1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : lpj_cover |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Recalculate vegetation cover and LAI |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION : None |
---|
12 | !! |
---|
13 | !! RECENT CHANGE(S) : None |
---|
14 | !! |
---|
15 | !! REFERENCE(S) : |
---|
16 | !! Sitch, S., B. Smith, et al. (2003), Evaluation of ecosystem dynamics, |
---|
17 | !! plant geography and terrestrial carbon cycling in the LPJ dynamic |
---|
18 | !! global vegetation model, Global Change Biology, 9, 161-185.\n |
---|
19 | !! Smith, B., I. C. Prentice, et al. (2001), Representation of vegetation |
---|
20 | !! dynamics in the modelling of terrestrial ecosystems: comparing two |
---|
21 | !! contrasting approaches within European climate space, |
---|
22 | !! Global Ecology and Biogeography, 10, 621-637.\n |
---|
23 | !! |
---|
24 | !! SVN : |
---|
25 | !! $HeadURL$ |
---|
26 | !! $Date$ |
---|
27 | !! $Revision$ |
---|
28 | !! \n |
---|
29 | !_ ================================================================================================================================ |
---|
30 | |
---|
31 | MODULE lpj_cover |
---|
32 | |
---|
33 | ! modules used: |
---|
34 | |
---|
35 | USE ioipsl_para |
---|
36 | USE stomate_data |
---|
37 | USE pft_parameters |
---|
38 | |
---|
39 | IMPLICIT NONE |
---|
40 | |
---|
41 | ! private & public routines |
---|
42 | |
---|
43 | PRIVATE |
---|
44 | PUBLIC cover |
---|
45 | |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | !! ================================================================================================================================ |
---|
49 | !! SUBROUTINE : lpj_cover |
---|
50 | !! |
---|
51 | !>\BRIEF Recalculate vegetation cover and LAI |
---|
52 | !! |
---|
53 | !!\n DESCRIPTION : Veget_max is first renewed here according to newly calculated foliage biomass in this calculation step |
---|
54 | !! Then, litter, soil carbon, and biomass are also recalcuted with taking into account the changes in Veget_max (i.e. delta_veg) |
---|
55 | !! Grid-scale fpc (foliage projected coverage) is calculated to obtain the shadede ground area by leaf's light capture |
---|
56 | !! Finally, grid-scale fpc is adjusted not to exceed 1.0 |
---|
57 | !! |
---|
58 | !! RECENT CHANGE(S) : None |
---|
59 | !! |
---|
60 | !! MAIN OUTPUT VARIABLE(S) : ::lai (leaf area index, @tex $(m^2 m^{-2})$ @endtex), |
---|
61 | !! :: veget (fractional vegetation cover, unitless) |
---|
62 | !! |
---|
63 | !! REFERENCE(S) : None |
---|
64 | !! |
---|
65 | !! FLOWCHART : |
---|
66 | !! \latexonly |
---|
67 | !! \includegraphics[scale=0.5]{lpj_cover_flowchart.png} |
---|
68 | !! \endlatexonly |
---|
69 | !! \n |
---|
70 | !_ ================================================================================================================================ |
---|
71 | |
---|
72 | SUBROUTINE cover (npts, cn_ind, ind, biomass, & |
---|
73 | veget_max, veget_max_old, lai, litter, carbon, turnover_daily, bm_to_litter, & |
---|
74 | lignin_struc, lignin_wood) |
---|
75 | |
---|
76 | !! 0. Variable and parameter declaration |
---|
77 | |
---|
