LAI and its vertical distribution. |
---|
1407 | ! The solution is not very elegant but it works. |
---|
1408 | ! IF (ld_fake_height) THEN |
---|
1409 | ! In order to imposed lai, we read the TOTAL_LAI from run.def |
---|
1410 | ! CALL getin_p('TOTAL_LAI', impose_lai) |
---|
1411 | ! This part of code reset the sla vale to match which alow modeled LAI equal to TOTAL LAI. |
---|
1412 | ! Althought this is ugly way to match the modeled LAI and impose LAI. |
---|
1413 | ! You probably need to go to your ORCHIDEE out put file to find out the suitable SLA value |
---|
1414 | ! and reset it agin in the run.def. |
---|
1415 | ! So, we impose LAI & structure for a quick testing the performance of multilayer energy budget |
---|
1416 | ! without changing the leaf_biomass. |
---|
1417 | ! IF ( leaf_biomass .GT. 0.0) THEN |
---|
1418 | ! sla(pft)=impose_lai/leaf_biomass |
---|
1419 | ! WRITE(numout,'(A,F20.8)') 'USE A FAKE SLA BASED ON imposed LAI/LEAFMASS=', sla(pft) |
---|
1420 | ! ENDIF |
---|
1421 | ! biomass_to_lai=leaf_biomass*sla(pft) |
---|
1422 | ! ENDIF |
---|
1423 | !++++++++++++++++++++++++ |
---|
1424 | |
---|
1425 | END FUNCTION biomass_to_lai |
---|
1426 | |
---|
1427 | |
---|
1428 | !! ================================================================================================================================ |
---|
1429 | !! FUNCTION : Nmax |
---|
1430 | !! |
---|
1431 | !>\BRIEF This function determines the maximum number of trees per hectare for |
---|
1432 | !! a given quadratic mean diameter (Dg). It applies the self-thinning principle |
---|
1433 | !! of Reineke (1933), with Dg instead of mean diameter (Dhote 1999). |
---|
1434 | !! Parameterization: Dhote (1999) for broad-leaved and Vacchiano (2008) |
---|
1435 | !! for needle-leaved. |
---|
1436 | !! |
---|
1437 | !! DESCRIPTION : None |
---|
1438 | !! |
---|
1439 | !! RECENT CHANGE(S): None |
---|
1440 | !! |
---|
1441 | !! RETURN VALUE : Nmax |
---|
1442 | !! |
---|
1443 | !! REFERENCE(S) : See above, module description. |
---|
1444 | !! |
---|
1445 | !! FLOWCHART : None |
---|
1446 | !! \n |
---|
1447 | !_ ================================================================================================================================ |
---|
1448 | |
---|
1449 | FUNCTION Nmax(Dg,no_pft) |
---|
1450 | |
---|
1451 | !! 0. Variable and parameter declaration |
---|
1452 | |
---|
1453 | !! 0.1 Input variables |
---|
1454 | |
---|
1455 | REAL(r_std) :: Dg !! Quadratic mean diameter (cm) |
---|
1456 | INTEGER(i_std) :: no_pft !! Plant functional type (unitless) |
---|
1457 | |
---|
1458 | !! 0.2 Output variables |
---|
1459 | |
---|
1460 | REAL(r_std) :: Nmax !! Maximum number of trees according to the self-thinning model |
---|
1461 | |
---|
1462 | !! 0.3 Modified variables |
---|
1463 | |
---|
1464 | !! 0.4 Local variables |
---|
1465 | |
---|
1466 | !_ ================================================================================================================================ |
---|
1467 | !! 1. maximum number of trees per hectare for a given quadratic mean diameter |
---|
1468 | |
---|
1469 | IF (is_tree(no_pft)) THEN |
---|
1470 | |
---|
1471 | ! thinning curve of the MTC |
---|
1472 | Nmax = (Dg/alpha_self_thinning(no_pft))**(un/beta_self_thinning(no_pft)) |
---|
1473 | |
---|
1474 | ! Truncate the range to avoid huge numbers due the exponental model used to describe self-thinning |
---|
1475 | Nmax = MIN( Nmax, nmaxtrees(no_pft) ) |
---|
1476 | Nmax = MAX( Nmax, dens_target(no_pft) ) |
---|
1477 | |
---|
1478 | ELSE |
---|
1479 | |
---|
1480 | WRITE(numout,*) 'Self thinning is not defined for PFT, ', no_pft |
---|
1481 | CALL ipslerr_p (3,'nmax', & |
---|
1482 | 'Self thinning is not defined for this PFT.', & |
---|
1483 | 'See the output file for more details.','') |
---|
1484 | |
---|
1485 | ENDIF |
---|
1486 | |
---|
1487 | END FUNCTION Nmax |
---|
1488 | |
---|
1489 | |
---|
1490 | !! ================================================================================================================================ |
