1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : routing |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ ipsl.jussieu.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF This module routes the water over the continents into the oceans and computes the water |
---|
10 | !! stored in floodplains or taken for irrigation. |
---|
11 | !! |
---|
12 | !!\n DESCRIPTION: None |
---|
13 | !! |
---|
14 | !! RECENT CHANGE(S): None |
---|
15 | !! |
---|
16 | !! REFERENCE(S) : |
---|
17 | !! |
---|
18 | !! SVN : |
---|
19 | !! $HeadURL$ |
---|
20 | !! $Date$ |
---|
21 | !! $Revision$ |
---|
22 | !! \n |
---|
23 | !_ ================================================================================================================================ |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! Histoire Salee |
---|
27 | !--------------- |
---|
28 | ! La douce riviere |
---|
29 | ! Sortant de son lit |
---|
30 | ! S'est jetee ma chere |
---|
31 | ! dans les bras mais oui |
---|
32 | ! du beau fleuve |
---|
33 | ! |
---|
34 | ! L'eau coule sous les ponts |
---|
35 | ! Et puis les flots s'emeuvent |
---|
36 | ! - N'etes vous pas au courant ? |
---|
37 | ! Il parait que la riviere |
---|
38 | ! Va devenir mer |
---|
39 | ! Roland Bacri |
---|
40 | ! |
---|
41 | |
---|
42 | |
---|
43 | MODULE routing |
---|
44 | |
---|
45 | USE ioipsl |
---|
46 | USE xios_orchidee |
---|
47 | USE ioipsl_para |
---|
48 | USE constantes |
---|
49 | USE constantes_soil |
---|
50 | USE pft_parameters |
---|
51 | USE sechiba_io |
---|
52 | USE interpol_help |
---|
53 | USE grid |
---|
54 | USE mod_orchidee_para |
---|
55 | |
---|
56 | |
---|
57 | IMPLICIT NONE |
---|
58 | PRIVATE |
---|
59 | PUBLIC :: routing_main, routing_initialize, routing_finalize, routing_clear |
---|
60 | |
---|
61 | !! PARAMETERS |
---|
62 | INTEGER(i_std), PARAMETER :: nbasmax=5 !! The maximum number of basins we wish to have per grid box (truncation of the model) (unitless) |
---|
63 | INTEGER(i_std), SAVE :: nbvmax !! The maximum number of basins we can handle at any time during the generation of the maps (unitless) |
---|
64 | !$OMP THREADPRIVATE(nbvmax) |
---|
65 | REAL(r_std), PARAMETER :: slow_tcst_cwrr = 25.0 !! Property of the slow reservoir, when CWRR hydrology is activated (day/m) |
---|
66 | REAL(r_std), PARAMETER :: fast_tcst_cwrr = 3.0 !! Property of the fast reservoir, when CWRR hydrology is activated (day/m) |
---|
67 | REAL(r_std), PARAMETER :: stream_tcst_cwrr = 0.24 !! Property of the stream reservoir, when CWRR hydrology is activated (day/m) |
---|
68 | REAL(r_std), PARAMETER :: flood_tcst_cwrr = 4.0 !! Property of the floodplains reservoir, when CWRR hydrology is activated (day/m) |
---|
69 | REAL(r_std), PARAMETER :: swamp_cst_cwrr = 0.2 !! Fraction of the river transport that flows to the swamps, when CWRR hydrology is activated (unitless;0-1) |
---|
70 | ! |
---|
71 | REAL(r_std), PARAMETER :: slow_tcst_chois = 25.0 !! Property of the slow reservoir, when Choisnel hydrology is activated (day/m) |
---|
72 | REAL(r_std), PARAMETER :: fast_tcst_chois = 3.0 !! Property of the fast reservoir, when Choisnel hydrology is activated (day/m) |
---|
73 | REAL(r_std), PARAMETER :: stream_tcst_chois = 0.24 !! Property of the stream reservoir, when Choisnel hydrology is activated (day/m) |
---|
74 | REAL(r_std), PARAMETER :: flood_tcst_chois = 4.0 !! Property of the floodplains reservoir, when Choisnel hydrology is activated (day/m) |
---|
75 | REAL(r_std), PARAMETER :: swamp_cst_chois = 0.2 !! Fraction of the river transport that flows to the swamps, when Choisnel hydrology is activated (unitless;0-1) |
---|
76 | ! |
---|
77 | REAL(r_std), SAVE :: fast_tcst !! Property of the fast reservoir, (day/m) |
---|
78 | !$OMP THREADPRIVATE(fast_tcst) |
---|
79 | REAL(r_std), SAVE :: slow_tcst !! Property of the slow reservoir, (day/m) |
---|
80 | !$OMP THREADPRIVATE(slow_tcst) |
---|
81 | REAL(r_std), SAVE :: stream_tcst !! Property of the stream reservoir, (day/m) |
---|
82 | !$OMP THREADPRIVATE(stream_tcst) |
---|
83 | REAL(r_std), SAVE :: flood_tcst !! Property of the floodplains reservoir, (day/m) |
---|
84 | !$OMP THREADPRIVATE(flood_tcst) |
---|
85 | REAL(r_std), SAVE :: swamp_cst !! Fraction of the river transport that flows to the swamps (unitless;0-1) |
---|
86 | !$OMP THREADPRIVATE(swamp_cst) |
---|
87 | ! |
---|
88 | ! Relation between volume and fraction of floodplains |
---|
89 | ! |
---|
90 | REAL(r_std), SAVE :: beta = 2.0 !! Parameter to fix the shape of the floodplain (>1 for convex edges, <1 for concave edges) (unitless) |
---|
91 | !$OMP THREADPRIVATE(beta) |
---|
92 | REAL(r_std), SAVE :: betap = 0.5 !! Ratio of the basin surface intercepted by ponds and the maximum surface of ponds (unitless;0-1) |
---|
93 | !$OMP THREADPRIVATE(betap) |
---|
94 | REAL(r_std), SAVE :: floodcri = 2000.0 !! Potential height for which all the basin is flooded (mm) |
---|
95 | !$OMP THREADPRIVATE(floodcri) |
---|
96 | ! |
---|
97 | ! Relation between maximum surface of ponds and basin surface, and drainage (mm/j) to the slow_res |
---|
98 | ! |
---|
99 | REAL(r_std), PARAMETER :: pond_bas = 50.0 !! [DISPENSABLE] - not used |
---|
100 | REAL(r_std), SAVE :: pondcri = 2000.0 !! Potential height for which all the basin is a pond (mm) |
---|
101 | !$OMP THREADPRIVATE(pondcri) |
---|
102 | ! |
---|
103 | REAL(r_std), PARAMETER :: maxevap_lake = 7.5/86400. !! Maximum evaporation rate from lakes (kg/m^2/s) |
---|
104 | ! |
---|
105 | REAL(r_std),SAVE :: dt_routing !! Routing time step (s) |
---|
106 | !$OMP THREADPRIVATE(dt_routing) |
---|
107 | ! |
---|
108 | INTEGER(i_std), SAVE :: diagunit = 87 !! Diagnostic file unit (unitless) |
---|
109 | !$OMP THREADPRIVATE(diagunit) |
---|
110 | ! |
---|
111 | ! Logicals to control model configuration |
---|
112 | ! |
---|
113 | LOGICAL, SAVE :: dofloodinfilt = .FALSE. !! Logical to choose if floodplains infiltration is activated or not (true/false) |
---|
114 | !$OMP THREADPRIVATE(dofloodinfilt) |
---|
115 | LOGICAL, SAVE :: doswamps = .FALSE. !! Logical to choose if swamps are activated or not (true/false) |
---|
116 | !$OMP THREADPRIVATE(doswamps) |
---|
117 | LOGICAL, SAVE :: doponds = .FALSE. !! Logical to choose if ponds are activated or not (true/false) |
---|
118 | !$OMP THREADPRIVATE(doponds) |
---|
119 | ! |
---|
120 | ! The variables describing the basins and their routing, need to be in the restart file. |
---|
121 | ! |
---|
122 | INTEGER(i_std), SAVE :: num_largest !! Number of largest river basins which should be treated as independently as rivers |
---|
123 | !! (not flow into ocean as diffusion coastal flow) (unitless) |
---|
124 | !$OMP THREADPRIVATE(num_largest) |
---|
125 | REAL(r_std), SAVE :: time_counter !! Time counter (s) |
---|
126 | !$OMP THREADPRIVATE(time_counter) |
---|
127 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: routing_area_loc !! Surface of basin (m^2) |
---|
128 | !$OMP THREADPRIVATE(routing_area_loc) |
---|
129 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: topo_resid_loc !! Topographic index of the retention time (m) |
---|
130 | !$OMP THREADPRIVATE(topo_resid_loc) |
---|
131 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_togrid_loc !! Grid into which the basin flows (unitless) |
---|
132 | !$OMP THREADPRIVATE(route_togrid_loc) |
---|
133 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_tobasin_loc !! Basin in to which the water goes (unitless) |
---|
134 | !$OMP THREADPRIVATE(route_tobasin_loc) |
---|
135 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_nbintobas_loc !! Number of basin into current one (unitless) |
---|
136 | !$OMP THREADPRIVATE(route_nbintobas_loc) |
---|
137 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: global_basinid_loc !! ID of basin (unitless) |
---|
138 | !$OMP THREADPRIVATE(global_basinid_loc) |
---|
139 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: hydrodiag_loc !! Variable to diagnose the hydrographs |
---|
140 | !$OMP THREADPRIVATE(hydrodiag_loc) |
---|
141 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:) :: hydroupbasin_loc !! The area upstream of the gauging station (m^2) |
---|
142 | !$OMP THREADPRIVATE(hydroupbasin_loc) |
---|
143 | ! |
---|
144 | ! parallelism |
---|
145 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: routing_area_glo !! Surface of basin (m^2) |
---|
146 | !$OMP THREADPRIVATE(routing_area_glo) |
---|
147 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: topo_resid_glo !! Topographic index of the retention time (m) |
---|
148 | !$OMP THREADPRIVATE(topo_resid_glo) |
---|
149 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_togrid_glo !! Grid into which the basin flows (unitless) |
---|
150 | !$OMP THREADPRIVATE(route_togrid_glo) |
---|
151 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_tobasin_glo !! Basin in to which the water goes (unitless) |
---|
152 | !$OMP THREADPRIVATE(route_tobasin_glo) |
---|
153 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_nbintobas_glo !! Number of basin into current one (unitless) |
---|
154 | !$OMP THREADPRIVATE(route_nbintobas_glo) |
---|
155 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: global_basinid_glo !! ID of basin (unitless) |
---|
156 | !$OMP THREADPRIVATE(global_basinid_glo) |
---|
157 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: hydrodiag_glo !! Variable to diagnose the hydrographs |
---|
158 | !$OMP THREADPRIVATE(hydrodiag_glo) |
---|
159 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:) :: hydroupbasin_glo !! The area upstream of the gauging station (m^2) |
---|
160 | !$OMP THREADPRIVATE(hydroupbasin_glo) |
---|
161 | ! |
---|
162 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: routing_area !! Surface of basin (m^2) |
---|
163 | !$OMP THREADPRIVATE(routing_area) |
---|
164 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: topo_resid !! Topographic index of the retention time (m) |
---|
165 | !$OMP THREADPRIVATE(topo_resid) |
---|
166 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_togrid !! Grid into which the basin flows (unitless) |
---|
167 | !$OMP THREADPRIVATE(route_togrid) |
---|
168 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_tobasin !! Basin in to which the water goes (unitless) |
---|
169 | !$OMP THREADPRIVATE(route_tobasin) |
---|
170 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_nbintobas !! Number of basin into current one (unitless) |
---|
171 | !$OMP THREADPRIVATE(route_nbintobas) |
---|
172 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: global_basinid !! ID of basin (unitless) |
---|
173 | !$OMP THREADPRIVATE(global_basinid) |
---|
174 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: hydrodiag !! Variable to diagnose the hydrographs |
---|
175 | !$OMP THREADPRIVATE(hydrodiag) |
---|
176 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: slowflow_diag !! Diagnostic slow flow hydrographs (kg/dt) |
---|
177 | !$OMP THREADPRIVATE(slowflow_diag) |
---|
178 | REAL(r_std), SAVE, POINTER, DIMENSION(:) :: hydroupbasin !! The area upstream of the gauging station (m^2) |
---|
179 | !$OMP THREADPRIVATE(hydroupbasin) |
---|
180 | ! |
---|
181 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrigated !! Area equipped for irrigation in each grid box (m^2) |
---|
182 | !$OMP THREADPRIVATE(irrigated) |
---|
183 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodplains !! Maximal surface which can be inundated in each grid box (m^2) |
---|
184 | !$OMP THREADPRIVATE(floodplains) |
---|
185 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: swamp !! Maximal surface of swamps in each grid box (m^2) |
---|
186 | !$OMP THREADPRIVATE(swamp) |
---|
187 | ! |
---|
188 | ! The reservoirs, also to be put into the restart file. |
---|
189 | ! |
---|
190 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: fast_reservoir !! Water amount in the fast reservoir (kg) |
---|
191 | !$OMP THREADPRIVATE(fast_reservoir) |
---|
192 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: slow_reservoir !! Water amount in the slow reservoir (kg) |
---|
193 | !$OMP THREADPRIVATE(slow_reservoir) |
---|
194 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: stream_reservoir !! Water amount in the stream reservoir (kg) |
---|
195 | !$OMP THREADPRIVATE(stream_reservoir) |
---|
196 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: flood_reservoir !! Water amount in the floodplains reservoir (kg) |
---|
197 | !$OMP THREADPRIVATE(flood_reservoir) |
---|
198 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lake_reservoir !! Water amount in the lake reservoir (kg) |
---|
199 | !$OMP THREADPRIVATE(lake_reservoir) |
---|
200 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_reservoir !! Water amount in the pond reservoir (kg) |
---|
201 | !$OMP THREADPRIVATE(pond_reservoir) |
---|
202 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: flood_frac_bas !! Flooded fraction per basin (unitless;0-1) |
---|
203 | !$OMP THREADPRIVATE(flood_frac_bas) |
---|
204 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_frac !! Pond fraction per grid box (unitless;0-1) |
---|
205 | !$OMP THREADPRIVATE(pond_frac) |
---|
206 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: flood_height !! Floodplain height (mm) |
---|
207 | !$OMP THREADPRIVATE(flood_height) |
---|
208 | ! |
---|
209 | ! The accumulated fluxes. |
---|
210 | ! |
---|
211 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodout_mean !! Accumulated flow out of floodplains (kg/m^2/dt) |
---|
212 | !$OMP THREADPRIVATE(floodout_mean) |
---|
213 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: runoff_mean !! Accumulated runoff (kg/m^2/dt) |
---|
214 | !$OMP THREADPRIVATE(runoff_mean) |
---|
215 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: drainage_mean !! Accumulated drainage (kg/m^2/dt) |
---|
216 | !$OMP THREADPRIVATE(drainage_mean) |
---|
217 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: transpot_mean !! Mean potential transpiration from the plants (kg/m^2/dt) |
---|
218 | !$OMP THREADPRIVATE(transpot_mean) |
---|
219 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: precip_mean !! Accumulated precipitation (kg/m^2/dt) |
---|
220 | !$OMP THREADPRIVATE(precip_mean) |
---|
221 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: humrel_mean !! Mean soil moisture stress, mean root extraction potential (unitless) |
---|
222 | !$OMP THREADPRIVATE(humrel_mean) |
---|
223 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: totnobio_mean !! Mean last total fraction of no bio (unitless;0-1) |
---|
224 | !$OMP THREADPRIVATE(totnobio_mean) |
---|
225 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: vegtot_mean !! Mean potentially vegetated fraction (unitless;0-1) |
---|
226 | !$OMP THREADPRIVATE(vegtot_mean) |
---|
227 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: k_litt_mean !! Mean averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
228 | !$OMP THREADPRIVATE(k_litt_mean) |
---|
229 | ! |
---|
230 | ! The averaged outflow fluxes. |
---|
231 | ! |
---|
232 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lakeinflow_mean !! Mean lake inflow (kg/m^2/dt) |
---|
233 | !$OMP THREADPRIVATE(lakeinflow_mean) |
---|
234 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: returnflow_mean !! Mean water flow from lakes and swamps which returns to the grid box. |
---|
235 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt) |
---|
236 | !$OMP THREADPRIVATE(returnflow_mean) |
---|
237 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: reinfiltration_mean !! Mean water flow which returns to the grid box (kg/m^2/dt) |
---|
238 | !$OMP THREADPRIVATE(reinfiltration_mean) |
---|
239 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrigation_mean !! Mean irrigation flux. |
---|
240 | !! This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
241 | !$OMP THREADPRIVATE(irrigation_mean) |
---|
242 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: riverflow_mean !! Mean Outflow of the major rivers. |
---|
243 | !! The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
244 | !$OMP THREADPRIVATE(riverflow_mean) |
---|
245 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: coastalflow_mean !! Mean outflow on coastal points by small basins. |
---|
246 | !! This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
247 | !$OMP THREADPRIVATE(coastalflow_mean) |
---|
248 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodtemp !! Temperature to decide if floodplains work (K) |
---|
249 | !$OMP THREADPRIVATE(floodtemp) |
---|
250 | INTEGER(i_std), SAVE :: floodtemp_lev !! Temperature level to decide if floodplains work (K) |
---|
251 | !$OMP THREADPRIVATE(floodtemp_lev) |
---|
252 | ! |
---|
253 | ! Diagnostic variables ... well sort of ! |
---|
254 | ! |
---|
255 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrig_netereq !! Irrigation requirement (water requirements by the crop for its optimal growth (kg/m^2/dt) |
---|
256 | !$OMP THREADPRIVATE(irrig_netereq) |
---|
257 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: hydrographs !! Hydrographs at the outflow of the grid box for major basins (kg/dt) |
---|
258 | !$OMP THREADPRIVATE(hydrographs) |
---|
259 | ! |
---|
260 | ! Diagnostics for the various reservoirs we use (Kg/m^2) |
---|
261 | ! |
---|
262 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: fast_diag !! Diagnostic for the fast reservoir (kg/m^2) |
---|
263 | !$OMP THREADPRIVATE(fast_diag) |
---|
264 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: slow_diag !! Diagnostic for the slow reservoir (kg/m^2) |
---|
265 | !$OMP THREADPRIVATE(slow_diag) |
---|
266 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: stream_diag !! Diagnostic for the stream reservoir (kg/m^2) |
---|
267 | !$OMP THREADPRIVATE(stream_diag) |
---|
268 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: flood_diag !! Diagnostic for the floodplain reservoir (kg/m^2) |
---|
269 | !$OMP THREADPRIVATE(flood_diag) |
---|
270 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_diag !! Diagnostic for the pond reservoir (kg/m^2) |