78 | !! 0.1 Input variables |
---|
79 | |
---|
80 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
81 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: cn_ind !! Crown area |
---|
82 | !! @tex $(m^2)$ @endtex per individual |
---|
83 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: ind !! Number of individuals |
---|
84 | !! @tex $(m^{-2})$ @endtex |
---|
85 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_max_old !! "Maximal" coverage fraction of a PFT (LAI-> |
---|
86 | !! infinity) on ground at beginning of time |
---|
87 | |
---|
88 | !! 0.2 Output variables |
---|
89 | |
---|
90 | |
---|
91 | !! 0.3 Modified variables |
---|
92 | |
---|
93 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: lai !! Leaf area index OF AN INDIVIDUAL PLANT |
---|
94 | !! @tex $(m^2 m^{-2})$ @endtex |
---|
95 | REAL(r_std), DIMENSION(npts,nlitt,nvm,nlevs,nelements), INTENT(inout) :: litter !! Metabolic and structural litter, above and |
---|
96 | !! below ground @tex $(gC m^{-2})$ @endtex |
---|
97 | REAL(r_std), DIMENSION(npts,ncarb,nvm), INTENT(inout) :: carbon !! Carbon pool: active, slow, or passive |
---|
98 | !! @tex $(gC m^{-2})$ @endtex |
---|
99 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout) :: biomass !! Biomass @tex $(gC m^{-2})$ @endtex |
---|
100 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: veget_max !! "Maximal" coverage fraction of a PFT (LAI-> |
---|
101 | !! infinity) on ground (unitless) |
---|
102 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout) :: turnover_daily !! Turnover rates (gC m^{-2} day^{-1}) |
---|
103 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout) :: bm_to_litter !! Conversion of biomass to litter |
---|
104 | !! @tex $(gC m^{-2} day^{-1})$ @endtex |
---|
105 | REAL(r_std), DIMENSION(npts,nvm,nlevs), INTENT(inout) :: lignin_struc !! ratio Lignine/Carbon in structural litter, |
---|
106 | !! above and below ground |
---|
107 | REAL(r_std), DIMENSION(npts,nvm,nlevs), INTENT(inout) :: lignin_wood !! ratio Lignine/Carbon in woody litter, |
---|
108 | !! above and below ground |
---|
109 | |
---|
110 | !! 0.4 Local variables |
---|
111 | |
---|
112 | INTEGER(i_std) :: i,j,k,m !! Index (unitless) |
---|
113 | REAL(r_std), DIMENSION(npts,nlitt,nlevs,nelements) :: dilu_lit !! Litter dilution @tex $(gC m^{-2})$ @endtex |
---|
114 | REAL(r_std), DIMENSION(npts,ncarb) :: dilu_soil_carbon !! Soil Carbondilution |
---|
115 | !! @tex $(gC m^{-2})$ @endtex |
---|
116 | REAL(r_std), DIMENSION(npts,nlevs) :: dilu_lf_struc !! fraction of structural litter that is lignin |
---|
117 | !! (0-1,unitless) |
---|
118 | REAL(r_std), DIMENSION(npts,nlevs) :: dilu_lf_wood !! fraction of woody litter that is lignin |
---|
119 | !! (0-1,unitless) |
---|
120 | REAL(r_std), DIMENSION(nvm) :: delta_veg !! Conversion factors (unitless) |
---|
121 | REAL(r_std), DIMENSION(nvm) :: reduct !! Conversion factors (unitless) |
---|
122 | REAL(r_std) :: delta_veg_sum !! Conversion factors (unitless) |
---|
123 | REAL(r_std) :: diff !! Conversion factors (unitless) |
---|
124 | REAL(r_std) :: sr !! Conversion factors (unitless) |
---|
125 | REAL(r_std), DIMENSION(npts) :: frac_nat !! Conversion factors (unitless) |