---|
1491 | !! FUNCTION : Nmaxyield |
---|
1492 | !! |
---|
1493 | !>\BRIEF This function determines the maximum number of trees per hectare for |
---|
1494 | !! a given quadratic mean diameter (Dg). It applies the 75 percentile of the European |
---|
1495 | !! yield tables |
---|
1496 | !! |
---|
1497 | !! DESCRIPTION : None |
---|
1498 | !! |
---|
1499 | !! RECENT CHANGE(S): None |
---|
1500 | !! |
---|
1501 | !! RETURN VALUE : Nmaxyield |
---|
1502 | !! |
---|
1503 | !! REFERENCE(S) : See above, module description. |
---|
1504 | !! |
---|
1505 | !! FLOWCHART : None |
---|
1506 | !! \n |
---|
1507 | !_ ================================================================================================================================ |
---|
1508 | |
---|
1509 | FUNCTION Nmaxyield(Dg,no_pft) |
---|
1510 | |
---|
1511 | !! 0. Variable and parameter declaration |
---|
1512 | |
---|
1513 | !! 0.1 Input variables |
---|
1514 | |
---|
1515 | REAL(r_std) :: Dg !! Quadratic mean diameter (cm) |
---|
1516 | INTEGER(i_std) :: no_pft !! Plant functional type (unitless) |
---|
1517 | |
---|
1518 | !! 0.2 Output variables |
---|
1519 | |
---|
1520 | REAL(r_std) :: Nmaxyield !! Maximum number of trees according to the self-thinning model |
---|
1521 | |
---|
1522 | !! 0.3 Modified variables |
---|
1523 | |
---|
1524 | !! 0.4 Local variables |
---|
1525 | |
---|
1526 | !_ ================================================================================================================================ |
---|
1527 | !! 1. maximum number of trees per hectare for a given quadratic mean diameter |
---|
1528 | |
---|
1529 | IF (is_tree(no_pft)) THEN |
---|
1530 | |
---|
1531 | ! thinning curve of the MTC |
---|
1532 | Nmaxyield = (Dg/alpha_rdi_upper(no_pft))**(un/beta_rdi_upper(no_pft)) |
---|
1533 | |
---|
1534 | ! Truncate the range to avoid huge numbers due the exponental model used to describe self-thinning |
---|
1535 | Nmaxyield = MIN( Nmaxyield, nmaxtrees(no_pft) ) |
---|
1536 | Nmaxyield = MAX( Nmaxyield, dens_target(no_pft) ) |
---|
1537 | |
---|
1538 | ELSE |
---|
1539 | |
---|
1540 | WRITE(numout,*) 'Self thinning is not defined for PFT, ', no_pft |
---|
1541 | CALL ipslerr_p (3,'Nmaxyield', & |
---|
1542 | 'Self thinning is not defined for this PFT.', & |
---|
1543 | 'See the output file for more details.','') |
---|
1544 | |
---|
1545 | ENDIF |
---|
1546 | |
---|
1547 | END FUNCTION Nmaxyield |
---|
1548 | |
---|
1549 | |
---|
1550 | !! ================================================================================================================================ |
---|
1551 | !! FUNCTION : Nminyield |
---|
1552 | !! |
---|
1553 | !>\BRIEF This function determines the minimum number of trees per hectare for |
---|
1554 | !! a given quadratic mean diameter (Dg). It applies the 25 percentile of the European |
---|
1555 | !! yield tables |
---|
1556 | !! |
---|
1557 | !! DESCRIPTION : None |
---|
1558 | !! |
---|
1559 | !! RECENT CHANGE(S): None |
---|
1560 | !! |
---|
1561 | !! RETURN VALUE : Nminyield |
---|
1562 | !! |
---|
1563 | !! REFERENCE(S) : See above, module description. |
---|
1564 | !! |
---|
1565 | !! FLOWCHART : None |
---|
1566 | !! \n |
---|
1567 | !_ ================================================================================================================================ |
---|
1568 | |
---|
1569 | FUNCTION Nminyield(Dg,no_pft) |
---|
1570 | |
---|
1571 | !! 0. Variable and parameter declaration |
---|
1572 | |
---|
1573 | !! 0.1 Input variables |
---|
1574 | |
---|
1575 | REAL(r_std) :: Dg !! Quadratic mean diameter (cm) |
---|
1576 | INTEGER(i_std) :: no_pft !! Plant functional type (unitless) |
---|
1577 | |
---|
1578 | !! 0.2 Output variables |
---|
1579 | |
---|
1580 | REAL(r_std) :: Nminyield !! Minimum number of trees according to the self-thinning model |
---|
1581 | |
---|
1582 | !! 0.3 Modified variables |
---|
1583 | |
---|
1584 | !! 0.4 Local variables |
---|
1585 | |
---|