---|
271 | !$OMP THREADPRIVATE(pond_diag) |
---|
272 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lake_diag !! Diagnostic for the lake reservoir (kg/m^2) |
---|
273 | !$OMP THREADPRIVATE(lake_diag) |
---|
274 | |
---|
275 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: mask_coast !! Mask with coastal gridcells on local grid(1/0) |
---|
276 | !$OMP THREADPRIVATE(mask_coast) |
---|
277 | REAL(r_std), SAVE :: max_lake_reservoir !! Maximum limit of water in lake_reservoir [kg/m2] |
---|
278 | !$OMP THREADPRIVATE(max_lake_reservoir) |
---|
279 | INTEGER(i_std), SAVE :: nb_coast_gridcells !! Number of gridcells which can receive coastalflow |
---|
280 | |
---|
281 | |
---|
282 | CONTAINS |
---|
283 | !! ============================================================================================================================= |
---|
284 | !! SUBROUTINE: routing_initialize |
---|
285 | !! |
---|
286 | !>\BRIEF Initialize the routing module |
---|
287 | !! |
---|
288 | !! DESCRIPTION: Initialize the routing module. Read from restart file or read the routing.nc file to initialize the |
---|
289 | !! routing scheme. |
---|
290 | !! |
---|
291 | !! RECENT CHANGE(S) |
---|
292 | !! |
---|
293 | !! REFERENCE(S) |
---|
294 | !! |
---|
295 | !! FLOWCHART |
---|
296 | !! \n |
---|
297 | !_ ============================================================================================================================== |
---|
298 | |
---|
299 | SUBROUTINE routing_initialize( kjit, nbpt, index, & |
---|
300 | rest_id, hist_id, hist2_id, lalo, & |
---|
301 | neighbours, resolution, contfrac, stempdiag, & |
---|
302 | returnflow, reinfiltration, irrigation, riverflow, & |
---|
303 | coastalflow, flood_frac, flood_res ) |
---|
304 | |
---|
305 | IMPLICIT NONE |
---|
306 | |
---|
307 | !! 0.1 Input variables |
---|
308 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
309 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
310 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Indices of the points on the map (unitless) |
---|
311 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
312 | INTEGER(i_std),INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
313 | INTEGER(i_std),INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
314 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
315 | |
---|
316 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point |
---|
317 | !! (1=N, 2=NE, 3=E, 4=SE, 5=S, 6=SW, 7=W, 8=NW) (unitless) |
---|
318 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
319 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
320 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) !! Diagnostic soil temperature profile |
---|
321 | |
---|
322 | !! 0.2 Output variables |
---|
323 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
324 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt) |
---|
325 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
326 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
327 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
328 | |
---|
329 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
330 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
331 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
332 | |
---|
333 | !! 0.3 Local variables |
---|
334 | REAL(r_std), DIMENSION(nbp_glo):: mask_coast_glo !! Mask with coastal gridcells on global grid (1/0) |
---|
335 | LOGICAL :: init_irrig !! Logical to initialize the irrigation (true/false) |
---|
336 | LOGICAL :: init_flood !! Logical to initialize the floodplains (true/false) |
---|
337 | LOGICAL :: init_swamp !! Logical to initialize the swamps (true/false) |
---|
338 | INTEGER :: ig, ib, rtg, rtb !! Index |
---|
339 | INTEGER :: ier !! Error handeling |
---|
340 | !_ ================================================================================================================================ |
---|
341 | |
---|
342 | ! |
---|
343 | ! do initialisation |
---|
344 | ! |
---|
345 | nbvmax = 440 |
---|
346 | ! Here we will allocate the memory and get the fixed fields from the restart file. |
---|
347 | ! If the info is not found then we will compute the routing map. |
---|
348 | ! |
---|
349 | |
---|
350 | CALL routing_init (kjit, nbpt, index, returnflow, reinfiltration, irrigation, & |
---|
351 | riverflow, coastalflow, flood_frac, flood_res, stempdiag, rest_id) |
---|
352 | |
---|
353 | routing_area => routing_area_loc |
---|
354 | topo_resid => topo_resid_loc |
---|
355 | route_togrid => route_togrid_loc |
---|
356 | route_tobasin => route_tobasin_loc |
---|
357 | global_basinid => global_basinid_loc |
---|
358 | hydrodiag => hydrodiag_loc |
---|
359 | |
---|
360 | ! This routine computes the routing map if the route_togrid_glo is undefined. This means that the |
---|
361 | ! map has not been initialized during the restart process.. |
---|
362 | ! |
---|
363 | !! Reads in the map of the basins and flow directions to construct the catchments of each grid box |
---|
364 | ! |
---|
365 | IF ( COUNT(route_togrid_glo .GE. undef_int) .GT. 0 ) THEN |
---|
366 | CALL routing_basins_p(nbpt, lalo, neighbours, resolution, contfrac) |
---|
367 | ENDIF |
---|
368 | |
---|
369 | !! Create a mask containing all possible coastal gridcells and count total number of coastal gridcells |
---|
370 | IF (is_root_prc) THEN |
---|
371 | mask_coast_glo(:)=0 |
---|
372 | DO ib=1,nbasmax |
---|
373 | DO ig=1,nbp_glo |
---|
374 | rtg = route_togrid_glo(ig,ib) |
---|
375 | rtb = route_tobasin_glo(ig,ib) |
---|
376 | ! Coastal gridcells are stored in nbasmax+2 |
---|
377 | IF (rtb == nbasmax+2) THEN |
---|
378 | mask_coast_glo(rtg) = 1 |
---|
379 | END IF |
---|
380 | END DO |
---|
381 | END DO |
---|
382 | nb_coast_gridcells=SUM(mask_coast_glo) |
---|
383 | IF (printlev>=3) WRITE(numout,*) 'Number of coastal gridcells = ', nb_coast_gridcells |
---|
384 | ENDIF |
---|
385 | CALL bcast(nb_coast_gridcells) |
---|
386 | |
---|
387 | ALLOCATE(mask_coast(nbpt), stat=ier) |
---|
388 | IF (ier /= 0) CALL ipslerr_p(3,'routing_inititalize','Pb in allocate for mask_coast','','') |
---|
389 | CALL scatter(mask_coast_glo, mask_coast) |
---|
390 | CALL xios_orchidee_send_field("mask_coast",mask_coast) |
---|
391 | |
---|
392 | |
---|
393 | ! |
---|
394 | ! Do we have what we need if we want to do irrigation |
---|
395 | !! Initialisation of flags for irrigated land, flood plains and swamps |
---|
396 | ! |
---|
397 | init_irrig = .FALSE. |
---|
398 | IF ( do_irrigation ) THEN |
---|
399 | IF (COUNT(irrigated .GE. undef_sechiba-1) > 0) init_irrig = .TRUE. |
---|
400 | END IF |
---|
401 | |
---|
402 | init_flood = .FALSE. |
---|
403 | IF ( do_floodplains ) THEN |
---|
404 | IF (COUNT(floodplains .GE. undef_sechiba-1) > 0) init_flood = .TRUE. |
---|
405 | END IF |
---|
406 | |
---|
407 | init_swamp = .FALSE. |
---|
408 | IF ( doswamps ) THEN |
---|
409 | IF (COUNT(swamp .GE. undef_sechiba-1) > 0 ) init_swamp = .TRUE. |
---|
410 | END IF |
---|
411 | |
---|
412 | !! If we have irrigated land, flood plains or swamps then we need to interpolate the 0.5 degree |
---|
413 | !! base data set to the resolution of the model. |
---|
414 | |
---|
415 | IF ( init_irrig .OR. init_flood .OR. init_swamp ) THEN |
---|
416 | CALL routing_irrigmap(nbpt, index, lalo, neighbours, resolution, & |
---|
417 | contfrac, init_irrig, irrigated, init_flood, floodplains, init_swamp, swamp, hist_id, hist2_id) |
---|
418 | ENDIF |
---|
419 | |
---|
420 | IF ( do_irrigation ) THEN |
---|
421 | CALL xios_orchidee_send_field("irrigmap",irrigated) |
---|
422 | |
---|
423 | WRITE(numout,*) 'Verification : range of irrigated : ', MINVAL(irrigated), MAXVAL(irrigated) |
---|
424 | IF ( .NOT. almaoutput ) THEN |
---|
425 | CALL histwrite_p(hist_id, 'irrigmap', 1, irrigated, nbpt, index) |
---|
426 | ELSE |
---|
427 | CALL histwrite_p(hist_id, 'IrrigationMap', 1, irrigated, nbpt, index) |
---|
428 | ENDIF |
---|
429 | IF ( hist2_id > 0 ) THEN |
---|
430 | IF ( .NOT. almaoutput ) THEN |
---|
431 | CALL histwrite_p(hist2_id, 'irrigmap', 1, irrigated, nbpt, index) |
---|
432 | ELSE |
---|
433 | CALL histwrite_p(hist2_id, 'IrrigationMap', 1, irrigated, nbpt, index) |
---|
434 | ENDIF |
---|
435 | ENDIF |
---|
436 | ENDIF |
---|
437 | |
---|
438 | IF ( do_floodplains ) THEN |
---|
439 | CALL xios_orchidee_send_field("floodmap",floodplains) |
---|
440 | |
---|
441 | WRITE(numout,*) 'Verification : range of floodplains : ', MINVAL(floodplains), MAXVAL(floodplains) |
---|
442 | IF ( .NOT. almaoutput ) THEN |
---|
443 | CALL histwrite_p(hist_id, 'floodmap', 1, floodplains, nbpt, index) |
---|
444 | ELSE |
---|
445 | CALL histwrite_p(hist_id, 'FloodplainsMap', 1, floodplains, nbpt, index) |
---|
446 | ENDIF |
---|
447 | IF ( hist2_id > 0 ) THEN |
---|
448 | IF ( .NOT. almaoutput ) THEN |
---|
449 | CALL histwrite_p(hist2_id, 'floodmap', 1, floodplains, nbpt, index) |
---|
450 | ELSE |
---|
451 | CALL histwrite_p(hist2_id, 'FloodplainsMap', 1, floodplains, nbpt, index) |
---|
452 | ENDIF |
---|
453 | ENDIF |
---|
454 | ENDIF |
---|
455 | |
---|
456 | IF ( doswamps ) THEN |
---|
457 | CALL xios_orchidee_send_field("swampmap",swamp) |
---|
458 | |
---|
459 | WRITE(numout,*) 'Verification : range of swamp : ', MINVAL(swamp), MAXVAL(swamp) |
---|
460 | IF ( .NOT. almaoutput ) THEN |
---|
461 | CALL histwrite_p(hist_id, 'swampmap', 1, swamp, nbpt, index) |
---|
462 | ELSE |
---|
463 | CALL histwrite_p(hist_id, 'SwampMap', 1, swamp, nbpt, index) |
---|
464 | ENDIF |
---|
465 | IF ( hist2_id > 0 ) THEN |
---|
466 | IF ( .NOT. almaoutput ) THEN |
---|
467 | CALL histwrite_p(hist2_id, 'swampmap', 1, swamp, nbpt, index) |
---|
468 | ELSE |
---|
469 | CALL histwrite_p(hist2_id, 'SwampMap', 1, swamp, nbpt, index) |
---|
470 | ENDIF |
---|
471 | ENDIF |
---|
472 | ENDIF |
---|
473 | |
---|
474 | !! This routine gives a diagnostic of the basins used. |
---|
475 | CALL routing_diagnostic_p(nbpt, index, lalo, resolution, contfrac, hist_id, hist2_id) |
---|
476 | |
---|
477 | END SUBROUTINE routing_initialize |
---|
478 | |
---|
479 | !! ================================================================================================================================ |
---|
480 | !! SUBROUTINE : routing_main |
---|
481 | !! |
---|
482 | !>\BRIEF This module routes the water over the continents (runoff and |
---|
483 | !! drainage produced by the hydrolc or hydrol module) into the oceans. |
---|
484 | !! |
---|
485 | !! DESCRIPTION (definitions, functional, design, flags): |
---|
486 | !! The routing scheme (Polcher, 2003) carries the water from the runoff and drainage simulated by SECHIBA |
---|
487 | !! to the ocean through reservoirs, with some delay. The routing scheme is based on |
---|
488 | !! a parametrization of the water flow on a global scale (Miller et al., 1994; Hagemann |
---|
489 | !! and Dumenil, 1998). Given the global map of the main watersheds (Oki et al., 1999; |
---|
490 | !! Fekete et al., 1999; Vorosmarty et al., 2000) which delineates the boundaries of subbasins |
---|
491 | !! and gives the eight possible directions of water flow within the pixel, the surface |
---|
492 | !! runoff and the deep drainage are routed to the ocean. The time-step of the routing is one day. |
---|
493 | !! The scheme also diagnoses how much water is retained in the foodplains and thus return to soil |
---|
494 | !! moisture or is taken out of the rivers for irrigation. \n |
---|
495 | !! |
---|
496 | !! RECENT CHANGE(S): None |
---|
497 | !! |
---|
498 | !! MAIN OUTPUT VARIABLE(S): |
---|
499 | !! The result of the routing are 3 fluxes : |
---|
500 | !! - riverflow : The water which flows out from the major rivers. The flux will be located |
---|
501 | !! on the continental grid but this should be a coastal point. |
---|
502 | !! - coastalflow : This is the water which flows in a disperse way into the ocean. Essentially these |
---|
503 | !! are the outflows from all of the small rivers. |
---|
504 | !! - returnflow : This is the water which flows into a land-point - typically rivers which end in |
---|
505 | !! the desert. This water will go back into the hydrol module to allow re-evaporation. |
---|
506 | !! - irrigation : This is water taken from the reservoir and is being put into the upper |
---|
507 | !! layers of the soil. |
---|
508 | !! The two first fluxes are in kg/dt and the last two fluxes are in kg/(m^2dt).\n |
---|
509 | !! |
---|
510 | !! REFERENCE(S) : |
---|
511 | !! - Miller JR, Russell GL, Caliri G (1994) |
---|
512 | !! Continental-scale river flow in climate models. |
---|
513 | !! J. Clim., 7:914-928 |
---|
514 | !! - Hagemann S and Dumenil L. (1998) |
---|
515 | !! A parametrization of the lateral waterflow for the global scale. |
---|
516 | !! Clim. Dyn., 14:17-31 |
---|
517 | !! - Oki, T., T. Nishimura, and P. Dirmeyer (1999) |
---|
518 | !! Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP) |
---|
519 | !! J. Meteorol. Soc. Jpn., 77, 235-255 |
---|
520 | !! - Fekete BM, Charles V, Grabs W (2000) |
---|
521 | !! Global, composite runoff fields based on observed river discharge and simulated water balances. |
---|
522 | !! Technical report, UNH/GRDC, Global Runoff Data Centre, Koblenz |
---|
523 | !! - Vorosmarty, C., B. Fekete, B. Meybeck, and R. Lammers (2000) |
---|
524 | !! Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages |
---|
525 | !! Global Biogeochem. Cycles, 14, 599-621 |
---|
526 | !! - Vivant, A-C. (?? 2002) |
---|
527 | !! Développement du schéma de routage et des plaines d'inondation, MSc Thesis, Paris VI University |
---|
528 | !! - J. Polcher (2003) |
---|
529 | !! Les processus de surface a l'echelle globale et leurs interactions avec l'atmosphere |
---|
530 | !! Habilitation a diriger les recherches, Paris VI University, 67pp. |
---|
531 | !! |
---|
532 | !! FLOWCHART : |
---|
533 | !! \latexonly |
---|
534 | !! \includegraphics[scale=0.75]{routing_main_flowchart.png} |
---|
535 | !! \endlatexonly |
---|
536 | !! \n |
---|
537 | !_ ================================================================================================================================ |
---|
538 | |
---|
539 | SUBROUTINE routing_main(kjit, nbpt, index, & |
---|
540 | & lalo, neighbours, resolution, contfrac, totfrac_nobio, veget, veget_max, soil_deficit, floodout, runoff, & |
---|
541 | & drainage, transpot, evapot_corr, vegstress, precip_rain, humrel, k_litt, flood_frac, flood_res, & |
---|
542 | & stempdiag, reinf_slope, returnflow, reinfiltration, irrigation, riverflow, coastalflow, rest_id, hist_id, hist2_id) |
---|
543 | |
---|
544 | IMPLICIT NONE |
---|
545 | |
---|
546 | !! 0.1 Input variables |
---|
547 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
548 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
549 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
550 | INTEGER(i_std),INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
551 | INTEGER(i_std),INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
552 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Indices of the points on the map (unitless) |
---|
553 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
554 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point (1=N, 2=NE, 3=E, 4=SE, 5=S, 6=SW, 7=W, 8=NW) (unitless) |
---|
555 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
556 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
557 | REAL(r_std), INTENT(in) :: totfrac_nobio(nbpt) !! Total fraction of no-vegetation (continental ice, lakes ...) (unitless;0-1) |
---|
558 | REAL(r_std), INTENT(in) :: veget(nbpt,nvm) !! fraction of vegetation (unitless;0-1) |
---|
559 | REAL(r_std), INTENT(in) :: veget_max(nbpt,nvm) !! Maximal fraction of vegetation (unitless;0-1) |
---|
560 | REAL(r_std), INTENT(in) :: soil_deficit(nbpt,nvm) !! soil water deficit |
---|
561 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
562 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
563 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
564 | REAL(r_std), INTENT(in) :: transpot(nbpt,nvm) !! Potential transpiration of the vegetation (kg/m^2/dt) |
---|
565 | REAL(r_std), INTENT(in) :: evapot_corr(nbpt) !! Potential soil evaporation (kg/m^2/dt) |
---|
566 | REAL(r_std), INTENT(in) :: vegstress(nbpt,nvm) !! stress for vegetation growth (unitless; 0-1) |
---|
567 | REAL(r_std), INTENT(in) :: precip_rain(nbpt) !! Rainfall (kg/m^2/dt) |
---|
568 | REAL(r_std), INTENT(in) :: k_litt(nbpt) !! Averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
569 | REAL(r_std), INTENT(in) :: humrel(nbpt,nvm) !! Soil moisture stress, root extraction potential (unitless) |
---|
570 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) !! Diagnostic soil temperature profile |
---|
571 | REAL(r_std), INTENT(in) :: reinf_slope(nbpt) !! Coefficient which determines the reinfiltration ratio in the grid box due to flat areas (unitless;0-1) |
---|
572 | |
---|
573 | !! 0.2 Output variables |
---|
574 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
575 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt) |
---|
576 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
577 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
578 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
579 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
580 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
581 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
582 | |
---|
583 | !! 0.3 Local variables |
---|
584 | CHARACTER(LEN=30) :: var_name !! To store variables names for I/O (unitless) |
---|
585 | REAL(r_std), DIMENSION(1) :: tmp_day !! |
---|
586 | REAL(r_std), DIMENSION(nbpt) :: return_lakes !! Water from lakes flowing back into soil moisture (kg/m^2/dt) |
---|
587 | |
---|
588 | INTEGER(i_std) :: ig, jv !! Indices (unitless) |
---|
589 | REAL(r_std), DIMENSION(nbpt) :: tot_vegfrac_nowoody !! Total fraction occupied by grass (0-1,unitless) |
---|
590 | REAL(r_std), DIMENSION(nbpt) :: tot_vegfrac_crop !! Total fraction occupied by croplands (0-1,unitless) |
---|
591 | |
---|