---|
126 | REAL(r_std), DIMENSION(npts) :: sum_vegettree !! Conversion factors (unitless) |
---|
127 | REAL(r_std), DIMENSION(npts) :: sum_vegetgrass !! Conversion factors (unitless) |
---|
128 | REAL(r_std), DIMENSION(npts) :: sum_veget_natveg !! Conversion factors (unitless) |
---|
129 | |
---|
130 | !_ ================================================================================================================================ |
---|
131 | |
---|
132 | !! 1. If the vegetation is dynamic, calculate new maximum vegetation cover for natural plants |
---|
133 | |
---|
134 | !! 1.1 Calculate initial values of vegetation cover |
---|
135 | frac_nat(:) = un |
---|
136 | sum_veget_natveg(:) = zero |
---|
137 | veget_max(:,ibare_sechiba) = un |
---|
138 | |
---|
139 | DO j = 2,nvm ! loop over PFTs |
---|
140 | |
---|
141 | IF ( natural(j) ) THEN |
---|
142 | |
---|
143 | ! Summation of individual tree crown area to get total foliar projected coverage |
---|
144 | veget_max(:,j) = ind(:,j) * cn_ind(:,j) |
---|
145 | sum_veget_natveg(:) = sum_veget_natveg(:) + veget_max(:,j) |
---|
146 | |
---|
147 | ELSE |
---|
148 | |
---|
149 | !fraction occupied by agriculture needs to be substracted for the DGVM |
---|
150 | !this is used below to constrain veget for natural vegetation, see below |
---|
151 | frac_nat(:) = frac_nat(:) - veget_max(:,j) |
---|
152 | |
---|
153 | ENDIF |
---|
154 | |
---|
155 | ENDDO ! loop over PFTs |
---|
156 | |
---|
157 | DO i = 1, npts ! loop over grid points |
---|
158 | |
---|
159 | ! Recalculation of vegetation projected coverage when ::frac_nat was below ::sum_veget_natveg |
---|
160 | ! It means that non-natural vegetation will recover ::veget_max as natural vegetation |
---|
161 | IF (sum_veget_natveg(i) .GT. frac_nat(i) .AND. frac_nat(i) .GT. min_stomate) THEN |
---|
162 | |
---|
163 | DO j = 2,nvm ! loop over PFTs |
---|
164 | IF( natural(j) ) THEN |
---|
165 | veget_max(i,j) = veget_max(i,j) * frac_nat(i) / sum_veget_natveg(i) |
---|
166 | ENDIF |
---|
167 | ENDDO ! loop over PFTs |
---|
168 | |
---|
169 | ENDIF |
---|
170 | ENDDO ! loop over grid points |
---|
171 | |
---|
172 | ! Renew veget_max of bare soil as 0 to difference of veget_max (ibare_sechiba) |
---|
173 | ! to current veget_max |
---|
174 | DO j = 2,nvm ! loop over PFTs |
---|
175 | veget_max(:,ibare_sechiba) = veget_max(:,ibare_sechiba) - veget_max(:,j) |
---|
176 | ENDDO ! loop over PFTs |
---|
177 | veget_max(:,ibare_sechiba) = MAX( veget_max(:,ibare_sechiba), zero ) |
---|
178 | |
---|
179 | !! 1.2 Calculate carbon fluxes between PFTs to maintain mass balance |
---|
180 | ! Recalculate the litter and soil carbon with taking into accout the change in |
---|
181 | ! veget_max (delta_veg) |
---|
182 | DO i = 1, npts ! loop over grid points |
---|
183 | |
---|
184 | ! calculate the change in veget_max between previous time step and current time step |
---|
185 | delta_veg(:) = veget_max(i,:)-veget_max_old(i,:) |
---|
186 | delta_veg_sum = SUM(delta_veg,MASK=delta_veg.LT.zero) |
---|
187 | |
---|
188 | dilu_lit(i,:,:,:) = zero |
---|
189 | dilu_soil_carbon(i,:) = zero |
---|