1586 | !_ ================================================================================================================================ |
---|
1587 | !! 1. minimum number of trees per hectare for a given quadratic mean diameter |
---|
1588 | |
---|
1589 | IF (is_tree(no_pft)) THEN |
---|
1590 | |
---|
1591 | ! thinning curve of the MTC |
---|
1592 | Nminyield = (Dg/alpha_rdi_lower(no_pft))**(un/beta_rdi_lower(no_pft)) |
---|
1593 | |
---|
1594 | ! Truncate the range to avoid huge numbers due the exponental model used to describe self-thinning |
---|
1595 | |
---|
1596 | Nminyield = MIN( Nminyield, nmaxtrees(no_pft) ) |
---|
1597 | Nminyield = MAX( Nminyield, dens_target(no_pft) ) |
---|
1598 | |
---|
1599 | ELSE |
---|
1600 | |
---|
1601 | WRITE(numout,*) 'Self thinning is not defined for PFT, ', no_pft |
---|
1602 | CALL ipslerr_p (3,'Nminyield', & |
---|
1603 | 'Self thinning is not defined for this PFT.', & |
---|
1604 | 'See the output file for more details.','') |
---|
1605 | |
---|
1606 | |
---|
1607 | ENDIF |
---|
1608 | |
---|
1609 | END FUNCTION Nminyield |
---|
1610 | |
---|
1611 | |
---|
1612 | !! ================================================================================================================================ |
---|
1613 | !! SUBROUTINE : distribute_mortality_biomass |
---|
1614 | !! |
---|
1615 | !>\BRIEF Distributes biomass that is going to be killed by natural |
---|
1616 | !! causes (not self thinning) over circ classes. |
---|
1617 | !! |
---|
1618 | !! DESCRIPTION : Mortality is going to kill a certain amount of biomass |
---|
1619 | !! in forests every day. Since we have circumference classes |
---|
1620 | !! now for our forests, we need to determine which classes |
---|
1621 | !! of trees will suffer from this environmental mortality. |
---|
1622 | !! Right now we are taking an exponential distribution. |
---|
1623 | !! Notice that this is NOT the same as redistributing biomass |
---|
1624 | !! after one of the circ classes becomes empty. |
---|
1625 | !! |
---|
1626 | !! RECENT CHANGE(S): None |
---|
1627 | !! |
---|
1628 | !! MAIN OUTPUT VARIABLE(S): ::circ_class_kill |
---|
1629 | !! |
---|
1630 | !! REFERENCE(S) : None |
---|
1631 | !! |
---|
1632 | !! FLOWCHART : None |
---|
1633 | !! \n |
---|
1634 | !_ ================================================================================================================================ |
---|
1635 | SUBROUTINE distribute_mortality_biomass ( bm_difference, ddf_temp, circ_class_n_temp, & |
---|
1636 | circ_class_biomass_temp, circ_class_kill_temp ) |
---|
1637 | |
---|
1638 | !! 0. Variable and parameter description |
---|
1639 | |
---|
1640 | !! 0.1 Input variables |
---|
1641 | REAL(r_std),INTENT(in) :: bm_difference !! the biomass to distribute |
---|
1642 | REAL(r_std),INTENT(in) :: ddf_temp !! the death_distribution_factor for this pft |
---|
1643 | REAL(r_std),DIMENSION(:),INTENT(in) :: circ_class_n_temp !! circ_class_n for this point/PFT |
---|
1644 | REAL(r_std),DIMENSION(:,:),INTENT(in) :: circ_class_biomass_temp !! circ_class_biomass for |
---|
1645 | !! this point/PFT |
---|
1646 | !! 0.2 Output variables |
---|
1647 | |
---|
1648 | !! 0.3 Modified variables |
---|
1649 | REAL(r_std),DIMENSION(:),INTENT(inout) :: circ_class_kill_temp !! circ_class_kill for |
---|
1650 | !! this point/PFT/pool |
---|
1651 | |
---|
1652 | !! 0.4 Local variables |
---|
1653 | REAL(r_std), DIMENSION(ncirc) :: biomass_desired !! The biomass that dies naturally |
---|
1654 | REAL(r_std), DIMENSION(ncirc) :: death_distribution !! The fraction of biomass taken from |
---|
1655 | !! each circ class for mortality. |
---|
1656 | LOGICAL :: ldone !! Flag to exit a loop |
---|
1657 | REAL(r_std) :: scale_factor !! |
---|
1658 | REAL(r_std) :: sum_total !! |
---|
1659 | REAL(r_std) :: leftover_bm !! excess biomass that we need to kill |
---|
1660 | REAL(r_std) :: living_biomass !! summed biomass |
---|
1661 | REAL(r_std) :: living_trees !! summed biomass |
---|
1662 | INTEGER :: icir |
---|
1663 | |
---|