592 | REAL(r_std), DIMENSION(nbpt) :: fast_diag_old !! Reservoir in the beginning of the time step |
---|
593 | REAL(r_std), DIMENSION(nbpt) :: slow_diag_old !! Reservoir in the beginning of the time step |
---|
594 | REAL(r_std), DIMENSION(nbpt) :: stream_diag_old !! Reservoir in the beginning of the time step |
---|
595 | REAL(r_std), DIMENSION(nbpt) :: lake_diag_old !! Reservoir in the beginning of the time step |
---|
596 | REAL(r_std), DIMENSION(nbpt) :: pond_diag_old !! Reservoir in the beginning of the time step |
---|
597 | REAL(r_std), DIMENSION(nbpt) :: flood_diag_old !! Reservoir in the beginning of the time step |
---|
598 | |
---|
599 | !! For water budget check in the three routing reservoirs (positive if input > output) |
---|
600 | !! Net fluxes averaged over each grid cell in kg/m^2/dt |
---|
601 | REAL(r_std), DIMENSION(nbpt) :: netflow_stream_diag !! Input - Output flow to stream reservoir |
---|
602 | REAL(r_std), DIMENSION(nbpt) :: netflow_fast_diag !! Input - Output flow to fast reservoir |
---|
603 | REAL(r_std), DIMENSION(nbpt) :: netflow_slow_diag !! Input - Output flow to slow reservoir |
---|
604 | |
---|
605 | |
---|
606 | !_ ================================================================================================================================ |
---|
607 | |
---|
608 | ! Save reservoirs in beginning of time step to calculate the water budget |
---|
609 | fast_diag_old = fast_diag |
---|
610 | slow_diag_old = slow_diag |
---|
611 | stream_diag_old = stream_diag |
---|
612 | lake_diag_old = lake_diag |
---|
613 | pond_diag_old = pond_diag |
---|
614 | flood_diag_old = flood_diag |
---|
615 | |
---|
616 | ! |
---|
617 | !! Computes the variables averaged between routing time steps and which will be used in subsequent calculations |
---|
618 | ! |
---|
619 | floodout_mean(:) = floodout_mean(:) + floodout(:) |
---|
620 | runoff_mean(:) = runoff_mean(:) + runoff(:) |
---|
621 | drainage_mean(:) = drainage_mean(:) + drainage(:) |
---|
622 | floodtemp(:) = stempdiag(:,floodtemp_lev) |
---|
623 | precip_mean(:) = precip_mean(:) + precip_rain(:) |
---|
624 | ! |
---|
625 | !! Computes the total fraction occupied by the grasses and the crops for each grid cell |
---|
626 | tot_vegfrac_nowoody(:) = zero |
---|
627 | tot_vegfrac_crop(:) = zero |
---|
628 | DO jv = 1, nvm |
---|
629 | IF ( (jv /= ibare_sechiba) .AND. .NOT.(is_tree(jv)) ) THEN |
---|
630 | tot_vegfrac_nowoody(:) = tot_vegfrac_nowoody(:) + veget_max(:,jv) |
---|
631 | END IF |
---|
632 | IF ( (jv /= ibare_sechiba) .AND. ok_LAIdev(jv) ) THEN ! cropland judgement using ok_LAIdev, xuhui |
---|
633 | tot_vegfrac_crop(:) = tot_vegfrac_crop(:) + veget_max(:,jv) |
---|
634 | ENDIF |
---|
635 | END DO |
---|
636 | |
---|
637 | DO ig = 1, nbpt |
---|
638 | IF ( tot_vegfrac_nowoody(ig) .GT. min_sechiba ) THEN |
---|
639 | DO jv = 1,nvm |
---|
640 | IF ( (jv /= ibare_sechiba) .AND. .NOT.(is_tree(jv)) ) THEN |
---|
641 | transpot_mean(ig) = transpot_mean(ig) + transpot(ig,jv) * veget_max(ig,jv)/tot_vegfrac_nowoody(ig) |
---|
642 | END IF |
---|
643 | END DO |
---|
644 | ELSE |
---|
645 | IF (MAXVAL(veget_max(ig,2:nvm)) .GT. min_sechiba) THEN |
---|
646 | DO jv = 2, nvm |
---|
647 | transpot_mean(ig) = transpot_mean(ig) + transpot(ig,jv) * veget_max(ig,jv)/ SUM(veget_max(ig,2:nvm)) |
---|
648 | ENDDO |
---|
649 | ENDIF |
---|
650 | ENDIF |
---|
651 | ENDDO |
---|
652 | |
---|
653 | ! |
---|
654 | ! Averaged variables (i.e. *dt_sechiba/dt_routing). This accounts for the difference between the shorter |
---|
655 | ! timestep dt_sechiba of other parts of the model and the long dt_routing timestep (set to one day at present) |
---|
656 | ! |
---|
657 | totnobio_mean(:) = totnobio_mean(:) + totfrac_nobio(:)*dt_sechiba/dt_routing |
---|
658 | k_litt_mean(:) = k_litt_mean(:) + k_litt(:)*dt_sechiba/dt_routing |
---|
659 | ! |
---|
660 | ! Only potentially vegetated surfaces are taken into account. At the start of |
---|
661 | ! the growing seasons we will give more weight to these areas. |
---|
662 | ! |
---|
663 | DO jv=2,nvm |
---|
664 | DO ig=1,nbpt |
---|
665 | humrel_mean(ig) = humrel_mean(ig) + humrel(ig,jv)*veget_max(ig,jv)*dt_sechiba/dt_routing |
---|
666 | vegtot_mean(ig) = vegtot_mean(ig) + veget_max(ig,jv)*dt_sechiba/dt_routing |
---|
667 | ENDDO |
---|
668 | ENDDO |
---|
669 | ! |
---|
670 | time_counter = time_counter + dt_sechiba |
---|
671 | ! |
---|
672 | ! If the time has come we do the routing. |
---|
673 | ! |
---|
674 | IF ( NINT(time_counter) .GE. NINT(dt_routing) ) THEN |
---|
675 | ! |
---|
676 | ! Check the water balance if needed |
---|
677 | ! |
---|
678 | IF ( check_waterbal ) THEN |
---|
679 | CALL routing_waterbal(nbpt, .TRUE., floodout_mean, runoff_mean, drainage_mean, returnflow_mean, & |
---|
680 | & reinfiltration_mean, irrigation_mean, riverflow_mean, coastalflow_mean) |
---|
681 | ENDIF |
---|
682 | ! |
---|
683 | ! Make sure we do not flood north of 49N as there freezing processes start to play a role and they |
---|
684 | ! are not yet well treated in ORCHIDEE. |
---|
685 | ! |
---|
686 | DO ig=1,nbpt |
---|
687 | IF ( lalo(ig,1) > 49.0 ) THEN |
---|
688 | floodtemp(ig) = tp_00 - un |
---|
689 | ENDIF |
---|
690 | ENDDO |
---|
691 | ! |
---|
692 | !! Computes the transport of water in the various reservoirs |
---|
693 | ! |
---|
694 | CALL routing_flow(nbpt, dt_routing, lalo, floodout_mean, runoff_mean, drainage_mean, & |
---|
695 | & vegtot_mean, totnobio_mean, transpot_mean, transpot, evapot_corr, veget, veget_max, soil_deficit, & |
---|
696 | & precip_mean, humrel_mean, k_litt_mean, floodtemp, reinf_slope, & |
---|
697 | & lakeinflow_mean, returnflow_mean, reinfiltration_mean, irrigation_mean, riverflow_mean, & |
---|
698 | & coastalflow_mean, hydrographs, slowflow_diag, flood_frac, flood_res, vegstress, & |
---|
699 | & netflow_stream_diag, netflow_fast_diag, netflow_slow_diag) |
---|
700 | ! |
---|
701 | !! Responsible for storing the water in lakes |
---|
702 | ! |
---|
703 | CALL routing_lake(nbpt, dt_routing, lakeinflow_mean, humrel_mean, return_lakes) |
---|
704 | ! |
---|
705 | returnflow_mean(:) = returnflow_mean(:) + return_lakes(:) |
---|
706 | ! |
---|
707 | !! Check the water balance in the routing scheme |
---|
708 | ! |
---|
709 | IF ( check_waterbal ) THEN |
---|
710 | CALL routing_waterbal(nbpt, .FALSE., floodout_mean, runoff_mean, drainage_mean, returnflow_mean, & |
---|
711 | & reinfiltration_mean, irrigation_mean, riverflow_mean, coastalflow_mean) |
---|
712 | ENDIF |
---|
713 | ! |
---|
714 | time_counter = zero |
---|
715 | ! |
---|
716 | floodout_mean(:) = zero |
---|
717 | runoff_mean(:) = zero |
---|
718 | drainage_mean(:) = zero |
---|
719 | transpot_mean(:) = zero |
---|
720 | precip_mean(:) = zero |
---|
721 | ! |
---|
722 | humrel_mean(:) = zero |
---|
723 | totnobio_mean(:) = zero |
---|
724 | k_litt_mean(:) = zero |
---|
725 | vegtot_mean(:) = zero |
---|
726 | |
---|
727 | ! Change the units of the routing fluxes from kg/dt_routing into kg/dt_sechiba |
---|
728 | hydrographs(:) = hydrographs(:)/dt_routing*dt_sechiba |
---|
729 | slowflow_diag(:) = slowflow_diag(:)/dt_routing*dt_sechiba |
---|
730 | |
---|
731 | ! Change the units of the routing fluxes from kg/m^2/dt_routing into kg/m^2/dt_sechiba |
---|
732 | returnflow_mean(:) = returnflow_mean(:)/dt_routing*dt_sechiba |
---|
733 | reinfiltration_mean(:) = reinfiltration_mean(:)/dt_routing*dt_sechiba |
---|
734 | irrigation_mean(:) = irrigation_mean(:)/dt_routing*dt_sechiba |
---|
735 | irrig_netereq(:) = irrig_netereq(:)/dt_routing*dt_sechiba |
---|
736 | |
---|
737 | ! Change units as above but at the same time transform the kg/dt_routing to m^3/dt_sechiba |
---|
738 | riverflow_mean(:) = riverflow_mean(:)/dt_routing*dt_sechiba/mille |
---|
739 | coastalflow_mean(:) = coastalflow_mean(:)/dt_routing*dt_sechiba/mille |
---|
740 | |
---|
741 | ! Water budget residu of the three routing reservoirs (in kg/m^2/s) |
---|
742 | ! Note that these diagnostics are done using local variables only calculated |
---|
743 | ! during the time steps when the routing is calculated |
---|
744 | CALL xios_orchidee_send_field("wbr_stream",(stream_diag - stream_diag_old - netflow_stream_diag)/dt_routing) |
---|
745 | CALL xios_orchidee_send_field("wbr_fast", (fast_diag - fast_diag_old - netflow_fast_diag)/dt_routing) |
---|
746 | CALL xios_orchidee_send_field("wbr_slow", (slow_diag - slow_diag_old - netflow_slow_diag)/dt_routing) |
---|
747 | CALL xios_orchidee_send_field("wbr_lake", (lake_diag - lake_diag_old - & |
---|
748 | lakeinflow_mean + return_lakes)/dt_routing) |
---|
749 | ENDIF |
---|
750 | |
---|
751 | ! |
---|
752 | ! Return the fraction of routed water for this time step. |
---|
753 | ! |
---|
754 | returnflow(:) = returnflow_mean(:) |
---|
755 | reinfiltration(:) = reinfiltration_mean(:) |
---|
756 | irrigation(:) = irrigation_mean(:) |
---|
757 | riverflow(:) = riverflow_mean(:) |
---|
758 | coastalflow(:) = coastalflow_mean(:) |
---|
759 | ! |
---|
760 | ! Write diagnostics |
---|
761 | ! |
---|
762 | ! Water storage in reservoirs [kg/m^2] |
---|
763 | CALL xios_orchidee_send_field("fastr",fast_diag) |
---|
764 | CALL xios_orchidee_send_field("slowr",slow_diag) |
---|
765 | CALL xios_orchidee_send_field("streamr",stream_diag) |
---|
766 | CALL xios_orchidee_send_field("laker",lake_diag) |
---|
767 | CALL xios_orchidee_send_field("pondr",pond_diag) |
---|
768 | CALL xios_orchidee_send_field("floodr",flood_diag) |
---|
769 | CALL xios_orchidee_send_field("floodh",flood_height) |
---|
770 | |
---|
771 | ! Difference between the end and the beginning of the routing time step [kg/m^2] |
---|
772 | CALL xios_orchidee_send_field("delfastr", fast_diag - fast_diag_old) |
---|
773 | CALL xios_orchidee_send_field("delslowr", slow_diag - slow_diag_old) |
---|
774 | CALL xios_orchidee_send_field("delstreamr", stream_diag - stream_diag_old) |
---|
775 | CALL xios_orchidee_send_field("dellaker", lake_diag - lake_diag_old) |
---|
776 | CALL xios_orchidee_send_field("delpondr", pond_diag - pond_diag_old) |
---|
777 | CALL xios_orchidee_send_field("delfloodr", flood_diag - flood_diag_old) |
---|
778 | |
---|
779 | ! Water fluxes converted from kg/m^2/dt_sechiba into kg/m^2/s |
---|
780 | CALL xios_orchidee_send_field("irrigation",irrigation/dt_sechiba) |
---|
781 | CALL xios_orchidee_send_field("netirrig",irrig_netereq/dt_sechiba) |
---|
782 | CALL xios_orchidee_send_field("riversret",returnflow/dt_sechiba) |
---|
783 | CALL xios_orchidee_send_field("reinfiltration",reinfiltration/dt_sechiba) |
---|
784 | |
---|
785 | ! Transform from kg/dt_sechiba into m^3/s |
---|
786 | CALL xios_orchidee_send_field("hydrographs",hydrographs/mille/dt_sechiba) |
---|
787 | CALL xios_orchidee_send_field("slowflow",slowflow_diag/mille/dt_sechiba) ! previous id name: Qb |
---|
788 | CALL xios_orchidee_send_field("coastalflow",coastalflow/dt_sechiba) |
---|
789 | CALL xios_orchidee_send_field("riverflow",riverflow/dt_sechiba) |
---|
790 | |
---|
791 | IF ( .NOT. almaoutput ) THEN |
---|
792 | ! |
---|
793 | CALL histwrite_p(hist_id, 'riversret', kjit, returnflow, nbpt, index) |
---|
794 | IF (do_floodplains .OR. doponds) THEN |
---|
795 | CALL histwrite_p(hist_id, 'reinfiltration', kjit, reinfiltration, nbpt, index) |
---|
796 | ENDIF |
---|
797 | CALL histwrite_p(hist_id, 'hydrographs', kjit, hydrographs/mille, nbpt, index) |
---|
798 | ! |
---|
799 | CALL histwrite_p(hist_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
800 | CALL histwrite_p(hist_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
801 | CALL histwrite_p(hist_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
802 | IF ( do_floodplains ) THEN |
---|
803 | CALL histwrite_p(hist_id, 'floodr', kjit, flood_diag, nbpt, index) |
---|
804 | CALL histwrite_p(hist_id, 'floodh', kjit, flood_height, nbpt, index) |
---|
805 | ENDIF |
---|
806 | CALL histwrite_p(hist_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
807 | CALL histwrite_p(hist_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
808 | ! |
---|
809 | IF ( do_irrigation ) THEN |
---|
810 | CALL histwrite_p(hist_id, 'irrigation', kjit, irrigation, nbpt, index) |
---|
811 | CALL histwrite_p(hist_id, 'returnflow', kjit, returnflow, nbpt, index) |
---|
812 | CALL histwrite_p(hist_id, 'netirrig', kjit, irrig_netereq, nbpt, index) |
---|
813 | ENDIF |
---|
814 | ! |
---|
815 | ELSE |
---|
816 | CALL histwrite_p(hist_id, 'SurfStor', kjit, flood_diag+pond_diag+lake_diag, nbpt, index) |
---|
817 | CALL histwrite_p(hist_id, 'Dis', kjit, hydrographs/mille, nbpt, index) |
---|
818 | ! |
---|
819 | CALL histwrite_p(hist_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
820 | CALL histwrite_p(hist_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
821 | CALL histwrite_p(hist_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
822 | CALL histwrite_p(hist_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
823 | CALL histwrite_p(hist_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
824 | ! |
---|
825 | IF ( do_irrigation ) THEN |
---|
826 | CALL histwrite_p(hist_id, 'Qirrig', kjit, irrigation, nbpt, index) |
---|
827 | CALL histwrite_p(hist_id, 'Qirrig_req', kjit, irrig_netereq, nbpt, index) |
---|
828 | ENDIF |
---|
829 | ! |
---|
830 | ENDIF |
---|
831 | IF ( hist2_id > 0 ) THEN |
---|
832 | IF ( .NOT. almaoutput ) THEN |
---|
833 | ! |
---|
834 | CALL histwrite_p(hist2_id, 'riversret', kjit, returnflow, nbpt, index) |
---|
835 | IF (do_floodplains .OR. doponds) THEN |
---|
836 | CALL histwrite_p(hist2_id, 'reinfiltration', kjit, reinfiltration, nbpt, index) |
---|
837 | ENDIF |
---|
838 | CALL histwrite_p(hist2_id, 'hydrographs', kjit, hydrographs/mille, nbpt, index) |
---|
839 | ! |
---|
840 | CALL histwrite_p(hist2_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
841 | CALL histwrite_p(hist2_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
842 | IF ( do_floodplains ) THEN |
---|
843 | CALL histwrite_p(hist2_id, 'floodr', kjit, flood_diag, nbpt, index) |
---|
844 | CALL histwrite_p(hist2_id, 'floodh', kjit, flood_height, nbpt, index) |
---|
845 | ENDIF |
---|
846 | CALL histwrite_p(hist2_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
847 | CALL histwrite_p(hist2_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
848 | CALL histwrite_p(hist2_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
849 | ! |
---|
850 | IF ( do_irrigation ) THEN |
---|
851 | CALL histwrite_p(hist2_id, 'irrigation', kjit, irrigation, nbpt, index) |
---|
852 | CALL histwrite_p(hist2_id, 'returnflow', kjit, returnflow, nbpt, index) |
---|
853 | CALL histwrite_p(hist2_id, 'netirrig', kjit, irrig_netereq, nbpt, index) |
---|
854 | ENDIF |
---|
855 | ! |
---|
856 | ELSE |
---|
857 | ! |
---|
858 | CALL histwrite_p(hist2_id, 'SurfStor', kjit, flood_diag+pond_diag+lake_diag, nbpt, index) |
---|
859 | CALL histwrite_p(hist2_id, 'Dis', kjit, hydrographs/mille, nbpt, index) |
---|
860 | ! |
---|
861 | ENDIF |
---|
862 | ENDIF |
---|
863 | ! |
---|
864 | ! |
---|
865 | END SUBROUTINE routing_main |
---|
866 | |
---|
867 | !! ============================================================================================================================= |
---|
868 | !! SUBROUTINE: routing_finalize |
---|
869 | !! |
---|
870 | !>\BRIEF Write to restart file |
---|
871 | !! |
---|
872 | !! DESCRIPTION: Write module variables to restart file |
---|
873 | !! |
---|
874 | !! RECENT CHANGE(S) |
---|
875 | !! |
---|
876 | !! REFERENCE(S) |
---|
877 | !! |
---|
878 | !! FLOWCHART |
---|
879 | !! \n |
---|
880 | !_ ============================================================================================================================== |
---|
881 | |
---|
882 | SUBROUTINE routing_finalize( kjit, nbpt, rest_id, flood_frac, flood_res ) |
---|
883 | |
---|
884 | IMPLICIT NONE |
---|
885 | |
---|
886 | !! 0.1 Input variables |
---|
887 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
888 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
889 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
890 | REAL(r_std), INTENT(in) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
891 | REAL(r_std), INTENT(in) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
892 | |
---|
893 | !! 0.2 Local variables |
---|
894 | REAL(r_std), DIMENSION(1) :: tmp_day |
---|
895 | |
---|
896 | !_ ================================================================================================================================ |
---|
897 | |
---|
898 | ! |
---|
899 | ! Write restart variables |
---|
900 | ! |
---|
901 | CALL restput_p (rest_id, 'routingcounter', kjit, time_counter) |
---|
902 | |
---|
903 | CALL restput_p (rest_id, 'routingarea', nbp_glo, nbasmax, 1, kjit, routing_area, 'scatter', nbp_glo, index_g) |
---|
904 | CALL restput_p (rest_id, 'routetogrid', nbp_glo, nbasmax, 1, kjit, REAL(route_togrid,r_std), 'scatter', & |
---|
905 | nbp_glo, index_g) |
---|
906 | CALL restput_p (rest_id, 'routetobasin', nbp_glo, nbasmax, 1, kjit, REAL(route_tobasin,r_std), 'scatter', & |
---|
907 | nbp_glo, index_g) |
---|
908 | CALL restput_p (rest_id, 'basinid', nbp_glo, nbasmax, 1, kjit, REAL(global_basinid,r_std), 'scatter', & |
---|
909 | nbp_glo, index_g) |
---|
910 | CALL restput_p (rest_id, 'topoindex', nbp_glo, nbasmax, 1, kjit, topo_resid, 'scatter', nbp_glo, index_g) |
---|
911 | CALL restput_p (rest_id, 'fastres', nbp_glo, nbasmax, 1, kjit, fast_reservoir, 'scatter', nbp_glo, index_g) |
---|
912 | CALL restput_p (rest_id, 'slowres', nbp_glo, nbasmax, 1, kjit, slow_reservoir, 'scatter', nbp_glo, index_g) |
---|
913 | CALL restput_p (rest_id, 'streamres', nbp_glo, nbasmax, 1, kjit, stream_reservoir, 'scatter',nbp_glo,index_g) |
---|
914 | CALL restput_p (rest_id, 'floodres', nbp_glo, nbasmax, 1, kjit, flood_reservoir, 'scatter', nbp_glo, index_g) |
---|
915 | CALL restput_p (rest_id, 'floodh', nbp_glo, 1, 1, kjit, flood_height, 'scatter', nbp_glo, index_g) |
---|
916 | CALL restput_p (rest_id, 'flood_frac_bas', nbp_glo, nbasmax, 1, kjit, flood_frac_bas, 'scatter', nbp_glo, index_g) |