190 | dilu_lf_struc(i,:) = zero |
---|
191 | dilu_lf_wood(i,:) = zero |
---|
192 | |
---|
193 | DO j=1, nvm ! loop over PFTs |
---|
194 | IF ( delta_veg(j) < -min_stomate ) THEN |
---|
195 | dilu_lit(i,:,:,:) = dilu_lit(i,:,:,:) + delta_veg(j) * litter(i,:,j,:,:) / delta_veg_sum |
---|
196 | dilu_soil_carbon(i,:) = dilu_soil_carbon(i,:) + delta_veg(j) * carbon(i,:,j) / delta_veg_sum |
---|
197 | dilu_lf_struc(i,:) = dilu_lf_struc(i,:) + & |
---|
198 | delta_veg(j) * lignin_struc(i,j,:) * litter(i,istructural,j,:,icarbon)/ delta_veg_sum |
---|
199 | dilu_lf_wood(i,:) = dilu_lf_wood(i,:) + & |
---|
200 | delta_veg(j) * lignin_wood(i,j,:)*litter(i,iwoody,j,:,icarbon) / delta_veg_sum |
---|
201 | ENDIF |
---|
202 | ENDDO ! loop over PFTs |
---|
203 | |
---|
204 | DO j = 1,nvm ! loop over PFTs |
---|
205 | IF ( delta_veg(j) > min_stomate) THEN |
---|
206 | |
---|
207 | ! Dilution of reservoirs |
---|
208 | ! Recalculate the litter and soil carbon with taking into accout the change in |
---|
209 | ! veget_max (delta_veg) |
---|
210 | |
---|
211 | ! Lignin fraction of structural litter |
---|
212 | lignin_struc(i,j,:)=(lignin_struc(i,j,:) * veget_max_old(i,j)* litter(i,istructural,j,:,icarbon) + & |
---|
213 | dilu_lf_struc(i,:) * delta_veg(j)) / veget_max(i,j) |
---|
214 | |
---|
215 | ! Lignin fraction of woody litter |
---|
216 | lignin_wood(i,j,:)=(lignin_wood(i,j,:) * veget_max_old(i,j)* litter(i,iwoody,j,:,icarbon) + & |
---|
217 | dilu_lf_wood(i,:) * delta_veg(j)) / veget_max(i,j) |
---|
218 | |
---|
219 | ! Litter |
---|
220 | litter(i,:,j,:,:)=(litter(i,:,j,:,:) * veget_max_old(i,j) + dilu_lit(i,:,:,:) * delta_veg(j)) / veget_max(i,j) |
---|
221 | |
---|
222 | WHERE ( litter(i,istructural,j,:,icarbon) > min_stomate ) |
---|
223 | lignin_struc(i,j,:) = lignin_struc(i,j,:)/litter(i,istructural,j,:,icarbon) |
---|
224 | ELSEWHERE |
---|
225 | lignin_struc(i,j,:) = LC(ileaf) |
---|
226 | ENDWHERE |
---|
227 | |
---|
228 | WHERE ( litter(i,iwoody,j,:,icarbon) > min_stomate ) |
---|
229 | lignin_struc(i,j,:) = lignin_struc(i,j,:)/litter(i,iwoody,j,:,icarbon) |
---|
230 | ELSEWHERE |
---|
231 | lignin_struc(i,j,:) = LC(iheartabove) |
---|
232 | ENDWHERE |
---|
233 | |
---|
234 | |
---|
235 | ! Soil carbon |
---|
236 | carbon(i,:,j)=(carbon(i,:,j) * veget_max_old(i,j) + dilu_soil_carbon(i,:) * delta_veg(j)) / veget_max(i,j) |
---|
237 | |
---|
238 | ENDIF |
---|
239 | |
---|
240 | IF((j.GE.2).AND.(veget_max_old(i,j).GT.min_stomate).AND.(veget_max(i,j).GT.min_stomate)) THEN |
---|
241 | |
---|
242 | ! Correct biomass densities (i.e. also litter fall) to conserve mass |
---|
243 | ! since it's defined on veget_max |
---|
244 | biomass(i,j,:,:) = biomass(i,j,:,:) * veget_max_old(i,j) / veget_max(i,j) |
---|
245 | turnover_daily(i,j,:,:) = turnover_daily(i,j,:,:) * veget_max_old(i,j) / veget_max(i,j) |
---|
246 | bm_to_litter(i,j,:,:) = bm_to_litter(i,j,:,:) * veget_max_old(i,j) / veget_max(i,j) |
---|
247 | |
---|
248 | ENDIF |
---|
249 | |
---|
250 | ENDDO ! loop over PFTs |
---|
251 | ENDDO ! loop over grid points |
---|
252 | |
---|
253 | END SUBROUTINE cover |
---|
254 | |
---|
255 | END MODULE lpj_cover |
---|