1664 | !_ ================================================================================================================================ |
---|
1665 | |
---|
1666 | IF(ncirc == 1)THEN |
---|
1667 | |
---|
1668 | ! This is the easy case. All of our biomass will be taken from the only |
---|
1669 | ! circumference class that we have. |
---|
1670 | circ_class_kill_temp(1)=circ_class_kill_temp(1)+& |
---|
1671 | bm_difference/SUM(circ_class_biomass_temp(1,:)) |
---|
1672 | |
---|
1673 | RETURN |
---|
1674 | ENDIF |
---|
1675 | |
---|
1676 | ! Here we assume an exponential distribution, arranged so that |
---|
1677 | ! ddf_temp times more biomass is taken from the largest circ class |
---|
1678 | ! compared to the smallest. |
---|
1679 | biomass_desired(:)=zero |
---|
1680 | death_distribution(:)=un |
---|
1681 | scale_factor=ddf_temp**(un/REAL(ncirc-1)) |
---|
1682 | DO icir=2,ncirc |
---|
1683 | death_distribution(icir)=death_distribution(icir-1)*scale_factor |
---|
1684 | ENDDO |
---|
1685 | ! Normalize it |
---|
1686 | sum_total=SUM(death_distribution(:)) |
---|
1687 | death_distribution(:)=death_distribution(:)/sum_total |
---|
1688 | |
---|
1689 | ! Ideally, how much is killed from each class? Be careful to include |
---|
1690 | ! what was killed in self-thinning here! If we don't, we may try to kill |
---|
1691 | ! more biomass than is available in the loop below. |
---|
1692 | DO icir=1,ncirc |
---|
1693 | biomass_desired(icir)=death_distribution(icir)*bm_difference+& |
---|
1694 | circ_class_kill_temp(icir)*SUM(circ_class_biomass_temp(icir,:)) |
---|
1695 | ENDDO |
---|
1696 | |
---|
1697 | ! Right now, we know how much biomass we want to kill in each |
---|
1698 | ! class (biomass_desired). What we will do now is to loop through |
---|
1699 | ! all the circ_classes and see if we have this much biomass |
---|
1700 | ! in each class still alive. The total amount of vegetation still |
---|
1701 | ! alive is circ_class_n_temp(icir)-circ_class_kill_temp(icir). If |
---|
1702 | ! this number of individuals cannot give us the total biomass that |
---|
1703 | ! we need, we keep track of a residual quantity, leftover_bm, which |
---|
1704 | ! we try to take from other circ_classes. It's possible that we |
---|
1705 | ! will have to loop several times, which makes things more complicated. |
---|
1706 | |
---|
1707 | ldone=.FALSE. |
---|
1708 | leftover_bm=zero |
---|
1709 | DO |
---|
1710 | DO icir=ncirc,1,-1 |
---|
1711 | |
---|
1712 | living_trees=circ_class_n_temp(icir)-circ_class_kill_temp(icir) |
---|
1713 | living_biomass=& |
---|
1714 | SUM(circ_class_biomass_temp(icir,:))*living_trees |
---|
1715 | biomass_desired(icir)=biomass_desired(icir)+leftover_bm |
---|
1716 | |
---|
1717 | IF(living_biomass .LE. biomass_desired(icir))THEN |
---|
1718 | |
---|
1719 | ! We can't get everything from this class, so we kill whatever is left. |
---|
1720 | leftover_bm=biomass_desired(icir)-living_biomass |
---|
1721 | biomass_desired(icir)=zero |
---|
1722 | circ_class_kill_temp(icir)=circ_class_kill_temp(icir)+& |
---|
1723 | living_trees |
---|
1724 | |
---|
1725 | ELSE |
---|
1726 | |
---|
1727 | ! We have enough in this class. |
---|
1728 | circ_class_kill_temp(icir)=circ_class_kill_temp(icir)+& |
---|
1729 | biomass_desired(icir)/SUM(circ_class_biomass_temp(icir,:)) |
---|
1730 | biomass_desired(icir)=zero |
---|
1731 | leftover_bm=zero |
---|
1732 | |
---|
1733 | ENDIF ! living_biomass .LE. biomass_desired(icir) |
---|
1734 | |
---|
1735 | ENDDO ! loop over circ classes |
---|
1736 | |
---|
1737 | IF(leftover_bm .LE. min_stomate) EXIT |
---|
1738 | |
---|
1739 | ! it's possible that we don't have enough biomass left to kill what needs to be |
---|
1740 | ! killed, so everything just dies. I cannot think of a case where this |
---|
1741 | ! would happen, though, since mortality should always be a percentage of the |
---|
1742 | ! total biomass. |
---|
1743 | ldone=.TRUE. |
---|
1744 | DO icir=1,ncirc |
---|
1745 | |
---|
1746 | IF( circ_class_kill_temp(icir) .LT. circ_class_n_temp(icir) ) & |