---|
917 | CALL restput_p (rest_id, 'pond_frac', nbp_glo, 1, 1, kjit, pond_frac, 'scatter', nbp_glo, index_g) |
---|
918 | CALL restput_p (rest_id, 'flood_frac', nbp_glo, 1, 1, kjit, flood_frac, 'scatter', nbp_glo, index_g) |
---|
919 | CALL restput_p (rest_id, 'flood_res', nbp_glo, 1, 1, kjit, flood_res, 'scatter', nbp_glo, index_g) |
---|
920 | |
---|
921 | CALL restput_p (rest_id, 'lakeres', nbp_glo, 1, 1, kjit, lake_reservoir, 'scatter', nbp_glo, index_g) |
---|
922 | CALL restput_p (rest_id, 'pondres', nbp_glo, 1, 1, kjit, pond_reservoir, 'scatter', nbp_glo, index_g) |
---|
923 | |
---|
924 | CALL restput_p (rest_id, 'lakeinflow', nbp_glo, 1, 1, kjit, lakeinflow_mean, 'scatter', nbp_glo, index_g) |
---|
925 | CALL restput_p (rest_id, 'returnflow', nbp_glo, 1, 1, kjit, returnflow_mean, 'scatter', nbp_glo, index_g) |
---|
926 | CALL restput_p (rest_id, 'reinfiltration', nbp_glo, 1, 1, kjit, reinfiltration_mean, 'scatter', nbp_glo, index_g) |
---|
927 | CALL restput_p (rest_id, 'riverflow', nbp_glo, 1, 1, kjit, riverflow_mean, 'scatter', nbp_glo, index_g) |
---|
928 | CALL restput_p (rest_id, 'coastalflow', nbp_glo, 1, 1, kjit, coastalflow_mean, 'scatter', nbp_glo, index_g) |
---|
929 | CALL restput_p (rest_id, 'hydrographs', nbp_glo, 1, 1, kjit, hydrographs, 'scatter', nbp_glo, index_g) |
---|
930 | CALL restput_p (rest_id, 'slowflow_diag', nbp_glo, 1, 1, kjit, slowflow_diag, 'scatter', nbp_glo, index_g) |
---|
931 | ! |
---|
932 | ! Keep track of the accumulated variables |
---|
933 | ! |
---|
934 | CALL restput_p (rest_id, 'floodout_route', nbp_glo, 1, 1, kjit, floodout_mean, 'scatter', nbp_glo, index_g) |
---|
935 | CALL restput_p (rest_id, 'runoff_route', nbp_glo, 1, 1, kjit, runoff_mean, 'scatter', nbp_glo, index_g) |
---|
936 | CALL restput_p (rest_id, 'drainage_route', nbp_glo, 1, 1, kjit, drainage_mean, 'scatter', nbp_glo, index_g) |
---|
937 | CALL restput_p (rest_id, 'transpot_route', nbp_glo, 1, 1, kjit, transpot_mean, 'scatter', nbp_glo, index_g) |
---|
938 | CALL restput_p (rest_id, 'precip_route', nbp_glo, 1, 1, kjit, precip_mean, 'scatter', nbp_glo, index_g) |
---|
939 | CALL restput_p (rest_id, 'humrel_route', nbp_glo, 1, 1, kjit, humrel_mean, 'scatter', nbp_glo, index_g) |
---|
940 | CALL restput_p (rest_id, 'totnobio_route', nbp_glo, 1, 1, kjit, totnobio_mean, 'scatter', nbp_glo, index_g) |
---|
941 | CALL restput_p (rest_id, 'k_litt_route', nbp_glo, 1, 1, kjit, k_litt_mean, 'scatter', nbp_glo, index_g) |
---|
942 | CALL restput_p (rest_id, 'vegtot_route', nbp_glo, 1, 1, kjit, vegtot_mean, 'scatter', nbp_glo, index_g) |
---|
943 | |
---|
944 | IF ( do_irrigation ) THEN |
---|
945 | CALL restput_p (rest_id, 'irrigated', nbp_glo, 1, 1, kjit, irrigated, 'scatter', nbp_glo, index_g) |
---|
946 | CALL restput_p (rest_id, 'irrigation', nbp_glo, 1, 1, kjit, irrigation_mean, 'scatter', nbp_glo, index_g) |
---|
947 | ENDIF |
---|
948 | |
---|
949 | IF ( do_floodplains ) THEN |
---|
950 | CALL restput_p (rest_id, 'floodplains', nbp_glo, 1, 1, kjit, floodplains, 'scatter', nbp_glo, index_g) |
---|
951 | ENDIF |
---|
952 | IF ( doswamps ) THEN |
---|
953 | CALL restput_p (rest_id, 'swamp', nbp_glo, 1, 1, kjit, swamp, 'scatter', nbp_glo, index_g) |
---|
954 | ENDIF |
---|
955 | |
---|
956 | END SUBROUTINE routing_finalize |
---|
957 | |
---|
958 | !! ================================================================================================================================ |
---|
959 | !! SUBROUTINE : routing_init |
---|
960 | !! |
---|
961 | !>\BRIEF This subroutine allocates the memory and get the fixed fields from the restart file. |
---|
962 | !! |
---|
963 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
964 | !! |
---|
965 | !! RECENT CHANGE(S): None |
---|
966 | !! |
---|
967 | !! MAIN OUTPUT VARIABLE(S): |
---|
968 | !! |
---|
969 | !! REFERENCES : None |
---|
970 | !! |
---|
971 | !! FLOWCHART :None |
---|
972 | !! \n |
---|
973 | !_ ================================================================================================================================ |
---|
974 | |
---|
975 | SUBROUTINE routing_init(kjit, nbpt, index, returnflow, reinfiltration, irrigation, & |
---|
976 | & riverflow, coastalflow, flood_frac, flood_res, stempdiag, rest_id) |
---|
977 | ! |
---|
978 | IMPLICIT NONE |
---|
979 | ! |
---|
980 | ! interface description |
---|
981 | ! |
---|
982 | !! INPUT VARIABLES |
---|
983 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
984 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
985 | INTEGER(i_std), DIMENSION (nbpt), INTENT(in) :: index !! Indices of the points on the map (unitless) |
---|
986 | REAL(r_std), DIMENSION(nbpt,nslm),INTENT(in) :: stempdiag !! Temperature profile in soil |
---|
987 | INTEGER(i_std), INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
988 | ! |
---|
989 | !! OUTPUT VARIABLES |
---|
990 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: returnflow !! The water flow from lakes and swamps which returns into the grid box. |
---|
991 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt) |
---|
992 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: reinfiltration !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
993 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: irrigation !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil.(kg/m^2/dt) |
---|
994 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: riverflow !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
995 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: coastalflow !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
996 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: flood_frac !! Flooded fraction of the grid box (unitless;0-1) |
---|
997 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: flood_res !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
998 | ! |
---|
999 | !! LOCAL VARIABLES |
---|
1000 | CHARACTER(LEN=80) :: var_name !! To store variables names for I/O (unitless) |
---|
1001 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: tmp_real_g !! A temporary real array for the integers |
---|
1002 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: tmp_real_loc !! A temporary real array for the integers |
---|
1003 | REAL(r_std), DIMENSION(1) :: tmp_day !! |
---|
1004 | REAL(r_std) :: ratio !! Diagnostic ratio to check that dt_routing is a multiple of dt_sechiba (unitless) |
---|
1005 | REAL(r_std) :: totarea !! Total area of basin (m^2) |
---|
1006 | INTEGER(i_std) :: ier, ig, ib, ipn(1) !! Indices (unitless) |
---|
1007 | |
---|
1008 | !_ ================================================================================================================================ |
---|
1009 | ! |
---|
1010 | ! |
---|
1011 | ! These variables will require the configuration infrastructure |
---|
1012 | ! |
---|
1013 | !Config Key = ROUTING_TIMESTEP |
---|
1014 | !Config If = RIVER_ROUTING |
---|
1015 | !Config Desc = Time step of the routing scheme |
---|
1016 | !Config Def = one_day |
---|
1017 | !Config Help = This values gives the time step in seconds of the routing scheme. |
---|
1018 | !Config It should be multiple of the main time step of ORCHIDEE. One day |
---|
1019 | !Config is a good value. |
---|
1020 | !Config Units = [seconds] |
---|
1021 | ! |
---|
1022 | dt_routing = one_day |
---|
1023 | CALL getin_p('DT_ROUTING', dt_routing) |
---|
1024 | ! |
---|
1025 | !Config Key = ROUTING_RIVERS |
---|
1026 | !Config If = RIVER_ROUTING |
---|
1027 | !Config Desc = Number of rivers |
---|
1028 | !Config Def = 50 |
---|
1029 | !Config Help = This parameter chooses the number of largest river basins |
---|
1030 | !Config which should be treated as independently as rivers and not |
---|
1031 | !Config flow into the oceans as diffusion coastal flow. |
---|
1032 | !Config Units = [-] |
---|
1033 | num_largest = 50 |
---|
1034 | CALL getin_p('ROUTING_RIVERS', num_largest) |
---|
1035 | ! |
---|
1036 | !Config Key = DO_FLOODINFILT |
---|
1037 | !Config Desc = Should floodplains reinfiltrate into the soil |
---|
1038 | !Config If = RIVER_ROUTING |
---|
1039 | !Config Def = n |
---|
1040 | !Config Help = This parameters allows the user to ask the model |
---|
1041 | !Config to take into account the flood plains reinfiltration |
---|
1042 | !Config into the soil moisture. It then can go |
---|
1043 | !Config back to the slow and fast reservoirs |
---|
1044 | !Config Units = [FLAG] |
---|
1045 | ! |
---|
1046 | dofloodinfilt = .FALSE. |
---|
1047 | CALL getin_p('DO_FLOODINFILT', dofloodinfilt) |
---|
1048 | ! |
---|
1049 | !Config Key = DO_SWAMPS |
---|
1050 | !Config Desc = Should we include swamp parameterization |
---|
1051 | !Config If = RIVER_ROUTING |
---|
1052 | !Config Def = n |
---|
1053 | !Config Help = This parameters allows the user to ask the model |
---|
1054 | !Config to take into account the swamps and return |
---|
1055 | !Config the water into the bottom of the soil. It then can go |
---|
1056 | !Config back to the atmopshere. This tried to simulate |
---|
1057 | !Config internal deltas of rivers. |
---|
1058 | !Config Units = [FLAG] |
---|
1059 | ! |
---|
1060 | doswamps = .FALSE. |
---|
1061 | CALL getin_p('DO_SWAMPS', doswamps) |
---|
1062 | ! |
---|
1063 | !Config Key = DO_PONDS |
---|
1064 | !Config Desc = Should we include ponds |
---|
1065 | !Config If = RIVER_ROUTING |
---|
1066 | !Config Def = n |
---|
1067 | !Config Help = This parameters allows the user to ask the model |
---|
1068 | !Config to take into account the ponds and return |
---|
1069 | !Config the water into the soil moisture. It then can go |
---|
1070 | !Config back to the atmopshere. This tried to simulate |
---|
1071 | !Config little ponds especially in West Africa. |
---|
1072 | !Config Units = [FLAG] |
---|
1073 | ! |
---|
1074 | doponds = .FALSE. |
---|
1075 | CALL getin_p('DO_PONDS', doponds) |
---|
1076 | ! |
---|
1077 | ! Fix the time constants according to hydrol_cwrr flag |
---|
1078 | ! |
---|
1079 | ! |
---|
1080 | !Config Key = SLOW_TCST |
---|
1081 | !Config Desc = Time constant for the slow reservoir |
---|
1082 | !Config If = RIVER_ROUTING |
---|
1083 | !Config Def = n |
---|
1084 | !Config Help = This parameters allows the user to fix the |
---|
1085 | !Config time constant (in days) of the slow reservoir |
---|
1086 | !Config in order to get better river flows for |
---|
1087 | !Config particular regions. |
---|
1088 | !Config Units = [days] |
---|
1089 | ! |
---|
1090 | !> A value for property of each reservoir (in day/m) is given to compute a time constant (in day) |
---|
1091 | !> for each reservoir (product of tcst and topo_resid). |
---|
1092 | !> The value of tcst has been calibrated for the three reservoirs over the Senegal river basin only, |
---|
1093 | !> during the 1 degree NCEP Corrected by Cru (NCC) resolution simulations (Ngo-Duc et al., 2005, Ngo-Duc et al., 2006) and |
---|
1094 | !> generalized for all the basins of the world. The "slow reservoir" and the "fast reservoir" |
---|
1095 | !> have the highest value in order to simulate the groundwater. |
---|
1096 | !> The "stream reservoir", which represents all the water of the stream, has the lowest value. |
---|
1097 | !> Those figures are the same for all the basins of the world. |
---|
1098 | !> The value of slow_tcst is equal to fast_tcst when CWRR is activated. |
---|
1099 | !> This assumption should be re-discussed. |
---|
1100 | ! |
---|
1101 | IF ( hydrol_cwrr ) THEN |
---|
1102 | slow_tcst = slow_tcst_cwrr |
---|
1103 | ELSE |
---|
1104 | slow_tcst = slow_tcst_chois |
---|
1105 | ENDIF |
---|
1106 | CALL getin_p('SLOW_TCST', slow_tcst) |
---|
1107 | ! |
---|
1108 | !Config Key = FAST_TCST |
---|
1109 | !Config Desc = Time constant for the fast reservoir |
---|
1110 | !Config If = RIVER_ROUTING |
---|
1111 | !Config Def = fast_tcst_cwrr or fast_tcst_chois depending on flag HYDROL_CWRR |
---|
1112 | !Config Help = This parameters allows the user to fix the |
---|
1113 | !Config time constant (in days) of the fast reservoir |
---|
1114 | !Config in order to get better river flows for |
---|
1115 | !Config particular regions. |
---|
1116 | !Config Units = [days] |
---|
1117 | ! |
---|
1118 | IF ( hydrol_cwrr ) THEN |
---|
1119 | fast_tcst = fast_tcst_cwrr |
---|
1120 | ELSE |
---|
1121 | fast_tcst = fast_tcst_chois |
---|
1122 | ENDIF |
---|
1123 | CALL getin_p('FAST_TCST', fast_tcst) |
---|
1124 | ! |
---|
1125 | !Config Key = STREAM_TCST |
---|
1126 | !Config Desc = Time constant for the stream reservoir |
---|
1127 | !Config If = RIVER_ROUTING |
---|
1128 | !Config Def = stream_tcst_cwrr or stream_tcst_chois depending on flag HYDROL_CWRR |
---|
1129 | !Config Help = This parameters allows the user to fix the |
---|
1130 | !Config time constant (in days) of the stream reservoir |
---|
1131 | !Config in order to get better river flows for |
---|
1132 | !Config particular regions. |
---|
1133 | !Config Units = [days] |
---|
1134 | ! |
---|
1135 | IF ( hydrol_cwrr ) THEN |
---|
1136 | stream_tcst = stream_tcst_cwrr |
---|
1137 | ELSE |
---|
1138 | stream_tcst = stream_tcst_chois |
---|
1139 | ENDIF |
---|
1140 | CALL getin_p('STREAM_TCST', stream_tcst) |
---|
1141 | ! |
---|
1142 | !Config Key = FLOOD_TCST |
---|
1143 | !Config Desc = Time constant for the flood reservoir |
---|
1144 | !Config If = RIVER_ROUTING |
---|
1145 | !Config Def = 4.0 |
---|
1146 | !Config Help = This parameters allows the user to fix the |
---|
1147 | !Config time constant (in days) of the flood reservoir |
---|
1148 | !Config in order to get better river flows for |
---|
1149 | !Config particular regions. |
---|
1150 | !Config Units = [days] |
---|
1151 | ! |
---|
1152 | IF ( hydrol_cwrr ) THEN |
---|
1153 | flood_tcst = flood_tcst_cwrr |
---|
1154 | ELSE |
---|
1155 | flood_tcst = flood_tcst_chois |
---|
1156 | ENDIF |
---|
1157 | CALL getin_p('FLOOD_TCST', flood_tcst) |
---|
1158 | ! |
---|
1159 | !Config Key = SWAMP_CST |
---|
1160 | !Config Desc = Fraction of the river that flows back to swamps |
---|
1161 | !Config If = RIVER_ROUTING |
---|
1162 | !Config Def = 0.2 |
---|
1163 | !Config Help = This parameters allows the user to fix the |
---|
1164 | !Config fraction of the river transport |
---|
1165 | !Config that flows to swamps |
---|
1166 | !Config Units = [-] |
---|
1167 | ! |
---|
1168 | IF ( hydrol_cwrr ) THEN |
---|
1169 | swamp_cst = swamp_cst_cwrr |
---|
1170 | ELSE |
---|
1171 | swamp_cst = swamp_cst_chois |
---|
1172 | ENDIF |
---|
1173 | CALL getin_p('SWAMP_CST', swamp_cst) |
---|
1174 | ! |
---|
1175 | !Config Key = FLOOD_BETA |
---|
1176 | !Config Desc = Parameter to fix the shape of the floodplain |
---|
1177 | !Config If = RIVER_ROUTING |
---|
1178 | !Config Def = 2.0 |
---|
1179 | !Config Help = Parameter to fix the shape of the floodplain |
---|
1180 | !Config (>1 for convex edges, <1 for concave edges) |
---|
1181 | !Config Units = [-] |
---|
1182 | CALL getin_p("FLOOD_BETA", beta) |
---|
1183 | ! |
---|
1184 | !Config Key = POND_BETAP |
---|
1185 | !Config Desc = Ratio of the basin surface intercepted by ponds and the maximum surface of ponds |
---|
1186 | !Config If = RIVER_ROUTING |
---|
1187 | !Config Def = 0.5 |
---|
1188 | !Config Help = |
---|
1189 | !Config Units = [-] |
---|
1190 | CALL getin_p("POND_BETAP", betap) |
---|
1191 | ! |
---|
1192 | !Config Key = FLOOD_CRI |
---|
1193 | !Config Desc = Potential height for which all the basin is flooded |
---|
1194 | !Config If = DO_FLOODPLAINS or DO_PONDS |
---|
1195 | !Config Def = 2000. |
---|
1196 | !Config Help = |
---|
1197 | !Config Units = [mm] |
---|
1198 | CALL getin_p("FLOOD_CRI", floodcri) |
---|
1199 | ! |
---|
1200 | !Config Key = POND_CRI |
---|
1201 | !Config Desc = Potential height for which all the basin is a pond |
---|
1202 | !Config If = DO_FLOODPLAINS or DO_PONDS |
---|
1203 | !Config Def = 2000. |
---|
1204 | !Config Help = |
---|
1205 | !Config Units = [mm] |
---|
1206 | CALL getin_p("POND_CRI", pondcri) |
---|
1207 | |
---|
1208 | !Config Key = MAX_LAKE_RESERVOIR |
---|
1209 | !Config Desc = Maximum limit of water in lake_reservoir |
---|
1210 | !Config If = RIVER_ROUTING |
---|
1211 | !Config Def = 7000 |
---|
1212 | !Config Help = |
---|
1213 | !Config Units = [kg/m2(routing area)] |
---|
1214 | max_lake_reservoir = 7000 |
---|
1215 | CALL getin_p("MAX_LAKE_RESERVOIR", max_lake_reservoir) |
---|
1216 | |
---|
1217 | ! |
---|
1218 | ! |
---|
1219 | ! In order to simplify the time cascade check that dt_routing |
---|
1220 | ! is a multiple of dt_sechiba |
---|
1221 | ! |
---|
1222 | ratio = dt_routing/dt_sechiba |
---|
1223 | IF ( ABS(NINT(ratio) - ratio) .GT. 10*EPSILON(ratio)) THEN |
---|
1224 | WRITE(numout,*) 'WARNING -- WARNING -- WARNING -- WARNING' |
---|
1225 | WRITE(numout,*) "The chosen time step for the routing is not a multiple of the" |
---|
1226 | WRITE(numout,*) "main time step of the model. We will change dt_routing so that" |
---|
1227 | WRITE(numout,*) "this condition os fulfilled" |
---|
1228 | dt_routing = NINT(ratio) * dt_sechiba |
---|
1229 | WRITE(numout,*) 'THE NEW DT_ROUTING IS : ', dt_routing |
---|
1230 | ENDIF |
---|
1231 | ! |
---|
1232 | IF ( dt_routing .LT. dt_sechiba) THEN |
---|
1233 | WRITE(numout,*) 'WARNING -- WARNING -- WARNING -- WARNING' |
---|
1234 | WRITE(numout,*) 'The routing timestep can not be smaller than the one' |
---|
1235 | WRITE(numout,*) 'of the model. We reset its value to the model''s timestep.' |
---|
1236 | WRITE(numout,*) 'The old DT_ROUTING is : ', dt_routing |
---|
1237 | dt_routing = dt_sechiba |
---|
1238 | WRITE(numout,*) 'THE NEW DT_ROUTING IS : ', dt_routing |
---|
1239 | ENDIF |
---|
1240 | ! |
---|
1241 | var_name ="routingcounter" |
---|
1242 | CALL ioconf_setatt_p('UNITS', 's') |
---|
1243 | CALL ioconf_setatt_p('LONG_NAME','Time counter for the routing scheme') |
---|
1244 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, time_counter) |
---|
1245 | CALL setvar_p (time_counter, val_exp, 'NO_KEYWORD', zero) |
---|
1246 | |
---|
1247 | ALLOCATE (routing_area_loc(nbpt,nbasmax), stat=ier) |