---|
1747 | ldone=.FALSE. |
---|
1748 | |
---|
1749 | ENDDO |
---|
1750 | |
---|
1751 | IF(ldone)EXIT ! All our biomass is dead, and we still want to kill more! |
---|
1752 | |
---|
1753 | ENDDO |
---|
1754 | |
---|
1755 | |
---|
1756 | |
---|
1757 | END SUBROUTINE distribute_mortality_biomass |
---|
1758 | |
---|
1759 | |
---|
1760 | !! ================================================================================================================================ |
---|
1761 | !! SUBROUTINE : check_biomass_sync |
---|
1762 | !! |
---|
1763 | !>\BRIEF |
---|
1764 | !! |
---|
1765 | !! DESCRIPTION : |
---|
1766 | !! RECENT CHANGE(S): None |
---|
1767 | !! |
---|
1768 | !! MAIN OUTPUT VARIABLE(S): |
---|
1769 | !! |
---|
1770 | !! REFERENCE(S) : None |
---|
1771 | !! |
---|
1772 | !! FLOWCHART : None |
---|
1773 | !! \n |
---|
1774 | !_ ================================================================================================================================ |
---|
1775 | SUBROUTINE check_biomass_sync ( check_point, npts, biomass, & |
---|
1776 | circ_class_biomass, circ_class_n , ind, & |
---|
1777 | lsync, bm_sync) |
---|
1778 | |
---|
1779 | !! 0. Variable and parameter description |
---|
1780 | |
---|
1781 | !! 0.1 Input variables |
---|
1782 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
1783 | REAL(r_std), DIMENSION(:,:,:,:,:), INTENT(in) :: circ_class_biomass !! Biomass of the componets of the model |
---|
1784 | !! tree within a circumference |
---|
1785 | !! class @tex $(gC ind^{-1})$ @endtex |
---|
1786 | REAL(r_std), DIMENSION(:,:,:), INTENT(in) :: circ_class_n !! Number of individuals in each circ class |
---|
1787 | !! @tex $(m^{-2})$ @endtex |
---|
1788 | REAL(r_std), DIMENSION(:,:,:,:), INTENT(in) :: biomass !! Stand level biomass |
---|
1789 | !! @tex $(gC m^{-2})$ @endtex |
---|
1790 | CHARACTER(*),INTENT(in) :: check_point !! A flag to indicate at which |
---|
1791 | !! point in the code we're doing |
---|
1792 | !! this check |
---|
1793 | REAL(r_std), DIMENSION(:,:), INTENT(in) :: ind !! Density of individuals |
---|
1794 | !! @tex $(m^{-2})$ @endtex |
---|
1795 | |
---|
1796 | !! 0.2 Output variables |
---|
1797 | LOGICAL,INTENT(out) :: lsync |
---|
1798 | REAL(r_std), DIMENSION(:,:,:), INTENT(out) :: bm_sync !! The difference betweeen the |
---|
1799 | !! biomass in the circ_classes and |
---|
1800 | !! the total biomass |
---|
1801 | !! @tex $(gC m^{-2})$ @endtex |
---|
1802 | !! 0.3 Modified variables |
---|
1803 | |
---|
1804 | !! 0.4 Local variables |
---|
1805 | INTEGER :: iele,ipts,ivm,ipar,icir |
---|
1806 | REAL(r_std) :: total_circ_class_biomass |
---|
1807 | REAL(r_std),DIMENSION(ncirc) :: tree_size |
---|
1808 | LOGICAL :: lnegative |
---|
1809 | |
---|
1810 | !_ ================================================================================================================================ |
---|
1811 | |
---|
1812 | lsync=.TRUE. |
---|
1813 | lnegative=.FALSE. |
---|
1814 | |
---|
1815 | bm_sync(:,:,:)=zero |
---|
1816 | |
---|
1817 | !++++++ TEMP ++++++ |
---|
1818 | ! We gain 5-10% speed by skipping this routine |
---|
1819 | |
---|
1820 | !++++++++++++ |
---|
1821 | |
---|
1822 | ! Check to see if the biomass is not equal to the total biomass |
---|
1823 | ! in circ_class_biomass anywhere. |
---|
1824 | DO ipts=1,npts |
---|
1825 | |
---|
1826 | DO ivm=1,nvm |
---|
1827 | |
---|
1828 | ! Only woody PFTs have circumference classes therefore |
---|
1829 | ! only woody PFTs need to be syncronized |
---|
1830 | IF(.NOT. lbypass_cc)THEN |
---|
1831 | IF(is_tree(ivm)) THEN |
---|
1832 | tree_size(:)=zero |
---|
1833 | DO icir=1,ncirc |
---|
1834 | tree_size(icir)=SUM(circ_class_biomass(ipts,ivm,icir,:,1)) |
---|
1835 | ENDDO |
---|
1836 | DO icir=2,ncirc |
---|
1837 | IF(tree_size(icir) .LT. tree_size(icir-1)-min_stomate)THEN |
---|
1838 | WRITE(numout,*) 'ERROR: stopping in sync' |
---|
1839 | WRITE(numout,*) check_point |
---|
1840 | WRITE(numout,*) 'ipts,ivm: ',ipts,ivm |
---|