---|
1248 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for routing_area_loc','','') |
---|
1249 | |
---|
1250 | ALLOCATE (routing_area_glo(nbp_glo,nbasmax)) |
---|
1251 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for routing_area_glo','','') |
---|
1252 | var_name = 'routingarea' |
---|
1253 | CALL ioconf_setatt('UNITS', 'm^2') |
---|
1254 | CALL ioconf_setatt('LONG_NAME','Area of basin') |
---|
1255 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., routing_area_loc, "gather", nbp_glo, index_g) |
---|
1256 | ! CALL scatter(routing_area_glo,routing_area_loc) |
---|
1257 | routing_area=>routing_area_loc |
---|
1258 | |
---|
1259 | ALLOCATE (tmp_real_g(nbp_glo,nbasmax), stat=ier) |
---|
1260 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for tmp_real_g','','') |
---|
1261 | ALLOCATE (tmp_real_loc(nbpt,nbasmax), stat=ier) |
---|
1262 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for tmp_real_loc','','') |
---|
1263 | |
---|
1264 | ALLOCATE (route_togrid_loc(nbpt,nbasmax), stat=ier) |
---|
1265 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_togrid_loc','','') |
---|
1266 | ALLOCATE (route_togrid_glo(nbp_glo,nbasmax), stat=ier) ! used in global in routing_flow |
---|
1267 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_togrid_glo','','') |
---|
1268 | |
---|
1269 | var_name = 'routetogrid' |
---|
1270 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1271 | CALL ioconf_setatt_p('LONG_NAME','Grid into which the basin flows') |
---|
1272 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_loc, "gather", nbp_glo, index_g) |
---|
1273 | route_togrid_loc(:,:) = undef_int |
---|
1274 | WHERE ( tmp_real_loc .LT. val_exp ) |
---|
1275 | route_togrid_loc = NINT(tmp_real_loc) |
---|
1276 | ENDWHERE |
---|
1277 | route_togrid=>route_togrid_loc |
---|
1278 | ! |
---|
1279 | ALLOCATE (route_tobasin_loc(nbpt,nbasmax), stat=ier) |
---|
1280 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_tobasin_loc','','') |
---|
1281 | |
---|
1282 | ALLOCATE (route_tobasin_glo(nbp_glo,nbasmax), stat=ier) |
---|
1283 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_tobasin_glo','','') |
---|
1284 | |
---|
1285 | var_name = 'routetobasin' |
---|
1286 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1287 | CALL ioconf_setatt_p('LONG_NAME','Basin in to which the water goes') |
---|
1288 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_loc, "gather", nbp_glo, index_g) |
---|
1289 | route_tobasin_loc = undef_int |
---|
1290 | WHERE ( tmp_real_loc .LT. val_exp ) |
---|
1291 | route_tobasin_loc = NINT(tmp_real_loc) |
---|
1292 | ENDWHERE |
---|
1293 | route_tobasin=>route_tobasin_loc |
---|
1294 | ! |
---|
1295 | ! nbintobasin |
---|
1296 | ! |
---|
1297 | ALLOCATE (route_nbintobas_loc(nbpt,nbasmax), stat=ier) |
---|
1298 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_nbintobas_loc','','') |
---|
1299 | ALLOCATE (route_nbintobas_glo(nbp_glo,nbasmax), stat=ier) |
---|
1300 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for route_nbintobas_glo','','') |
---|
1301 | |
---|
1302 | var_name = 'routenbintobas' |
---|
1303 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1304 | CALL ioconf_setatt_p('LONG_NAME','Number of basin into current one') |
---|
1305 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_loc, "gather", nbp_glo, index_g) |
---|
1306 | route_nbintobas_loc = undef_int |
---|
1307 | WHERE ( tmp_real_loc .LT. val_exp ) |
---|
1308 | route_nbintobas_loc = NINT(tmp_real_loc) |
---|
1309 | ENDWHERE |
---|
1310 | route_nbintobas=>route_nbintobas_loc |
---|
1311 | ! |
---|
1312 | ALLOCATE (global_basinid_loc(nbpt,nbasmax), stat=ier) |
---|
1313 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for global_basinid_loc','','') |
---|
1314 | ALLOCATE (global_basinid_glo(nbp_glo,nbasmax), stat=ier) |
---|
1315 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for global_basinid_glo','','') |
---|
1316 | |
---|
1317 | var_name = 'basinid' |
---|
1318 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1319 | CALL ioconf_setatt_p('LONG_NAME','ID of basin') |
---|
1320 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_loc, "gather", nbp_glo, index_g) |
---|
1321 | global_basinid_loc = undef_int |
---|
1322 | WHERE ( tmp_real_g .LT. val_exp ) |
---|
1323 | global_basinid_loc = NINT(tmp_real_loc) |
---|
1324 | ENDWHERE |
---|
1325 | global_basinid=>global_basinid_loc |
---|
1326 | ! |
---|
1327 | ALLOCATE (topo_resid_loc(nbpt,nbasmax), stat=ier) |
---|
1328 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for topo_resid_loc','','') |
---|
1329 | ALLOCATE (topo_resid_glo(nbp_glo,nbasmax), stat=ier) |
---|
1330 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for topo_resid_glo','','') |
---|
1331 | |
---|
1332 | var_name = 'topoindex' |
---|
1333 | CALL ioconf_setatt_p('UNITS', 'm') |
---|
1334 | CALL ioconf_setatt_p('LONG_NAME','Topographic index of the residence time') |
---|
1335 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., topo_resid_loc, "gather", nbp_glo, index_g) |
---|
1336 | topo_resid=>topo_resid_loc |
---|
1337 | |
---|
1338 | ALLOCATE (fast_reservoir(nbpt,nbasmax), stat=ier) |
---|
1339 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for fast_reservoir','','') |
---|
1340 | var_name = 'fastres' |
---|
1341 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1342 | CALL ioconf_setatt_p('LONG_NAME','Water in the fast reservoir') |
---|
1343 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., fast_reservoir, "gather", nbp_glo, index_g) |
---|
1344 | CALL setvar_p (fast_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1345 | |
---|
1346 | ALLOCATE (slow_reservoir(nbpt,nbasmax), stat=ier) |
---|
1347 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for slow_reservoir','','') |
---|
1348 | var_name = 'slowres' |
---|
1349 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1350 | CALL ioconf_setatt_p('LONG_NAME','Water in the slow reservoir') |
---|
1351 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., slow_reservoir, "gather", nbp_glo, index_g) |
---|
1352 | CALL setvar_p (slow_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1353 | |
---|
1354 | ALLOCATE (stream_reservoir(nbpt,nbasmax), stat=ier) |
---|
1355 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for stream_reservoir','','') |
---|
1356 | var_name = 'streamres' |
---|
1357 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1358 | CALL ioconf_setatt_p('LONG_NAME','Water in the stream reservoir') |
---|
1359 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., stream_reservoir, "gather", nbp_glo, index_g) |
---|
1360 | CALL setvar_p (stream_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1361 | |
---|
1362 | ALLOCATE (flood_reservoir(nbpt,nbasmax), stat=ier) |
---|
1363 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for flood_reservoir','','') |
---|
1364 | var_name = 'floodres' |
---|
1365 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1366 | CALL ioconf_setatt_p('LONG_NAME','Water in the flood reservoir') |
---|
1367 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., flood_reservoir, "gather", nbp_glo, index_g) |
---|
1368 | CALL setvar_p (flood_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1369 | |
---|
1370 | ALLOCATE (flood_frac_bas(nbpt,nbasmax), stat=ier) |
---|
1371 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for flood_frac_bas','','') |
---|
1372 | var_name = 'flood_frac_bas' |
---|
1373 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1374 | CALL ioconf_setatt_p('LONG_NAME','Flooded fraction per basin') |
---|
1375 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., flood_frac_bas, "gather", nbp_glo, index_g) |
---|
1376 | CALL setvar_p (flood_frac_bas, val_exp, 'NO_KEYWORD', zero) |
---|
1377 | |
---|
1378 | ALLOCATE (flood_height(nbpt), stat=ier) |
---|
1379 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for flood_height','','') |
---|
1380 | var_name = 'floodh' |
---|
1381 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1382 | CALL ioconf_setatt_p('LONG_NAME','') |
---|
1383 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., flood_height, "gather", nbp_glo, index_g) |
---|
1384 | CALL setvar_p (flood_height, val_exp, 'NO_KEYWORD', zero) |
---|
1385 | |
---|
1386 | ALLOCATE (pond_frac(nbpt), stat=ier) |
---|
1387 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for pond_frac','','') |
---|
1388 | var_name = 'pond_frac' |
---|
1389 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1390 | CALL ioconf_setatt_p('LONG_NAME','Pond fraction per grid box') |
---|
1391 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., pond_frac, "gather", nbp_glo, index_g) |
---|
1392 | CALL setvar_p (pond_frac, val_exp, 'NO_KEYWORD', zero) |
---|
1393 | |
---|
1394 | var_name = 'flood_frac' |
---|
1395 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1396 | CALL ioconf_setatt_p('LONG_NAME','Flooded fraction per grid box') |
---|
1397 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., flood_frac, "gather", nbp_glo, index_g) |
---|
1398 | CALL setvar_p (flood_frac, val_exp, 'NO_KEYWORD', zero) |
---|
1399 | |
---|
1400 | var_name = 'flood_res' |
---|
1401 | CALL ioconf_setatt_p('UNITS','mm') |
---|
1402 | CALL ioconf_setatt_p('LONG_NAME','Flooded quantity (estimation)') |
---|
1403 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., flood_res, "gather", nbp_glo, index_g) |
---|
1404 | CALL setvar_p (flood_res, val_exp, 'NO_KEYWORD', zero) |
---|
1405 | ! flood_res = zero |
---|
1406 | |
---|
1407 | ALLOCATE (lake_reservoir(nbpt), stat=ier) |
---|
1408 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for lake_reservoir','','') |
---|
1409 | var_name = 'lakeres' |
---|
1410 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1411 | CALL ioconf_setatt_p('LONG_NAME','Water in the lake reservoir') |
---|
1412 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., lake_reservoir, "gather", nbp_glo, index_g) |
---|
1413 | CALL setvar_p (lake_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1414 | |
---|
1415 | ALLOCATE (pond_reservoir(nbpt), stat=ier) |
---|
1416 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for pond_reservoir','','') |
---|
1417 | var_name = 'pondres' |
---|
1418 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1419 | CALL ioconf_setatt_p('LONG_NAME','Water in the pond reservoir') |
---|
1420 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., pond_reservoir, "gather", nbp_glo, index_g) |
---|
1421 | CALL setvar_p (pond_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1422 | ! |
---|
1423 | ! Map of irrigated areas |
---|
1424 | ! |
---|
1425 | IF ( do_irrigation ) THEN |
---|
1426 | ALLOCATE (irrigated(nbpt), stat=ier) |
---|
1427 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for irrigated','','') |
---|
1428 | var_name = 'irrigated' |
---|
1429 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1430 | CALL ioconf_setatt_p('LONG_NAME','Surface of irrigated area') |
---|
1431 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., irrigated, "gather", nbp_glo, index_g) |
---|
1432 | CALL setvar_p (irrigated, val_exp, 'NO_KEYWORD', undef_sechiba) |
---|
1433 | ENDIF |
---|
1434 | |
---|
1435 | IF ( do_floodplains ) THEN |
---|
1436 | ALLOCATE (floodplains(nbpt), stat=ier) |
---|
1437 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for floodplains','','') |
---|
1438 | var_name = 'floodplains' |
---|
1439 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1440 | CALL ioconf_setatt_p('LONG_NAME','Surface which can be flooded') |
---|
1441 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., floodplains, "gather", nbp_glo, index_g) |
---|
1442 | CALL setvar_p (floodplains, val_exp, 'NO_KEYWORD', undef_sechiba) |
---|
1443 | ENDIF |
---|
1444 | IF ( doswamps ) THEN |
---|
1445 | ALLOCATE (swamp(nbpt), stat=ier) |
---|
1446 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for swamp','','') |
---|
1447 | var_name = 'swamp' |
---|
1448 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1449 | CALL ioconf_setatt_p('LONG_NAME','Surface which can become swamp') |
---|
1450 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., swamp, "gather", nbp_glo, index_g) |
---|
1451 | CALL setvar_p (swamp, val_exp, 'NO_KEYWORD', undef_sechiba) |
---|
1452 | ENDIF |
---|
1453 | ! |
---|
1454 | ! Put into the restart file the fluxes so that they can be regenerated at restart. |
---|
1455 | ! |
---|
1456 | ALLOCATE (lakeinflow_mean(nbpt), stat=ier) |
---|
1457 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for lakeinflow_mean','','') |
---|
1458 | var_name = 'lakeinflow' |
---|
1459 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1460 | CALL ioconf_setatt_p('LONG_NAME','Lake inflow') |
---|
1461 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., lakeinflow_mean, "gather", nbp_glo, index_g) |
---|
1462 | CALL setvar_p (lakeinflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1463 | |
---|
1464 | ALLOCATE (returnflow_mean(nbpt), stat=ier) |
---|
1465 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for returnflow_mean','','') |
---|
1466 | var_name = 'returnflow' |
---|
1467 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2/dt') |
---|
1468 | CALL ioconf_setatt_p('LONG_NAME','Deep return flux') |
---|
1469 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., returnflow_mean, "gather", nbp_glo, index_g) |
---|
1470 | CALL setvar_p (returnflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1471 | returnflow(:) = returnflow_mean(:) |
---|
1472 | |
---|
1473 | ALLOCATE (reinfiltration_mean(nbpt), stat=ier) |
---|
1474 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for reinfiltration_mean','','') |
---|
1475 | var_name = 'reinfiltration' |
---|
1476 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2/dt') |
---|
1477 | CALL ioconf_setatt_p('LONG_NAME','Top return flux') |
---|
1478 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., reinfiltration_mean, "gather", nbp_glo, index_g) |
---|
1479 | CALL setvar_p (reinfiltration_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1480 | reinfiltration(:) = reinfiltration_mean(:) |
---|
1481 | |
---|
1482 | ALLOCATE (irrigation_mean(nbpt), stat=ier) |
---|
1483 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for irrigation_mean','','') |
---|
1484 | ALLOCATE (irrig_netereq(nbpt), stat=ier) |
---|
1485 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for irrig_netereq','','') |
---|
1486 | irrig_netereq(:) = zero |
---|
1487 | |
---|
1488 | IF ( do_irrigation ) THEN |
---|
1489 | var_name = 'irrigation' |
---|
1490 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1491 | CALL ioconf_setatt_p('LONG_NAME','Artificial irrigation flux') |
---|
1492 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., irrigation_mean, "gather", nbp_glo, index_g) |
---|
1493 | CALL setvar_p (irrigation_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1494 | ELSE |
---|
1495 | irrigation_mean(:) = zero |
---|
1496 | ENDIF |
---|
1497 | irrigation(:) = irrigation_mean(:) |
---|
1498 | |
---|
1499 | ALLOCATE (riverflow_mean(nbpt), stat=ier) |
---|
1500 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for riverflow_mean','','') |
---|
1501 | var_name = 'riverflow' |
---|
1502 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1503 | CALL ioconf_setatt_p('LONG_NAME','River flux into the sea') |
---|
1504 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., riverflow_mean, "gather", nbp_glo, index_g) |
---|
1505 | CALL setvar_p (riverflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1506 | riverflow(:) = riverflow_mean(:) |
---|
1507 | |
---|
1508 | ALLOCATE (coastalflow_mean(nbpt), stat=ier) |
---|
1509 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for coastalflow_mean','','') |
---|
1510 | var_name = 'coastalflow' |
---|
1511 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1512 | CALL ioconf_setatt_p('LONG_NAME','Diffuse flux into the sea') |
---|
1513 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., coastalflow_mean, "gather", nbp_glo, index_g) |
---|
1514 | CALL setvar_p (coastalflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1515 | coastalflow(:) = coastalflow_mean(:) |
---|
1516 | |
---|
1517 | ! Locate it at the 2m level |
---|
1518 | ipn = MINLOC(ABS(diaglev-2)) |
---|
1519 | floodtemp_lev = ipn(1) |
---|
1520 | ALLOCATE (floodtemp(nbpt), stat=ier) |
---|
1521 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for floodtemp','','') |
---|
1522 | floodtemp(:) = stempdiag(:,floodtemp_lev) |
---|
1523 | |
---|
1524 | ALLOCATE(hydrographs(nbpt), stat=ier) |
---|
1525 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for hydrographs','','') |
---|
1526 | var_name = 'hydrographs' |
---|
1527 | CALL ioconf_setatt_p('UNITS', 'kg/dt_sechiba') |
---|
1528 | CALL ioconf_setatt_p('LONG_NAME','Hydrograph at outlow of grid') |
---|
1529 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., hydrographs, "gather", nbp_glo, index_g) |
---|
1530 | CALL setvar_p (hydrographs, val_exp, 'NO_KEYWORD', zero) |
---|
1531 | |
---|
1532 | ALLOCATE(slowflow_diag(nbpt), stat=ier) |
---|
1533 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for slowflow_diag','','') |
---|
1534 | var_name = 'slowflow_diag' |
---|
1535 | CALL ioconf_setatt_p('UNITS', 'kg/dt_sechiba') |
---|
1536 | CALL ioconf_setatt_p('LONG_NAME','Slowflow hydrograph at outlow of grid') |
---|
1537 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE.,slowflow_diag, "gather", nbp_glo, index_g) |
---|
1538 | CALL setvar_p (slowflow_diag, val_exp, 'NO_KEYWORD', zero) |
---|
1539 | |
---|
1540 | ! |
---|
1541 | ! The diagnostic variables, they are initialized from the above restart variables. |
---|
1542 | ! |
---|
1543 | ALLOCATE(fast_diag(nbpt), slow_diag(nbpt), stream_diag(nbpt), flood_diag(nbpt), & |
---|
1544 | & pond_diag(nbpt), lake_diag(nbpt), stat=ier) |
---|
1545 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for fast_diag,..','','') |
---|
1546 | |
---|
1547 | fast_diag(:) = zero |
---|
1548 | slow_diag(:) = zero |
---|
1549 | stream_diag(:) = zero |
---|
1550 | flood_diag(:) = zero |
---|
1551 | pond_diag(:) = zero |
---|
1552 | lake_diag(:) = zero |
---|
1553 | |
---|
1554 | DO ig=1,nbpt |
---|
1555 | totarea = zero |
---|
1556 | DO ib=1,nbasmax |
---|
1557 | totarea = totarea + routing_area(ig,ib) |
---|
1558 | fast_diag(ig) = fast_diag(ig) + fast_reservoir(ig,ib) |
---|
1559 | slow_diag(ig) = slow_diag(ig) + slow_reservoir(ig,ib) |
---|
1560 | stream_diag(ig) = stream_diag(ig) + stream_reservoir(ig,ib) |
---|
1561 | flood_diag(ig) = flood_diag(ig) + flood_reservoir(ig,ib) |
---|
1562 | ENDDO |
---|
1563 | ! |
---|
1564 | fast_diag(ig) = fast_diag(ig)/totarea |
---|
1565 | slow_diag(ig) = slow_diag(ig)/totarea |
---|
1566 | stream_diag(ig) = stream_diag(ig)/totarea |
---|
1567 | flood_diag(ig) = flood_diag(ig)/totarea |
---|
1568 | ! |
---|
1569 | ! This is the volume of the lake scaled to the entire grid. |
---|
1570 | ! It would be better to scale it to the size of the lake |
---|
1571 | ! but this information is not yet available. |
---|
1572 | ! |
---|
1573 | lake_diag(ig) = lake_reservoir(ig)/totarea |
---|
1574 | ! |
---|
1575 | ENDDO |
---|
1576 | ! |
---|
1577 | ! Get from the restart the fluxes we accumulated. |
---|
1578 | ! |
---|
1579 | ALLOCATE (floodout_mean(nbpt), stat=ier) |
---|
1580 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for floodout_mean','','') |
---|
1581 | var_name = 'floodout_route' |
---|
1582 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1583 | CALL ioconf_setatt_p('LONG_NAME','Accumulated flow out of floodplains for routing') |
---|
1584 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., floodout_mean, "gather", nbp_glo, index_g) |
---|
1585 | CALL setvar_p (floodout_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1586 | |
---|
1587 | ALLOCATE (runoff_mean(nbpt), stat=ier) |
---|
1588 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for runoff_mean','','') |
---|
1589 | var_name = 'runoff_route' |
---|
1590 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1591 | CALL ioconf_setatt_p('LONG_NAME','Accumulated runoff for routing') |
---|
1592 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., runoff_mean, "gather", nbp_glo, index_g) |
---|
1593 | CALL setvar_p (runoff_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1594 | |
---|
1595 | ALLOCATE(drainage_mean(nbpt), stat=ier) |
---|
1596 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for drainage_mean','','') |
---|
1597 | var_name = 'drainage_route' |
---|
1598 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1599 | CALL ioconf_setatt_p('LONG_NAME','Accumulated drainage for routing') |
---|
1600 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., drainage_mean, "gather", nbp_glo, index_g) |
---|
1601 | CALL setvar_p (drainage_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1602 | |
---|
1603 | ALLOCATE(transpot_mean(nbpt), stat=ier) |
---|
1604 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for transpot_mean','','') |
---|
1605 | var_name = 'transpot_route' |
---|
1606 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2') |
---|
1607 | CALL ioconf_setatt_p('LONG_NAME','Accumulated potential transpiration for routing/irrigation') |
---|
1608 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., transpot_mean, "gather", nbp_glo, index_g) |
---|
1609 | CALL setvar_p (transpot_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1610 | |
---|
1611 | ALLOCATE(precip_mean(nbpt), stat=ier) |
---|
1612 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for precip_mean','','') |
---|
1613 | var_name = 'precip_route' |
---|
1614 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2') |
---|
1615 | CALL ioconf_setatt_p('LONG_NAME','Accumulated rain precipitation for irrigation') |
---|
1616 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., precip_mean, "gather", nbp_glo, index_g) |
---|
1617 | CALL setvar_p (precip_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1618 | |
---|
1619 | ALLOCATE(humrel_mean(nbpt), stat=ier) |
---|
1620 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for humrel_mean','','') |
---|
1621 | var_name = 'humrel_route' |
---|
1622 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1623 | CALL ioconf_setatt_p('LONG_NAME','Mean humrel for irrigation') |
---|
1624 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., humrel_mean, "gather", nbp_glo, index_g) |
---|
1625 | CALL setvar_p (humrel_mean, val_exp, 'NO_KEYWORD', un) |
---|
1626 | |
---|
1627 | ALLOCATE(k_litt_mean(nbpt), stat=ier) |
---|
1628 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for k_litt_mean','','') |
---|
1629 | var_name = 'k_litt_route' |
---|
1630 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1631 | CALL ioconf_setatt_p('LONG_NAME','Mean cond. for litter') |
---|
1632 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., k_litt_mean, "gather", nbp_glo, index_g) |
---|
1633 | CALL setvar_p (k_litt_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1634 | |
---|
1635 | ALLOCATE(totnobio_mean(nbpt), stat=ier) |
---|
1636 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for totnobio_mean','','') |
---|
1637 | var_name = 'totnobio_route' |
---|
1638 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1639 | CALL ioconf_setatt_p('LONG_NAME','Last Total fraction of no bio for irrigation') |
---|
1640 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., totnobio_mean, "gather", nbp_glo, index_g) |
---|
1641 | CALL setvar_p (totnobio_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1642 | |
---|
1643 | ALLOCATE(vegtot_mean(nbpt), stat=ier) |
---|
1644 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for vegtot_mean','','') |
---|
1645 | var_name = 'vegtot_route' |
---|
1646 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1647 | CALL ioconf_setatt_p('LONG_NAME','Last Total fraction of vegetation') |
---|
1648 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., vegtot_mean, "gather", nbp_glo, index_g) |
---|
1649 | CALL setvar_p (vegtot_mean, val_exp, 'NO_KEYWORD', un) |
---|
1650 | ! |
---|
1651 | ! |
---|
1652 | DEALLOCATE(tmp_real_g) |
---|
1653 | DEALLOCATE(tmp_real_loc) |
---|
1654 | ! |
---|
1655 | ! Allocate diagnostic variables |
---|
1656 | ! |
---|
1657 | ALLOCATE(hydrodiag_loc(nbpt,nbasmax),hydrodiag_glo(nbp_glo,nbasmax),stat=ier) |
---|
1658 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for hydrodiag_glo','','') |
---|
1659 | hydrodiag=>hydrodiag_loc |
---|
1660 | |
---|
1661 | ALLOCATE(hydroupbasin_loc(nbpt),hydroupbasin_glo(nbp_glo), stat=ier) |
---|
1662 | IF (ier /= 0) CALL ipslerr_p(3,'routing_init','Pb in allocate for hydroupbasin_glo','','') |
---|
1663 | hydroupbasin=>hydroupbasin_loc |
---|
1664 | |
---|
1665 | END SUBROUTINE routing_init |
---|
1666 | ! |
---|
1667 | !! ================================================================================================================================ |
---|
1668 | !! SUBROUTINE : routing_clear |
---|
1669 | !! |
---|
1670 | !>\BRIEF : This subroutine deallocates the block memory previously allocated. |
---|
1671 | !! \n |
---|
1672 | !_ ================================================================================================================================ |
---|
1673 | |
---|
1674 | SUBROUTINE routing_clear() |
---|
1675 | |
---|
1676 | IF (ALLOCATED(routing_area_loc)) DEALLOCATE(routing_area_loc) |
---|
1677 | IF (ALLOCATED(route_togrid_loc)) DEALLOCATE(route_togrid_loc) |
---|
1678 | IF (ALLOCATED(route_tobasin_loc)) DEALLOCATE(route_tobasin_loc) |
---|
1679 | IF (ALLOCATED(route_nbintobas_loc)) DEALLOCATE(route_nbintobas_loc) |
---|
1680 | IF (ALLOCATED(global_basinid_loc)) DEALLOCATE(global_basinid_loc) |
---|
1681 | IF (ALLOCATED(topo_resid_loc)) DEALLOCATE(topo_resid_loc) |
---|
1682 | IF (ALLOCATED(routing_area_glo)) DEALLOCATE(routing_area_glo) |
---|
1683 | IF (ALLOCATED(route_togrid_glo)) DEALLOCATE(route_togrid_glo) |
---|
1684 | IF (ALLOCATED(route_tobasin_glo)) DEALLOCATE(route_tobasin_glo) |
---|
1685 | IF (ALLOCATED(route_nbintobas_glo)) DEALLOCATE(route_nbintobas_glo) |
---|
1686 | IF (ALLOCATED(global_basinid_glo)) DEALLOCATE(global_basinid_glo) |
---|
1687 | IF (ALLOCATED(topo_resid_glo)) DEALLOCATE(topo_resid_glo) |
---|
1688 | IF (ALLOCATED(fast_reservoir)) DEALLOCATE(fast_reservoir) |
---|
1689 | IF (ALLOCATED(slow_reservoir)) DEALLOCATE(slow_reservoir) |
---|
1690 | IF (ALLOCATED(stream_reservoir)) DEALLOCATE(stream_reservoir) |
---|
1691 | IF (ALLOCATED(flood_reservoir)) DEALLOCATE(flood_reservoir) |
---|
1692 | IF (ALLOCATED(flood_frac_bas)) DEALLOCATE(flood_frac_bas) |
---|
1693 | IF (ALLOCATED(flood_height)) DEALLOCATE(flood_height) |
---|
1694 | IF (ALLOCATED(pond_frac)) DEALLOCATE(pond_frac) |
---|
1695 | IF (ALLOCATED(lake_reservoir)) DEALLOCATE(lake_reservoir) |
---|
1696 | IF (ALLOCATED(pond_reservoir)) DEALLOCATE(pond_reservoir) |
---|
1697 | IF (ALLOCATED(returnflow_mean)) DEALLOCATE(returnflow_mean) |
---|
1698 | IF (ALLOCATED(reinfiltration_mean)) DEALLOCATE(reinfiltration_mean) |
---|
1699 | IF (ALLOCATED(riverflow_mean)) DEALLOCATE(riverflow_mean) |
---|
1700 | IF (ALLOCATED(coastalflow_mean)) DEALLOCATE(coastalflow_mean) |
---|
1701 | IF (ALLOCATED(lakeinflow_mean)) DEALLOCATE(lakeinflow_mean) |
---|
1702 | IF (ALLOCATED(runoff_mean)) DEALLOCATE(runoff_mean) |
---|
1703 | IF (ALLOCATED(floodout_mean)) DEALLOCATE(floodout_mean) |
---|
1704 | IF (ALLOCATED(drainage_mean)) DEALLOCATE(drainage_mean) |
---|
1705 | IF (ALLOCATED(transpot_mean)) DEALLOCATE(transpot_mean) |
---|
1706 | IF (ALLOCATED(precip_mean)) DEALLOCATE(precip_mean) |
---|
1707 | IF (ALLOCATED(humrel_mean)) DEALLOCATE(humrel_mean) |
---|
1708 | IF (ALLOCATED(k_litt_mean)) DEALLOCATE(k_litt_mean) |
---|
1709 | IF (ALLOCATED(totnobio_mean)) DEALLOCATE(totnobio_mean) |
---|
1710 | IF (ALLOCATED(vegtot_mean)) DEALLOCATE(vegtot_mean) |
---|
1711 | IF (ALLOCATED(floodtemp)) DEALLOCATE(floodtemp) |
---|
1712 | IF (ALLOCATED(hydrodiag_loc)) DEALLOCATE(hydrodiag_loc) |
---|
1713 | IF (ALLOCATED(hydrodiag_glo)) DEALLOCATE(hydrodiag_glo) |
---|
1714 | IF (ALLOCATED(hydroupbasin_loc)) DEALLOCATE(hydroupbasin_loc) |
---|
1715 | IF (ALLOCATED(hydroupbasin_glo)) DEALLOCATE(hydroupbasin_glo) |
---|
1716 | IF (ALLOCATED(hydrographs)) DEALLOCATE(hydrographs) |
---|
1717 | IF (ALLOCATED(slowflow_diag)) DEALLOCATE(slowflow_diag) |
---|
1718 | IF (ALLOCATED(irrigation_mean)) DEALLOCATE(irrigation_mean) |
---|
1719 | IF (ALLOCATED(irrigated)) DEALLOCATE(irrigated) |
---|
1720 | IF (ALLOCATED(floodplains)) DEALLOCATE(floodplains) |
---|
1721 | IF (ALLOCATED(swamp)) DEALLOCATE(swamp) |
---|
1722 | IF (ALLOCATED(fast_diag)) DEALLOCATE(fast_diag) |
---|
1723 | IF (ALLOCATED(slow_diag)) DEALLOCATE(slow_diag) |
---|
1724 | IF (ALLOCATED(stream_diag)) DEALLOCATE(stream_diag) |
---|
1725 | IF (ALLOCATED(flood_diag)) DEALLOCATE(flood_diag) |
---|
1726 | IF (ALLOCATED(pond_diag)) DEALLOCATE(pond_diag) |
---|
1727 | IF (ALLOCATED(lake_diag)) DEALLOCATE(lake_diag) |
---|
1728 | |
---|
1729 | END SUBROUTINE routing_clear |
---|
1730 | ! |
---|
1731 | |
---|
1732 | !! ================================================================================================================================ |
---|
1733 | !! SUBROUTINE : routing_flow |
---|
1734 | !! |
---|
1735 | !>\BRIEF This subroutine computes the transport of water in the various reservoirs |
---|
1736 | !! (including ponds and floodplains) and the water withdrawals from the reservoirs for irrigation. |
---|
1737 | !! |
---|
1738 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
1739 | !! This will first compute the amount of water which flows out of each of the 3 reservoirs using the assumption of an |
---|
1740 | !! exponential decrease of water in the reservoir (see Hagemann S and Dumenil L. (1998)). Then we compute the fluxes |
---|
1741 | !! for floodplains and ponds. All this will then be used in order to update each of the basins : taking water out of |
---|
1742 | !! the up-stream basin and adding it to the down-stream one. |
---|
1743 | !! As this step happens globaly we have to stop the parallel processing in order to exchange the information. Once |
---|
1744 | !! all reservoirs are updated we deal with irrigation. The final step is to compute diagnostic fluxes. Among them |
---|
1745 | !! the hydrographs of the largest rivers we have chosen to monitor. |
---|
1746 | !! |
---|
1747 | !! RECENT CHANGE(S): None |
---|
1748 | !! |
---|
1749 | !! MAIN OUTPUT VARIABLE(S): lakeinflow, returnflow, reinfiltration, irrigation, riverflow, coastalflow, hydrographs, flood_frac, flood_res |
---|
1750 | !! |
---|
1751 | !! REFERENCES : |
---|
1752 | !! - Ngo-Duc, T., K. Laval, G. Ramillien, J. Polcher, and A. Cazenave (2007) |
---|
1753 | !! Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. |
---|
1754 | !! Water Resour. Res., 43, W04427, doi:10.1029/2006WR004941. |
---|
1755 | !! * Irrigation: |
---|
1756 | !! - de Rosnay, P., J. Polcher, K. Laval, and M. Sabre (2003) |
---|
1757 | !! Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. |
---|
1758 | !! Geophys. Res. Lett., 30(19), 1986, doi:10.1029/2003GL018024. |
---|
1759 | !! - A.C. Vivant (2003) |
---|
1760 | !! Les plaines d'inondations et l'irrigation dans ORCHIDEE, impacts de leur prise en compte. |
---|
1761 | !! , , 51pp. |
---|
1762 | !! - N. Culson (2004) |
---|
1763 | !! Impact de l'irrigation sur le cycle de l'eau |
---|
1764 | !! Master thesis, Paris VI University, 55pp. |
---|
1765 | !! - X.-T. Nguyen-Vinh (2005) |
---|
1766 | !! Analyse de l'impact de l'irrigation en Amerique du Nord - plaine du Mississippi - sur la climatologie regionale |
---|
1767 | !! Master thesis, Paris VI University, 33pp. |
---|
1768 | !! - M. Guimberteau (2006) |
---|
1769 | !! Analyse et modifications proposees de la modelisation de l'irrigation dans un modele de surface. |
---|
1770 | !! Master thesis, Paris VI University, 46pp. |
---|
1771 | !! - Guimberteau M. (2010) |
---|
1772 | !! Modelisation de l'hydrologie continentale et influences de l'irrigation sur le cycle de l'eau. |
---|
1773 | !! Ph.D. thesis, Paris VI University, 195pp. |
---|
1774 | !! - Guimberteau M., Laval K., Perrier A. and Polcher J. (2011). |
---|
1775 | !! Global effect of irrigation and its impact on the onset of the Indian summer monsoon. |
---|
1776 | !! In press, Climate Dynamics, doi: 10.1007/s00382-011-1252-5. |
---|
1777 | !! * Floodplains: |
---|
1778 | !! - A.C. Vivant (2002) |
---|
1779 | !! L'ecoulement lateral de l'eau sur les surfaces continentales. Prise en compte des plaines d'inondations dans ORCHIDEE. |
---|
1780 | !! Master thesis, Paris VI University, 46pp. |
---|
1781 | !! - A.C. Vivant (2003) |
---|
1782 | !! Les plaines d'inondations et l'irrigation dans ORCHIDEE, impacts de leur prise en compte. |
---|
1783 | !! , , 51pp. |
---|
1784 | !! - T. d'Orgeval (2006) |
---|
1785 | !! Impact du changement climatique sur le cycle de l'eau en Afrique de l'Ouest: modelisation et incertitudes. |
---|
1786 | !! Ph.D. thesis, Paris VI University, 188pp. |
---|
1787 | !! - T. d'Orgeval, J. Polcher, and P. de Rosnay (2008) |
---|
1788 | !! Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. |
---|
1789 | !! Hydrol. Earth Syst. Sci., 12, 1387-1401 |
---|
1790 | !! - M. Guimberteau, G. Drapeau, J. Ronchail, B. Sultan, J. Polcher, J.-M. Martinez, C. Prigent, J.-L. Guyot, G. Cochonneau, |
---|
1791 | !! J. C. Espinoza, N. Filizola, P. Fraizy, W. Lavado, E. De Oliveira, R. Pombosa, L. Noriega, and P. Vauchel (2011) |
---|
1792 | !! Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. |
---|
1793 | !! Hydrol. Earth Syst. Sci. Discuss., 8, 11171-11232, doi:10.5194/hessd-8-11171-2011 |
---|
1794 | !! |
---|
1795 | !! FLOWCHART :None |
---|
1796 | !! \n |
---|
1797 | !_ ================================================================================================================================ |
---|
1798 | |
---|
1799 | SUBROUTINE routing_flow(nbpt, dt_routing, lalo, floodout, runoff, drainage, & |
---|
1800 | & vegtot, totnobio, transpot_mean, transpot, evapot_corr, veget, veget_max, soil_deficit, & |
---|
1801 | & precip, humrel, k_litt, floodtemp, reinf_slope, & |
---|
1802 | & lakeinflow, returnflow, reinfiltration, irrigation, riverflow, & |
---|
1803 | & coastalflow, hydrographs, slowflow_diag, flood_frac, flood_res, vegstress, & |
---|
1804 | netflow_stream_diag, netflow_fast_diag, netflow_slow_diag) |
---|
1805 | ! |
---|
1806 | IMPLICIT NONE |
---|
1807 | ! |
---|
1808 | !! INPUT VARIABLES |
---|
1809 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
1810 | REAL(r_std), INTENT (in) :: dt_routing !! Routing time step (s) |
---|
1811 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes |
---|
1812 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
1813 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
1814 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
1815 | REAL(r_std), INTENT(in) :: vegtot(nbpt) !! Potentially vegetated fraction (unitless;0-1) |
---|
1816 | REAL(r_std), INTENT(in) :: totnobio(nbpt) !! Other areas which can not have vegetation |
---|
1817 | REAL(r_std), INTENT(in) :: transpot_mean(nbpt) !! Mean potential transpiration of the vegetation (kg/m^2/dt) |
---|
1818 | REAL(r_std), INTENT(in) :: transpot(nbpt,nvm) !! potential transpiration of each pft(kg/m^2/dt) |
---|
1819 | REAL(r_std), INTENT(in) :: evapot_corr(nbpt) !! potential soil evaporation(kg/m^2/dt) |
---|
1820 | REAL(r_std), INTENT(in) :: veget(nbpt,nvm) !! vegetation fraction of each pft (unitless;0-1) |
---|
1821 | REAL(r_std), INTENT(in) :: veget_max(nbpt,nvm) !! maximum vegetation fraction of each pft (unitless;0-1) |
---|
1822 | REAL(r_std), INTENT(in) :: soil_deficit(nbpt,nvm) !! |
---|
1823 | REAL(r_std), INTENT(in) :: precip(nbpt) !! Rainfall (kg/m^2/dt) |
---|
1824 | REAL(r_std), INTENT(in) :: humrel(nbpt) !! Soil moisture stress, root extraction potential (unitless) |
---|
1825 | REAL(r_std), INTENT(in) :: k_litt(nbpt) !! Averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