1841 | WRITE(numout,*) 'tree_size(icir), tree_size(icir-1), ',& |
---|
1842 | tree_size(icir), tree_size(icir-1), tree_size(icir) - tree_size(icir-1) |
---|
1843 | WRITE(numout,*) 'icir, tree_size: ',icir, tree_size(:) |
---|
1844 | !+++ TEMP +++ |
---|
1845 | !This would not STOP the ORCHIDEE beacause the mass balance is due to imposed LAI |
---|
1846 | IF(ld_fake_height) THEN |
---|
1847 | CALL ipslerr_p (2,'check_biomass_sync', & |
---|
1848 | 'The size of the trees in the circ class are not monotonically increasing!',& |
---|
1849 | 'Look in the output file for more details.',& |
---|
1850 | '') |
---|
1851 | ELSE |
---|
1852 | CALL ipslerr_p (3,'check_biomass_sync', & |
---|
1853 | 'The size of the trees in the circ class are not monotonically increasing!',& |
---|
1854 | 'Look in the output file for more details.',& |
---|
1855 | '') |
---|
1856 | ENDIF |
---|
1857 | !++++++++++++ |
---|
1858 | ENDIF |
---|
1859 | ENDDO |
---|
1860 | ENDIF |
---|
1861 | ENDIF |
---|
1862 | |
---|
1863 | DO iele=1,icarbon |
---|
1864 | |
---|
1865 | DO ipar=1,nparts |
---|
1866 | |
---|
1867 | total_circ_class_biomass=zero |
---|
1868 | DO icir=1,ncirc |
---|
1869 | |
---|
1870 | total_circ_class_biomass=total_circ_class_biomass+& |
---|
1871 | circ_class_biomass(ipts,ivm,icir,ipar,iele)*circ_class_n(ipts,ivm,icir) |
---|
1872 | |
---|
1873 | ! Check as well to see if our biomass is ever negative. |
---|
1874 | ! It really should not be. |
---|
1875 | IF(circ_class_biomass(ipts,ivm,icir,ipar,iele) .LT. -min_stomate)THEN |
---|
1876 | |
---|
1877 | lnegative=.TRUE. |
---|
1878 | WRITE(numout,*) '!***********************************' |
---|
1879 | WRITE(numout,*) 'Error: Negative biomass component!' |
---|
1880 | WRITE(numout,*) 'Check point: ',TRIM(check_point) |
---|
1881 | WRITE(numout,*) 'circ_class_biomass(ipts,ivm,icir,ipar,iele) ',& |
---|
1882 | circ_class_biomass(ipts,ivm,icir,ipar,iele) |
---|
1883 | WRITE(numout,'(A,5I5)') 'ipts,ivm,icir,ipar,iele',ipts,ivm,icir,ipar,iele |
---|
1884 | WRITE(numout,*) '!***********************************' |
---|
1885 | |
---|
1886 | ENDIF |
---|
1887 | ENDDO |
---|
1888 | |
---|
1889 | IF(ABS(biomass(ipts,ivm,ipar,iele) - & |
---|
1890 | total_circ_class_biomass) .GT. sync_threshold)THEN |
---|
1891 | |
---|
1892 | WRITE(numout,*) '!***********************************' |
---|
1893 | WRITE(numout,*) 'Biomass and circ_class_biomass are not equal!' |
---|
1894 | WRITE(numout,*) 'Check point: ',TRIM(check_point) |
---|
1895 | WRITE(numout,100) 'biomass(ipts,ivm,ipar,iele) ',& |
---|
1896 | biomass(ipts,ivm,ipar,iele) |
---|
1897 | WRITE(numout,100) 'total_circ_class_biomass ',& |
---|
1898 | total_circ_class_biomass |
---|
1899 | WRITE(numout,100) 'Difference: ',& |
---|
1900 | ABS(biomass(ipts,ivm,ipar,iele) - total_circ_class_biomass) |
---|
1901 | WRITE(numout,*) 'ipts,ivm,ipar,iele',ipts,ivm,ipar,iele |
---|
1902 | WRITE(numout,*) '!***********************************' |
---|
1903 | 100 FORMAT(A,E20.10) |
---|
1904 | lsync=.FALSE. |
---|
1905 | |
---|
1906 | ENDIF |
---|
1907 | |
---|
1908 | ENDDO |
---|
1909 | |
---|
1910 | ! we are not going to save the biomass for every component right now, |
---|
1911 | ! just the total |
---|
1912 | bm_sync(ipts,ivm,iele)=zero |
---|
1913 | |
---|
1914 | DO ipar=1,nparts |
---|
1915 | |
---|
1916 | |
---|
1917 | DO icir=1,ncirc |
---|
1918 | |
---|
1919 | bm_sync(ipts,ivm,iele)=bm_sync(ipts,ivm,iele)+& |
---|
1920 | circ_class_biomass(ipts,ivm,icir,ipar,iele)*circ_class_n(ipts,ivm,icir) |
---|
1921 | ENDDO ! ncirc |
---|
1922 | |
---|
1923 | ENDDO ! nparts |
---|
1924 | |
---|
1925 | bm_sync(ipts,ivm,iele)=ABS(bm_sync(ipts,ivm,iele)-& |
---|
1926 | SUM(biomass(ipts,ivm,:,iele))) |
---|
1927 | |
---|
1928 | ENDDO ! nelements |
---|
1929 | |
---|
1930 | |
---|
1931 | |
---|
1932 | ENDDO ! loop over PFTs |
---|
1933 | |
---|
1934 | ENDDO ! loop over points |
---|
1935 | |
---|
1936 | !---TEMP--- |
---|
1937 | IF(ld_biomass)THEN |
---|
1938 | WRITE(numout,*) 'Check point: ',TRIM(check_point) |
---|