1826 | REAL(r_std), INTENT(in) :: floodtemp(nbpt) !! Temperature to decide if floodplains work (K) |
---|
1827 | REAL(r_std), INTENT(in) :: reinf_slope(nbpt) !! Coefficient which determines the reinfiltration ratio in the grid box due to flat areas (unitless;0-1) |
---|
1828 | REAL(r_std), INTENT(out) :: lakeinflow(nbpt) !! Water inflow to the lakes (kg/dt) |
---|
1829 | REAL(r_std), INTENT(in) :: vegstress(nbpt,nvm) !! vegetation growth stress |
---|
1830 | ! |
---|
1831 | !! OUTPUT VARIABLES |
---|
1832 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns into the grid box. |
---|
1833 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt_routing) |
---|
1834 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
1835 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt_routing) |
---|
1836 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt_routing) |
---|
1837 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt_routing) |
---|
1838 | REAL(r_std), INTENT(out) :: hydrographs(nbpt) !! Hydrographs at the outflow of the grid box for major basins (kg/dt) |
---|
1839 | REAL(r_std), INTENT(out) :: slowflow_diag(nbpt) !! Hydrographs of slow_flow = routed slow_flow for major basins (kg/dt) |
---|
1840 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
1841 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
1842 | |
---|
1843 | REAL(r_std), INTENT(out) :: netflow_stream_diag(nbpt) !! Input - Output flow to stream reservoir |
---|
1844 | REAL(r_std), INTENT(out) :: netflow_fast_diag(nbpt) !! Input - Output flow to fast reservoir |
---|
1845 | REAL(r_std), INTENT(out) :: netflow_slow_diag(nbpt) !! Input - Output flow to slow reservoir |
---|
1846 | ! |
---|
1847 | !! LOCAL VARIABLES |
---|
1848 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: fast_flow !! Outflow from the fast reservoir (kg/dt) |
---|
1849 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: slow_flow !! Outflow from the slow reservoir (kg/dt) |
---|
1850 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: stream_flow !! Outflow from the stream reservoir (kg/dt) |
---|
1851 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: flood_flow !! Outflow from the floodplain reservoir (kg/dt) |
---|
1852 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: pond_inflow !! Inflow to the pond reservoir (kg/dt) |
---|
1853 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: pond_drainage !! Drainage from pond (kg/m^2/dt) |
---|
1854 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: flood_drainage !! Drainage from floodplains (kg/m^2/dt) |
---|
1855 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: return_swamp !! Inflow to the swamp (kg/dt) |
---|
1856 | ! |
---|
1857 | ! Irrigation per basin |
---|
1858 | ! |
---|
1859 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_needs !! Total irrigation requirement (water requirements by the crop for its optimal growth) (kg) |
---|
1860 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_actual !! Possible irrigation according to the water availability in the reservoirs (kg) |
---|
1861 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_deficit !! Amount of water missing for irrigation (kg) |
---|
1862 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_adduct !! Amount of water carried over from other basins for irrigation (kg) |
---|
1863 | ! |
---|
1864 | REAL(r_std), DIMENSION(nbpt, 0:nbasmax+3) :: transport !! Water transport between basins (kg/dt) |
---|
1865 | REAL(r_std), DIMENSION(nbp_glo, 0:nbasmax+3) :: transport_glo !! Water transport between basins (kg/dt) |
---|
1866 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: floods !! Water flow in to the floodplains (kg/dt) |
---|
1867 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: potflood !! Potential inflow to the swamps (kg/dt) |
---|
1868 | REAL(r_std), DIMENSION(nbpt) :: tobeflooded !! Maximal surface which can be inundated in each grid box (m^2) |
---|
1869 | REAL(r_std), DIMENSION(nbpt) :: totarea !! Total area of basin (m^2) |
---|
1870 | REAL(r_std), DIMENSION(nbpt) :: totflood !! Total amount of water in the floodplains reservoir (kg) |
---|
1871 | REAL(r_std), DIMENSION(nbasmax) :: pond_excessflow !! |
---|
1872 | REAL(r_std) :: flow !! Outflow computation for the reservoirs (kg/dt) |
---|
1873 | REAL(r_std) :: floodindex !! Fraction of grid box area inundated (unitless;0-1) |
---|
1874 | REAL(r_std) :: pondex !! |
---|
1875 | REAL(r_std) :: flood_frac_pot !! Total fraction of the grid box which is flooded at optimum repartition (unitless;0-1) |
---|
1876 | REAL(r_std) :: stream_tot !! Total water amount in the stream reservoirs (kg) |
---|
1877 | REAL(r_std) :: adduction !! Importation of water from a stream reservoir of a neighboring grid box (kg) |
---|
1878 | REAL(r_std), DIMENSION(nbp_glo) :: lake_overflow_g !! Removed water from lake reservoir on global grid (kg/gridcell/dt_routing) |
---|
1879 | REAL(r_std), DIMENSION(nbpt) :: lake_overflow !! Removed water from lake reservoir on local grid (kg/gridcell/dt_routing) |
---|
1880 | REAL(r_std), DIMENSION(nbpt) :: lake_overflow_coast !! lake_overflow distributed on coast gridcells, only diag(kg/gridcell/dt_routing) |
---|
1881 | REAL(r_std) :: total_lake_overflow !! Sum of lake_overflow over full grid (kg) |
---|
1882 | REAL(r_std), DIMENSION(8,nbasmax) :: streams_around !! Stream reservoirs of the neighboring grid boxes (kg) |
---|
1883 | INTEGER(i_std), DIMENSION(8) :: igrd !! |
---|
1884 | INTEGER(i_std), DIMENSION(2) :: ff !! |
---|
1885 | INTEGER(i_std), DIMENSION(1) :: fi !! |
---|
1886 | INTEGER(i_std) :: ig, ib, ib2, ig2, jv !! Indices (unitless) |
---|
1887 | INTEGER(i_std) :: rtg, rtb, in !! Indices (unitless) |
---|
1888 | INTEGER(i_std) :: ier !! Error handling |
---|
1889 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: fast_flow_g !! Outflow from the fast reservoir (kg/dt) |
---|
1890 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: slow_flow_g !! Outflow from the slow reservoir (kg/dt) |
---|
1891 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: stream_flow_g !! Outflow from the stream reservoir (kg/dt) |
---|
1892 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrig_deficit_glo !! Amount of water missing for irrigation (kg) |
---|
1893 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: stream_reservoir_glo !! Water amount in the stream reservoir (kg) |
---|
1894 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrig_adduct_glo !! Amount of water carried over from other basins for irrigation (kg) |
---|
1895 | |
---|
1896 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: netflow_stream !! Input - Output flow to stream reservoir |
---|
1897 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: netflow_fast !! Input - Output flow to fast reservoir |
---|
1898 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: netflow_slow !! Input - Output flow to slow reservoir |
---|
1899 | |
---|
1900 | |
---|
1901 | !! PARAMETERS |
---|
1902 | LOGICAL, PARAMETER :: check_reservoir = .FALSE. !! Logical to choose if we write informations when a negative amount of water is occurring in a reservoir (true/false) |
---|
1903 | !_ ================================================================================================================================ |
---|
1904 | ! |
---|
1905 | transport(:,:) = zero |
---|
1906 | transport_glo(:,:) = zero |
---|
1907 | irrig_netereq(:) = zero |
---|
1908 | irrig_needs(:,:) = zero |
---|
1909 | irrig_actual(:,:) = zero |
---|
1910 | irrig_deficit(:,:) = zero |
---|
1911 | irrig_adduct(:,:) = zero |
---|
1912 | totarea(:) = zero |
---|
1913 | totflood(:) = zero |
---|
1914 | ! |
---|
1915 | ! Compute all the fluxes |
---|
1916 | ! |
---|
1917 | DO ib=1,nbasmax |
---|
1918 | DO ig=1,nbpt |
---|
1919 | ! |
---|
1920 | totarea(ig) = totarea(ig) + routing_area(ig,ib) |
---|
1921 | totflood(ig) = totflood(ig) + flood_reservoir(ig,ib) |
---|
1922 | ENDDO |
---|
1923 | ENDDO |
---|
1924 | ! |
---|
1925 | !> The outflow fluxes from the three reservoirs are computed. |
---|
1926 | !> The outflow of volume of water Vi into the reservoir i is assumed to be linearly related to its volume. |
---|
1927 | !> The water travel simulated by the routing scheme is dependent on the water retention index topo_resid |
---|
1928 | !> given by a 0.5 degree resolution map for each pixel performed from a simplification of Manning's formula |
---|
1929 | !> (Dingman, 1994; Ducharne et al., 2003). |
---|
1930 | !> The resulting product of tcst (in day/m) and topo_resid (in m) represents the time constant (day) |
---|
1931 | !> which is an e-folding time, the time necessary for the water amount |
---|
1932 | !> in the stream reservoir to decrease by a factor e. Hence, it gives an order of |
---|
1933 | !> magnitude of the travel time through this reservoir between |
---|
1934 | !> the sub-basin considered and its downstream neighbor. |
---|
1935 | |
---|
1936 | DO ib=1,nbasmax |
---|
1937 | DO ig=1,nbpt |
---|
1938 | IF ( route_tobasin(ig,ib) .GT. 0 ) THEN |
---|
1939 | ! |
---|
1940 | ! Each of the fluxes is limited by the water in the reservoir and a small margin |
---|
1941 | ! (min_reservoir) to avoid rounding errors. |
---|
1942 | ! |
---|
1943 | flow = MIN(fast_reservoir(ig,ib)/((topo_resid(ig,ib)/1000.)*fast_tcst*one_day/dt_routing),& |
---|
1944 | & fast_reservoir(ig,ib)-min_sechiba) |
---|
1945 | fast_flow(ig,ib) = MAX(flow, zero) |
---|
1946 | |
---|
1947 | flow = MIN(slow_reservoir(ig,ib)/((topo_resid(ig,ib)/1000.)*slow_tcst*one_day/dt_routing),& |
---|
1948 | & slow_reservoir(ig,ib)-min_sechiba) |
---|
1949 | slow_flow(ig,ib) = MAX(flow, zero) |
---|
1950 | |
---|
1951 | flow = MIN(stream_reservoir(ig,ib)/((topo_resid(ig,ib)/1000.)*stream_tcst* & |
---|
1952 | & MAX(un-SQRT(flood_frac_bas(ig,ib)),min_sechiba)*one_day/dt_routing),& |
---|
1953 | & stream_reservoir(ig,ib)-min_sechiba) |
---|
1954 | stream_flow(ig,ib) = MAX(flow, zero) |
---|
1955 | ! |
---|
1956 | ELSE |
---|
1957 | fast_flow(ig,ib) = zero |
---|
1958 | slow_flow(ig,ib) = zero |
---|
1959 | stream_flow(ig,ib) = zero |
---|
1960 | ENDIF |
---|
1961 | ENDDO |
---|
1962 | ENDDO |
---|
1963 | !- |
---|
1964 | !- Compute the fluxes out of the floodplains and ponds if they exist. |
---|
1965 | !- |
---|
1966 | IF (do_floodplains .OR. doponds) THEN |
---|
1967 | DO ig=1,nbpt |
---|
1968 | IF (flood_frac(ig) .GT. min_sechiba) THEN |
---|
1969 | ! |
---|
1970 | flow = MIN(floodout(ig)*totarea(ig)*pond_frac(ig)/flood_frac(ig), pond_reservoir(ig)+totflood(ig)) |
---|
1971 | pondex = MAX(flow - pond_reservoir(ig), zero) |
---|
1972 | pond_reservoir(ig) = pond_reservoir(ig) - (flow - pondex) |
---|
1973 | ! |
---|
1974 | ! If demand was over reservoir size, we will take it out from floodplains |
---|
1975 | ! |
---|
1976 | pond_excessflow(:) = zero |
---|
1977 | DO ib=1,nbasmax |
---|
1978 | pond_excessflow(ib) = MIN(pondex*flood_frac_bas(ig,ib)/(flood_frac(ig)-pond_frac(ig)),& |
---|
1979 | & flood_reservoir(ig,ib)) |
---|
1980 | pondex = pondex - pond_excessflow(ib) |
---|
1981 | ENDDO |
---|
1982 | ! |
---|
1983 | IF ( pondex .GT. min_sechiba) THEN |
---|
1984 | WRITE(numout,*) "Unable to redistribute the excess pond outflow over the water available in the floodplain." |
---|
1985 | WRITE(numout,*) "Pondex = ", pondex |
---|
1986 | WRITE(numout,*) "pond_excessflow(:) = ", pond_excessflow(:) |
---|
1987 | ENDIF |
---|
1988 | ! |
---|
1989 | DO ib=1,nbasmax |
---|
1990 | ! |
---|
1991 | flow = floodout(ig)*routing_area(ig,ib)*flood_frac_bas(ig,ib)/flood_frac(ig) + pond_excessflow(ib) |
---|
1992 | ! |
---|
1993 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) - flow |
---|
1994 | ! |
---|
1995 | ! |
---|
1996 | IF (flood_reservoir(ig,ib) .LT. min_sechiba) THEN |
---|
1997 | flood_reservoir(ig,ib) = zero |
---|
1998 | ENDIF |
---|
1999 | IF (pond_reservoir(ig) .LT. min_sechiba) THEN |
---|
2000 | pond_reservoir(ig) = zero |
---|
2001 | ENDIF |
---|
2002 | ENDDO |
---|
2003 | ENDIF |
---|
2004 | ENDDO |
---|
2005 | ENDIF |
---|
2006 | |
---|
2007 | !- |
---|
2008 | !- Computing the drainage and outflow from floodplains |
---|
2009 | !> Drainage from floodplains is depending on a averaged conductivity (k_litt) |
---|
2010 | !> for saturated infiltration in the 'litter' layer. Flood_drainage will be |
---|
2011 | !> a component of the total reinfiltration that leaves the routing scheme. |
---|
2012 | !- |
---|
2013 | IF (do_floodplains) THEN |
---|
2014 | IF (dofloodinfilt) THEN |
---|
2015 | DO ib=1,nbasmax |
---|
2016 | DO ig=1,nbpt |
---|
2017 | flood_drainage(ig,ib) = MAX(zero, MIN(flood_reservoir(ig,ib), & |
---|
2018 | & flood_frac(ig)*routing_area(ig,ib)*k_litt(ig)*dt_routing/one_day)) |
---|
2019 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) - flood_drainage(ig,ib) |
---|
2020 | ENDDO |
---|
2021 | ENDDO |
---|
2022 | ELSE |
---|
2023 | DO ib=1,nbasmax |
---|
2024 | DO ig=1,nbpt |
---|
2025 | flood_drainage(ig,ib) = zero |
---|
2026 | ENDDO |
---|
2027 | ENDDO |
---|
2028 | ENDIF |
---|
2029 | !> Outflow from floodplains is computed depending a delay. This delay is characterized by a time constant |
---|
2030 | !> function of the surface of the floodplains and the product of topo_resid and flood_tcst. flood_tcst |
---|
2031 | !> has been calibrated through observations in the Niger Inner Delta (D'Orgeval, 2006). |
---|
2032 | ! |
---|
2033 | DO ib=1,nbasmax |
---|
2034 | DO ig=1,nbpt |
---|
2035 | IF ( route_tobasin(ig,ib) .GT. 0 ) THEN |
---|
2036 | IF (flood_frac_bas(ig,ib) .GT. min_sechiba) THEN |
---|
2037 | flow = MIN(flood_reservoir(ig,ib) & |
---|
2038 | & /((topo_resid(ig,ib)/1000.)*flood_tcst* & |
---|
2039 | & flood_frac_bas(ig,ib)*one_day/dt_routing),& |
---|
2040 | & flood_reservoir(ig,ib)) |
---|
2041 | ELSE |
---|
2042 | flow = zero |
---|
2043 | ENDIF |
---|
2044 | flood_flow(ig,ib) = flow |
---|
2045 | ELSE |
---|
2046 | flood_flow(ig,ib) = zero |
---|
2047 | ENDIF |
---|
2048 | ENDDO |
---|
2049 | ENDDO |
---|
2050 | ELSE |
---|
2051 | DO ib=1,nbasmax |
---|
2052 | DO ig=1,nbpt |
---|
2053 | flood_drainage(ig,ib) = zero |
---|
2054 | flood_flow(ig,ib) = zero |
---|
2055 | flood_reservoir(ig,ib) = zero |
---|
2056 | ENDDO |
---|
2057 | ENDDO |
---|
2058 | ENDIF |
---|
2059 | |
---|
2060 | !- |
---|
2061 | !- Computing drainage and inflow for ponds |
---|
2062 | !> Drainage from ponds is computed in the same way than for floodplains. |
---|
2063 | !> Reinfiltrated fraction from the runoff (i.e. the outflow from the fast reservoir) |
---|
2064 | !> is the inflow of the pond reservoir. |
---|
2065 | !- |
---|
2066 | IF (doponds) THEN |
---|
2067 | ! If used, the slope coef is not used in hydrol for water2infilt |
---|
2068 | DO ib=1,nbasmax |
---|
2069 | DO ig=1,nbpt |
---|
2070 | pond_inflow(ig,ib) = fast_flow(ig,ib) * reinf_slope(ig) |
---|
2071 | pond_drainage(ig,ib) = MIN(pond_reservoir(ig)*routing_area(ig,ib)/totarea(ig), & |
---|
2072 | & pond_frac(ig)*routing_area(ig,ib)*k_litt(ig)*dt_routing/one_day) |
---|
2073 | fast_flow(ig,ib) = fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
2074 | ENDDO |
---|
2075 | ENDDO |
---|
2076 | ELSE |
---|
2077 | DO ib=1,nbasmax |
---|
2078 | DO ig=1,nbpt |
---|
2079 | pond_inflow(ig,ib) = zero |
---|
2080 | pond_drainage(ig,ib) = zero |
---|
2081 | pond_reservoir(ig) = zero |
---|
2082 | ENDDO |
---|
2083 | ENDDO |
---|
2084 | ENDIF |
---|
2085 | |
---|
2086 | !ym cette methode conserve les erreurs d'arrondie |
---|
2087 | !ym mais n'est pas la plus efficace |
---|
2088 | |
---|
2089 | !- |
---|
2090 | !- Compute the transport from one basin to another |
---|
2091 | !- |
---|
2092 | |
---|
2093 | IF (is_root_prc) THEN |
---|
2094 | ALLOCATE( fast_flow_g(nbp_glo, nbasmax), slow_flow_g(nbp_glo, nbasmax), & |
---|
2095 | stream_flow_g(nbp_glo, nbasmax), stat=ier) |
---|
2096 | ELSE |
---|
2097 | ALLOCATE( fast_flow_g(1,1), slow_flow_g(1,1), & |
---|
2098 | stream_flow_g(1, 1), stat=ier) |
---|
2099 | ENDIF |
---|
2100 | IF (ier /= 0) CALL ipslerr_p(3,'routing_flow','Pb in allocate for fast_flow_g','','') |
---|
2101 | |
---|
2102 | CALL gather(fast_flow,fast_flow_g) |
---|
2103 | CALL gather(slow_flow,slow_flow_g) |
---|
2104 | CALL gather(stream_flow,stream_flow_g) |
---|
2105 | |
---|
2106 | IF (is_root_prc) THEN |
---|
2107 | DO ib=1,nbasmax |
---|
2108 | DO ig=1,nbp_glo |
---|
2109 | ! |
---|
2110 | rtg = route_togrid_glo(ig,ib) |
---|
2111 | rtb = route_tobasin_glo(ig,ib) |
---|
2112 | transport_glo(rtg,rtb) = transport_glo(rtg,rtb) + fast_flow_g(ig,ib) + slow_flow_g(ig,ib) + & |
---|
2113 | & stream_flow_g(ig,ib) |
---|
2114 | ! |
---|
2115 | ENDDO |
---|
2116 | ENDDO |
---|
2117 | ENDIF |
---|
2118 | |
---|
2119 | DEALLOCATE( fast_flow_g, slow_flow_g, stream_flow_g ) |
---|
2120 | |
---|
2121 | CALL scatter(transport_glo,transport) |
---|
2122 | |
---|
2123 | !- |
---|
2124 | !- Do the floodings - First initialize |
---|
2125 | !- |
---|
2126 | return_swamp(:,:)=zero |
---|
2127 | floods(:,:)=zero |
---|
2128 | !- |
---|
2129 | !> Over swamp areas, a fraction of water (return_swamp) is withdrawn from the river depending on the |
---|
2130 | !> parameter swamp_cst. |
---|
2131 | !> It will be transferred into soil moisture and thus does not return directly to the river. |
---|
2132 | ! |
---|
2133 | !- 1. Swamps: Take out water from the river to put it to the swamps |
---|
2134 | !- |
---|
2135 | ! |
---|
2136 | IF ( doswamps ) THEN |
---|
2137 | tobeflooded(:) = swamp(:) |
---|
2138 | DO ib=1,nbasmax |
---|
2139 | DO ig=1,nbpt |
---|
2140 | potflood(ig,ib) = transport(ig,ib) |
---|
2141 | ! |
---|
2142 | IF ( tobeflooded(ig) > 0. .AND. potflood(ig,ib) > 0. .AND. floodtemp(ig) > tp_00 ) THEN |
---|
2143 | ! |
---|
2144 | IF (routing_area(ig,ib) > tobeflooded(ig)) THEN |
---|
2145 | floodindex = tobeflooded(ig) / routing_area(ig,ib) |
---|
2146 | ELSE |
---|
2147 | floodindex = 1.0 |
---|
2148 | ENDIF |
---|
2149 | return_swamp(ig,ib) = swamp_cst * potflood(ig,ib) * floodindex |
---|
2150 | ! |
---|
2151 | tobeflooded(ig) = tobeflooded(ig) - routing_area(ig,ib) |
---|