1939 | WRITE(numout,*) 'test_pft, test_grid: ',test_pft,test_grid |
---|
1940 | WRITE(numout,*) 'biomass (ileaf), ', biomass(test_grid,test_pft,ileaf,icarbon) |
---|
1941 | WRITE(numout,*) 'biomass (iwood), ', biomass(test_grid,test_pft,isapabove,icarbon) + & |
---|
1942 | biomass(test_grid,test_pft,isapbelow,icarbon) + biomass(test_grid,test_pft,iheartabove,icarbon) + & |
---|
1943 | biomass(test_grid,test_pft,iheartbelow,icarbon) |
---|
1944 | WRITE(numout,*) 'biomass (iroot), ', biomass(test_grid,test_pft,iroot,icarbon) |
---|
1945 | WRITE(numout,'(A,20F14.6)') 'biomassHHH, ',biomass(test_grid,test_pft,:,icarbon) |
---|
1946 | DO icir=1,ncirc |
---|
1947 | WRITE(numout,'(A,I1,20F14.6)') 'ccbiomass',icir,circ_class_biomass(test_grid,test_pft,icir,:,icarbon) |
---|
1948 | ENDDO |
---|
1949 | WRITE(numout,*) 'circ_class_biomass, ',& |
---|
1950 | SUM (SUM(circ_class_biomass(test_grid,test_pft,:,:,icarbon),2) * & |
---|
1951 | circ_class_n(test_grid,test_pft,:)) |
---|
1952 | WRITE(numout,*) 'circ_class_n, ', SUM(circ_class_n(test_grid,test_pft,:)) |
---|
1953 | WRITE(numout,*) 'circ_class_n(:), ', circ_class_n(test_grid,test_pft,:) |
---|
1954 | WRITE(numout,*) 'ind, ', ind(test_grid,test_pft) |
---|
1955 | ENDIF |
---|
1956 | |
---|
1957 | !!$ !---------- |
---|
1958 | |
---|
1959 | IF(.NOT. lsync) THEN |
---|
1960 | WRITE(numout,*) 'ERROR: stopping in sync #2' |
---|
1961 | WRITE(numout,*) 'Stopping' |
---|
1962 | CALL ipslerr_p (3,'check_biomass_sync', & |
---|
1963 | 'circ_class_biomass*circ_class_n is not equal to the total biomass',& |
---|
1964 | 'Look in the output file for more details.',& |
---|
1965 | '') |
---|
1966 | |
---|
1967 | ENDIF |
---|
1968 | IF(lnegative) THEN |
---|
1969 | WRITE(numout,*) 'ERROR: negative biomass' |
---|
1970 | WRITE(numout,*) 'Stopping' |
---|
1971 | CALL ipslerr_p (3,'check_biomass_sync', & |
---|
1972 | 'One of the biomass pools is negative!',& |
---|
1973 | 'Look in the output file for more details.',& |
---|
1974 | '') |
---|
1975 | ENDIF |
---|
1976 | |
---|
1977 | END SUBROUTINE check_biomass_sync |
---|
1978 | |
---|
1979 | !! ================================================================================================================================ |
---|
1980 | !! SUBROUTINE : check_area |
---|
1981 | !! |
---|
1982 | !>\BRIEF: Check whether surface area is preserved after forest |
---|
1983 | !! management, age_class_distribution and land use change |
---|
1984 | !! |
---|
1985 | !! DESCRIPTION : After processes where biomass pools could become zero, e.g., forest management |
---|
1986 | !! a mass abalnce check alone is not good enough because the check is based on |
---|
1987 | !! biomass*veget_max. Biomass is zero so veget_max could take any value. Here it is |
---|
1988 | !! explicitly checked whether veget_max is preserved. |
---|
1989 | !! |
---|
1990 | !! RECENT CHANGE(S): None |
---|
1991 | !! |
---|
1992 | !! MAIN OUTPUT VARIABLE(S): None |
---|
1993 | !! |
---|
1994 | !! REFERENCE(S) : None |
---|
1995 | !! |
---|
1996 | !! FLOWCHART : None |
---|
1997 | !! \n |
---|
1998 | !_ ================================================================================================================================ |
---|
1999 | SUBROUTINE check_area (check_point, npts, veget_max_begin, veget_max) |
---|
2000 | |
---|
2001 | !! 0. Variable and parameter description |
---|
2002 | |
---|
2003 | !! 0.1 Input variables |
---|
2004 | CHARACTER(*),INTENT(in) :: check_point !! A flag to indicate at which point in the code we're doing |
---|
2005 | !! this check |
---|
2006 | INTEGER(i_std), INTENT(in) :: npts !! Number of pixels |
---|
2007 | REAL(r_std), INTENT(in), DIMENSION(:,:) :: veget_max_begin !! Veget_max at the start of the routine that needs to be checked |
---|
2008 | REAL(r_std), INTENT(in), DIMENSION(:,:) :: veget_max !! Veget_max at the moment this routine is checked |
---|
2009 | |
---|
2010 | !! 0.2 Output variables |
---|
2011 | |
---|
2012 | !! 0.3 Modified variables |
---|
2013 | |
---|
2014 | !! 0.4 Local variables |
---|
2015 | INTEGER(i_std) :: ipts,ivm !! Indices |
---|
2016 | REAL(r_std) :: area_begin !! Temporairy variable to check area conservation |
---|
2017 | REAL(r_std) :: area_end !! Temporairy variable to check area conservation |
---|
2018 | |
---|
2019 | !_ ================================================================================================================================ |
---|
2020 | |
---|
2021 | ! Which subroutine is being checked? |
---|
2022 | WRITE(numout,*) 'Check point: ',TRIM(check_point) |
---|
2023 | |
---|
2024 | ! Check for surface area presevation |
---|
2025 | DO ipts = 1,npts |
---|
2026 | |
---|
2027 | DO ivm = 1,nvm |
---|
2028 | |
---|
2029 | ! Area balance closure |
---|
2030 | IF (ivm .EQ. 1) THEN |
---|
2031 | |
---|
2032 | ! Initialize |
---|
2033 | area_begin = veget_max_begin(ipts,ivm) |
---|
2034 | area_end = veget_max(ipts,ivm) |
---|
2035 | |
---|
2036 | ELSEIF (agec_group(ivm-1) .EQ. agec_group(ivm)) THEN |
---|
2037 | |
---|
2038 | ! The current PFT belongs to the same species |
---|
2039 | ! as the previous. Cumulate the areas. |
---|
2040 | area_begin = area_begin + veget_max_begin(ipts,ivm) |
---|
2041 | area_end = area_end + veget_max(ipts,ivm) |
---|
2042 | |
---|
2043 | ELSEIF (agec_group(ivm-1) .NE. agec_group(ivm)) THEN |
---|
2044 | |
---|
2045 | ! The current PFT belongs to a different species |
---|
2046 | ! as the previous. Check the areas of the previous group |
---|
2047 | ! and reset |
---|
2048 | IF (ABS(area_begin-area_begin) .LE. min_stomate) THEN |
---|
2049 | |
---|
2050 | ! The code preserves the surface area |
---|
2051 | IF (ld_massbal) WRITE(numout,*) & |
---|
2052 | 'Preserved veget_max in ', check_point, ', igroup, ', & |
---|
2053 | agec_group(ivm-1) |
---|
2054 | |
---|
2055 | ELSE |
---|
2056 | |
---|
2057 | ! Surface area is NOT preserved. Write some |
---|
2058 | ! additional information to diagnose the problem |
---|
2059 | WRITE(numout,*) 'Error: veget_max is not closed in ', check_point |
---|
2060 | WRITE(numout,*) ' ipts,igroup; ', ipts,agec_group(ivm-1) |
---|
2061 | WRITE(numout,*) ' Difference is, ', area_end-area_begin |
---|
2062 | WRITE(numout,*) ' veget_max_begin,veget_max_end: ', area_begin, & |
---|
2063 | area_end |
---|
2064 | IF(ld_stop)THEN |
---|
2065 | CALL ipslerr_p (3,check_point, 'Area error','','') |
---|
2066 | ENDIF |
---|
2067 | |
---|
2068 | ENDIF |
---|
2069 | |
---|
2070 | ! Write the surface area to the next |
---|
2071 | ! species group |
---|
2072 | area_begin = veget_max_begin(ipts,ivm) |
---|
2073 | area_end = veget_max(ipts,ivm) |
---|
2074 | |
---|
2075 | ELSE |
---|
2076 | |
---|
2077 | ! Shouldn't be here |
---|
2078 | CALL ipslerr_p (3,check_point, & |
---|
2079 | 'unexpected case in if-loop','','') |
---|
2080 | ENDIF |
---|
2081 | |
---|
2082 | ! last pft |
---|
2083 | IF (ivm .EQ. nvm) THEN |
---|
2084 | |
---|
2085 | ! The code preserves the surface area |
---|
2086 | IF (ABS(area_begin-area_begin) .LE. min_stomate) THEN |
---|
2087 | |
---|
2088 | IF (ld_massbal) WRITE(numout,*) & |
---|
2089 | 'Preserved veget_max in ',check_point, ', igroup, ', & |
---|
2090 | agec_group(ivm) |
---|
2091 | |
---|
2092 | ELSE |
---|
2093 | |
---|
2094 | ! Surface area is NOT preserved. Write some |
---|
2095 | ! additional information to diagnose the problem |
---|
2096 | WRITE(numout,*) 'Error: veget_max is not closed in ',check_point |
---|
2097 | WRITE(numout,*) ' ipts,igroup; ', ipts,agec_group(ivm) |
---|
2098 | WRITE(numout,*) ' Difference is, ', area_end-area_begin |
---|
2099 | WRITE(numout,*) ' veget_max_begin,veget_max_end: ', area_begin, & |
---|
2100 | area_end |
---|
2101 | IF(ld_stop)THEN |
---|
2102 | CALL ipslerr_p (3,check_point, 'Area error','','') |
---|
2103 | ENDIF |
---|
2104 | |
---|
2105 | ENDIF ! preserve area |
---|
2106 | ENDIF ! last ivm |
---|
2107 | |
---|
2108 | ENDDO ! nvm |
---|
2109 | ENDDO ! npts |
---|
2110 | |
---|
2111 | END SUBROUTINE check_area |
---|
2112 | |
---|
2113 | |
---|
2114 | END MODULE function_library |
---|