2152 | ! |
---|
2153 | ENDIF |
---|
2154 | ENDDO |
---|
2155 | ENDDO |
---|
2156 | ENDIF |
---|
2157 | !- |
---|
2158 | !- 2. Floodplains: Update the reservoir with the flux computed above. |
---|
2159 | !- |
---|
2160 | IF ( do_floodplains ) THEN |
---|
2161 | DO ig=1,nbpt |
---|
2162 | IF (floodplains(ig) .GT. min_sechiba .AND. floodtemp(ig) .GT. tp_00) THEN |
---|
2163 | DO ib=1,nbasmax |
---|
2164 | floods(ig,ib) = transport(ig,ib) - return_swamp(ig,ib) |
---|
2165 | ENDDO |
---|
2166 | ENDIF |
---|
2167 | ENDDO |
---|
2168 | ENDIF |
---|
2169 | ! |
---|
2170 | ! Update all reservoirs |
---|
2171 | !> The slow and deep reservoir (slow_reservoir) collect the deep drainage whereas the |
---|
2172 | !> fast_reservoir collects the computed surface runoff. Both discharge into a third reservoir |
---|
2173 | !> (stream_reservoir) of the next sub-basin downstream. |
---|
2174 | !> Water from the floodplains reservoir (flood_reservoir) flows also into the stream_reservoir of the next sub-basin downstream. |
---|
2175 | !> Water that flows into the pond_reservoir is withdrawn from the fast_reservoir. |
---|
2176 | ! |
---|
2177 | DO ig=1,nbpt |
---|
2178 | DO ib=1,nbasmax |
---|
2179 | ! |
---|
2180 | fast_reservoir(ig,ib) = fast_reservoir(ig,ib) + runoff(ig)*routing_area(ig,ib) - & |
---|
2181 | & fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
2182 | ! |
---|
2183 | slow_reservoir(ig,ib) = slow_reservoir(ig,ib) + drainage(ig)*routing_area(ig,ib) - & |
---|
2184 | & slow_flow(ig,ib) |
---|
2185 | ! |
---|
2186 | stream_reservoir(ig,ib) = stream_reservoir(ig,ib) + flood_flow(ig,ib) + transport(ig,ib) - & |
---|
2187 | & stream_flow(ig,ib) - return_swamp(ig,ib) - floods(ig,ib) |
---|
2188 | ! |
---|
2189 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) + floods(ig,ib) - & |
---|
2190 | & flood_flow(ig,ib) |
---|
2191 | ! |
---|
2192 | pond_reservoir(ig) = pond_reservoir(ig) + pond_inflow(ig,ib) - pond_drainage(ig,ib) |
---|
2193 | ! |
---|
2194 | IF ( flood_reservoir(ig,ib) .LT. zero ) THEN |
---|
2195 | IF ( check_reservoir ) THEN |
---|
2196 | WRITE(numout,*) "WARNING : negative flood reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2197 | WRITE(numout,*) "flood_reservoir, floods, flood_flow : ", flood_reservoir(ig,ib), floods(ig,ib), & |
---|
2198 | & flood_flow(ig,ib) |
---|
2199 | ENDIF |
---|
2200 | stream_reservoir(ig,ib) = stream_reservoir(ig,ib) + flood_reservoir(ig,ib) |
---|
2201 | flood_reservoir(ig,ib) = zero |
---|
2202 | ENDIF |
---|
2203 | ! |
---|
2204 | IF ( stream_reservoir(ig,ib) .LT. zero ) THEN |
---|
2205 | IF ( check_reservoir ) THEN |
---|
2206 | WRITE(numout,*) "WARNING : negative stream reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2207 | WRITE(numout,*) "stream_reservoir, flood_flow, transport : ", stream_reservoir(ig,ib), flood_flow(ig,ib), & |
---|
2208 | & transport(ig,ib) |
---|
2209 | WRITE(numout,*) "stream_flow, return_swamp, floods :", stream_flow(ig,ib), return_swamp(ig,ib), floods(ig,ib) |
---|
2210 | ENDIF |
---|
2211 | fast_reservoir(ig,ib) = fast_reservoir(ig,ib) + stream_reservoir(ig,ib) |
---|
2212 | stream_reservoir(ig,ib) = zero |
---|
2213 | ENDIF |
---|
2214 | ! |
---|
2215 | IF ( fast_reservoir(ig,ib) .LT. zero ) THEN |
---|
2216 | IF ( check_reservoir ) THEN |
---|
2217 | WRITE(numout,*) "WARNING : negative fast reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2218 | WRITE(numout,*) "fast_reservoir, runoff, fast_flow, ponf_inflow : ", fast_reservoir(ig,ib), & |
---|
2219 | &runoff(ig), fast_flow(ig,ib), pond_inflow(ig,ib) |
---|
2220 | ENDIF |
---|
2221 | slow_reservoir(ig,ib) = slow_reservoir(ig,ib) + fast_reservoir(ig,ib) |
---|
2222 | fast_reservoir(ig,ib) = zero |
---|
2223 | ENDIF |
---|
2224 | |
---|
2225 | IF ( slow_reservoir(ig,ib) .LT. - min_sechiba ) THEN |
---|
2226 | IF ( check_reservoir ) THEN |
---|
2227 | WRITE(numout,*) 'WARNING : There is a negative reservoir at :', ig, ib,lalo(ig,:) |
---|
2228 | WRITE(numout,*) 'WARNING : slowr, slow_flow, drainage', & |
---|
2229 | & slow_reservoir(ig,ib), slow_flow(ig,ib), drainage(ig) |
---|
2230 | WRITE(numout,*) 'WARNING : pondr, pond_inflow, pond_drainage', & |
---|
2231 | & pond_reservoir(ig), pond_inflow(ig,ib), pond_drainage(ig,ib) |
---|
2232 | ENDIF |
---|
2233 | CALL ipslerr_p(2, 'routing_flow', 'WARNING negative slow_reservoir.','','') |
---|
2234 | ENDIF |
---|
2235 | |
---|
2236 | ENDDO |
---|
2237 | ENDDO |
---|
2238 | |
---|
2239 | |
---|
2240 | totflood(:) = zero |
---|
2241 | DO ig=1,nbpt |
---|
2242 | DO ib=1,nbasmax |
---|
2243 | totflood(ig) = totflood(ig) + flood_reservoir(ig,ib) |
---|
2244 | ENDDO |
---|
2245 | ENDDO |
---|
2246 | |
---|
2247 | !- |
---|
2248 | !- Computes the fraction of floodplains and ponds according to their volume |
---|
2249 | !- |
---|
2250 | IF (do_floodplains .OR. doponds) THEN |
---|
2251 | flood_frac(:) = zero |
---|
2252 | flood_height(:) = zero |
---|
2253 | flood_frac_bas(:,:) = zero |
---|
2254 | DO ig=1, nbpt |
---|
2255 | IF (totflood(ig) .GT. min_sechiba) THEN |
---|
2256 | ! We first compute the total fraction of the grid box which is flooded at optimum repartition |
---|
2257 | flood_frac_pot = (totflood(ig) / (totarea(ig)*floodcri/(beta+un)))**(beta/(beta+un)) |
---|
2258 | flood_frac(ig) = MIN(floodplains(ig) / totarea(ig), flood_frac_pot) |
---|
2259 | ! Then we diagnose the fraction for each basin with the size of its flood_reservoir |
---|
2260 | ! (flood_frac_bas may be > 1) |
---|
2261 | DO ib=1,nbasmax |
---|
2262 | IF (routing_area(ig,ib) .GT. min_sechiba) THEN |
---|
2263 | flood_frac_bas(ig,ib) = flood_frac(ig) * & |
---|
2264 | & (flood_reservoir(ig,ib) / totflood(ig)) / (routing_area(ig,ib) / totarea(ig)) |
---|
2265 | ENDIF |
---|
2266 | ENDDO |
---|
2267 | ! We diagnose the maximum height of floodplain |
---|
2268 | flood_height(ig) = (beta/(beta+1))*floodcri*(flood_frac(ig))**(un/beta) + totflood(ig)/(totarea(ig)*flood_frac(ig)) |
---|
2269 | ! And finally add the pond surface |
---|
2270 | pond_frac(ig) = MIN(un-flood_frac(ig), ((betap+1)*pond_reservoir(ig) / (pondcri*totarea(ig)))**(betap/(betap+1)) ) |
---|
2271 | flood_frac(ig) = flood_frac(ig) + pond_frac(ig) |
---|
2272 | ! |
---|
2273 | ENDIF |
---|
2274 | ENDDO |
---|
2275 | ELSE |
---|
2276 | flood_frac(:) = zero |
---|
2277 | flood_height(:) = zero |
---|
2278 | flood_frac_bas(:,:) = zero |
---|
2279 | ENDIF |
---|
2280 | |
---|
2281 | !- |
---|
2282 | !- Compute the total reinfiltration and returnflow to the grid box |
---|
2283 | !> A term of returnflow is computed including the water from the swamps that does not return directly to the river |
---|
2284 | !> but will be put into soil moisture (see hydrol module). |
---|
2285 | !> A term of reinfiltration is computed including the water that reinfiltrated from the ponds and floodplains areas. |
---|
2286 | !> It will be put into soil moisture (see hydrol module). |
---|
2287 | !- |
---|
2288 | IF (do_floodplains .OR. doswamps .OR. doponds) THEN |
---|
2289 | returnflow(:) = zero |
---|
2290 | reinfiltration(:) = zero |
---|
2291 | ! |
---|
2292 | DO ib=1,nbasmax |
---|
2293 | DO ig=1,nbpt |
---|
2294 | returnflow(ig) = returnflow(ig) + return_swamp(ig,ib) |
---|
2295 | reinfiltration(ig) = reinfiltration(ig) + pond_drainage(ig,ib) + flood_drainage(ig,ib) |
---|
2296 | ENDDO |
---|
2297 | ENDDO |
---|
2298 | ! |
---|
2299 | DO ig=1,nbpt |
---|
2300 | returnflow(ig) = returnflow(ig)/totarea(ig) |
---|
2301 | reinfiltration(ig) = reinfiltration(ig)/totarea(ig) |
---|
2302 | ENDDO |
---|
2303 | ELSE |
---|
2304 | returnflow(:) = zero |
---|
2305 | reinfiltration(:) = zero |
---|
2306 | ENDIF |
---|
2307 | |
---|
2308 | ! |
---|
2309 | ! Compute the net irrigation requirement from Univ of Kassel |
---|
2310 | ! |
---|
2311 | ! This is a very low priority process and thus only applies if |
---|
2312 | ! there is some water left in the reservoirs after all other things. |
---|
2313 | ! |
---|
2314 | !> The computation of the irrigation is performed here. |
---|
2315 | !> * First step |
---|
2316 | !> In a first time, the water requirements (irrig_netereq) by the crops for their optimal growth are calculated |
---|
2317 | !> over each irrigated fraction (irrigated(ig)/totarea(ig)). It is the difference |
---|
2318 | !> between the maximal water loss by the crops (transpot_mean) and the net water amount kept by the soil |
---|
2319 | !> (precipitation and reinfiltration). Transpot_mean is computed in the routines enerbil and diffuco. It |
---|
2320 | !> is derived from the effective transpiration parametrization under stress-free conditions, called potential transpiration. |
---|
2321 | !> Crop_coef was used by a previous parametrization of irrigation in the code. Here, its value is equal to one. |
---|
2322 | !> The crop coefficient was constant in space and time to represent a mean resistance of the vegetation to the potential evaporation. |
---|
2323 | !> Now, the term crop_coef*Epot is substituted by transpot_mean (see Guimberteau et al., 2011). |
---|
2324 | !> * Second step |
---|
2325 | !> We compute irrigation needs in order to supply Irrig_netereq. Water for irrigation (irrig_actual) is withdrawn |
---|
2326 | !> from the reservoirs. The amount of water is withdrawn in priority from the stream reservoir. |
---|
2327 | !> If the irrigation requirement is higher than the water availability of the reservoir, water is withdrawn |
---|
2328 | !> from the fast reservoir or, in the extreme case, from the slow reservoir. |
---|
2329 | !> * Third step |
---|
2330 | !> We compute a deficit in water for irrigation. If it is positive, irrigation (depending on water availibility in the reservoirs) |
---|
2331 | !> has not supplied the crops requirements. |
---|
2332 | ! |
---|
2333 | IF ( do_irrigation ) THEN |
---|
2334 | DO ig=1,nbpt |
---|
2335 | ! |
---|
2336 | IF ((vegtot(ig) .GT. min_sechiba) .AND. (humrel(ig) .LT. un-min_sechiba) .AND. & |
---|
2337 | & (runoff(ig) .LT. min_sechiba) ) THEN |
---|
2338 | |
---|
2339 | ! irrig_netereq(ig) = (irrigated(ig) / totarea(ig) ) * MAX(zero, transpot_mean(ig) - & |
---|
2340 | ! & (precip(ig)+reinfiltration(ig)) ) |
---|
2341 | ! irrig_netereq(ig) = (irrigated(ig) / tot_vegfrac_crop(ig) ) * MAX(zero, transpot_agr(ig) - & |
---|
2342 | ! & (precip(ig)+reinfiltration(ig)) ) |
---|
2343 | irrig_netereq(ig) = zero |
---|
2344 | DO jv=2,nvm |
---|
2345 | IF ( veget_max(ig,jv) .GT. 0 ) THEN |
---|
2346 | IF ( ok_LAIdev(jv) .AND. (vegstress(ig,jv) .LT. irrig_threshold(jv)) ) THEN |
---|
2347 | IF (irrig_drip) THEN |
---|
2348 | irrig_netereq(ig) = irrig_netereq(ig) + MIN( irrig_dosmax, ( irrigated(ig) * irrig_fulfill(jv) * & |
---|
2349 | & MAX(zero, transpot(ig,jv) * (veget(ig,jv)/veget_max(ig,jv)) + & |
---|
2350 | & evapot_corr(ig) * (1-veget(ig,jv)/veget_max(ig,jv)) - & |
---|
2351 | & (precip(ig)+reinfiltration(ig)) ) ) ) * veget_max(ig,jv) |
---|
2352 | ELSE !flooding |
---|
2353 | irrig_netereq(ig) = irrig_netereq(ig) + MIN( irrig_dosmax, irrigated(ig) * & |
---|
2354 | & MAX(zero, soil_deficit(ig,jv)) ) * veget_max(ig,jv) |
---|
2355 | ENDIF |
---|
2356 | ! irrigated must be the percentage of croplands irrigated |
---|
2357 | ENDIF |
---|
2358 | ENDIF |
---|
2359 | ENDDO |
---|
2360 | ! irrig_netereq is the needs (mm) over the entire grid |
---|
2361 | |
---|
2362 | ENDIF |
---|
2363 | ! |
---|
2364 | DO ib=1,nbasmax |
---|
2365 | IF ( routing_area(ig,ib) .GT. 0 ) THEN |
---|
2366 | |
---|
2367 | irrig_needs(ig,ib) = irrig_netereq(ig) * routing_area(ig,ib) |
---|
2368 | ! irrig_needs(ig,ib) = irrig_netereq(ig) * tot_vegfrac_crop(ig) * routing_area(ig,ib) |
---|
2369 | |
---|
2370 | irrig_actual(ig,ib) = MIN(irrig_needs(ig,ib),& |
---|
2371 | & stream_reservoir(ig,ib) + fast_reservoir(ig,ib) + slow_reservoir(ig,ib) ) |
---|
2372 | |
---|
2373 | slow_reservoir(ig,ib) = MAX(zero, slow_reservoir(ig,ib) + & |
---|
2374 | & MIN(zero, fast_reservoir(ig,ib) + MIN(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib)))) |
---|
2375 | |
---|
2376 | fast_reservoir(ig,ib) = MAX( zero, & |
---|
2377 | & fast_reservoir(ig,ib) + MIN(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib))) |
---|
2378 | |
---|
2379 | stream_reservoir(ig,ib) = MAX(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib) ) |
---|
2380 | |
---|
2381 | irrig_deficit(ig,ib) = irrig_needs(ig,ib)-irrig_actual(ig,ib) |
---|
2382 | |
---|
2383 | ENDIF |
---|
2384 | ENDDO |
---|
2385 | ! |
---|
2386 | ! Check if we cannot find the missing water in another basin of the same grid (stream reservoir only). |
---|
2387 | ! If we find that then we create some adduction from that subbasin to the one where we need it for |
---|
2388 | ! irrigation. |
---|
2389 | ! |
---|
2390 | !> If crops water requirements have not been supplied (irrig_deficit>0), we check if we cannot find the missing water |
---|
2391 | !> in another basin of the same grid. If there is water in the stream reservoir of this subbasin, we create some adduction |
---|
2392 | !> from that subbasin to the one where we need it for irrigation. |
---|
2393 | !> |
---|
2394 | DO ib=1,nbasmax |
---|
2395 | |
---|
2396 | stream_tot = SUM(stream_reservoir(ig,:)) |
---|
2397 | |
---|
2398 | DO WHILE ( irrig_deficit(ig,ib) > min_sechiba .AND. stream_tot > min_sechiba) |
---|
2399 | |
---|
2400 | fi = MAXLOC(stream_reservoir(ig,:)) |
---|
2401 | ib2 = fi(1) |
---|
2402 | |
---|
2403 | irrig_adduct(ig,ib) = MIN(irrig_deficit(ig,ib), stream_reservoir(ig,ib2)) |
---|
2404 | stream_reservoir(ig,ib2) = stream_reservoir(ig,ib2)-irrig_adduct(ig,ib) |
---|
2405 | irrig_deficit(ig,ib) = irrig_deficit(ig,ib)-irrig_adduct(ig,ib) |
---|
2406 | |
---|
2407 | stream_tot = SUM(stream_reservoir(ig,:)) |
---|
2408 | |
---|
2409 | ENDDO |
---|
2410 | |
---|
2411 | ENDDO |
---|
2412 | ! |
---|
2413 | ENDDO |
---|
2414 | ! |
---|
2415 | ! If we are at higher resolution we might need to look at neighboring grid boxes to find the streams |
---|
2416 | ! which can feed irrigation |
---|
2417 | ! |
---|
2418 | !> At higher resolution (grid box smaller than 100x100km), we can import water from neighboring grid boxes |
---|
2419 | !> to the one where we need it for irrigation. |
---|
2420 | ! |
---|
2421 | IF (is_root_prc) THEN |
---|
2422 | ALLOCATE(irrig_deficit_glo(nbp_glo, nbasmax), stream_reservoir_glo(nbp_glo, nbasmax), & |
---|
2423 | & irrig_adduct_glo(nbp_glo, nbasmax), stat=ier) |
---|
2424 | ELSE |
---|
2425 | ALLOCATE(irrig_deficit_glo(0, 0), stream_reservoir_glo(0, 0), & |
---|
2426 | & irrig_adduct_glo(0, 0), stat=ier) |
---|
2427 | ENDIF |
---|
2428 | IF (ier /= 0) CALL ipslerr_p(3,'routing_flow','Pb in allocate for irrig_deficit_glo, stream_reservoir_glo,...','','') |
---|
2429 | |
---|
2430 | CALL gather(irrig_deficit, irrig_deficit_glo) |
---|
2431 | CALL gather(stream_reservoir, stream_reservoir_glo) |
---|
2432 | CALL gather(irrig_adduct, irrig_adduct_glo) |
---|
2433 | |
---|
2434 | IF (is_root_prc) THEN |
---|
2435 | ! |
---|
2436 | DO ig=1,nbp_glo |
---|
2437 | ! Only work if the grid box is smaller than 100x100km. Else the piplines we build |
---|
2438 | ! here would be too long to be reasonable. |
---|
2439 | IF ( resolution_g(ig,1) < 100000. .AND. resolution_g(ig,2) < 100000. ) THEN |
---|
2440 | DO ib=1,nbasmax |
---|
2441 | ! |
---|
2442 | IF ( irrig_deficit_glo(ig,ib) > min_sechiba ) THEN |
---|
2443 | ! |
---|
2444 | streams_around(:,:) = zero |
---|
2445 | ! |
---|
2446 | DO in=1,NbNeighb |
---|
2447 | ig2 = neighbours_g(ig,in) |
---|
2448 | IF (ig2 .GT. 0 ) THEN |
---|
2449 | streams_around(in,:) = stream_reservoir_glo(ig2,:) |
---|
2450 | igrd(in) = ig2 |
---|
2451 | ENDIF |
---|
2452 | ENDDO |
---|
2453 | ! |
---|
2454 | IF ( MAXVAL(streams_around) .GT. zero ) THEN |
---|
2455 | ! |
---|
2456 | ff=MAXLOC(streams_around) |
---|
2457 | ig2=igrd(ff(1)) |
---|
2458 | ib2=ff(2) |
---|
2459 | ! |
---|
2460 | IF ( routing_area_glo(ig2,ib2) .GT. 0 .AND. stream_reservoir_glo(ig2,ib2) > zero ) THEN |
---|
2461 | adduction = MIN(irrig_deficit_glo(ig,ib), stream_reservoir_glo(ig2,ib2)) |
---|
2462 | stream_reservoir_glo(ig2,ib2) = stream_reservoir_glo(ig2,ib2) - adduction |
---|
2463 | irrig_deficit_glo(ig,ib) = irrig_deficit_glo(ig,ib) - adduction |
---|
2464 | irrig_adduct_glo(ig,ib) = irrig_adduct_glo(ig,ib) + adduction |
---|
2465 | ENDIF |
---|
2466 | ! |
---|
2467 | ENDIF |
---|
2468 | ! |
---|
2469 | ENDIF |
---|
2470 | ! |
---|
2471 | ENDDO |
---|
2472 | ENDIF |
---|
2473 | ENDDO |
---|
2474 | ! |
---|
2475 | ENDIF |
---|
2476 | ! |
---|
2477 | |
---|
2478 | CALL scatter(irrig_deficit_glo, irrig_deficit) |
---|
2479 | CALL scatter(stream_reservoir_glo, stream_reservoir) |
---|
2480 | CALL scatter(irrig_adduct_glo, irrig_adduct) |
---|
2481 | |
---|
2482 | DEALLOCATE(irrig_deficit_glo, stream_reservoir_glo, irrig_adduct_glo) |
---|
2483 | |
---|
2484 | ENDIF |
---|
2485 | |
---|
2486 | !! Calculate the net water flow to each routing reservoir (in kg/dt) |
---|
2487 | !! to further diagnose the corresponding water budget residu |
---|
2488 | !! in routing_main |
---|
2489 | |
---|
2490 | netflow_fast_diag(:) = zero |
---|
2491 | netflow_slow_diag(:) = zero |
---|
2492 | netflow_stream_diag(:) = zero |
---|
2493 | |
---|
2494 | DO ib=1,nbasmax |
---|
2495 | DO ig=1,nbpt |
---|
2496 | netflow_fast_diag(ig) = netflow_fast_diag(ig) + runoff(ig)*routing_area(ig,ib) & |
---|
2497 | - fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
2498 | netflow_slow_diag(ig) = netflow_slow_diag(ig) + drainage(ig)*routing_area(ig,ib) & |
---|
2499 | - slow_flow(ig,ib) |
---|
2500 | netflow_stream_diag(ig) = netflow_stream_diag(ig) + flood_flow(ig,ib) + transport(ig,ib) & |
---|
2501 | - stream_flow(ig,ib) - return_swamp(ig,ib) - floods(ig,ib) |
---|
2502 | ENDDO |
---|
2503 | ENDDO |
---|
2504 | |
---|
2505 | !! Grid cell averaging |
---|
2506 | DO ig=1,nbpt |
---|
2507 | netflow_fast_diag(ig) = netflow_fast_diag(ig)/totarea(ig) |
---|
2508 | netflow_slow_diag(ig) = netflow_slow_diag(ig)/totarea(ig) |
---|
2509 | netflow_stream_diag(ig) = netflow_stream_diag(ig)/totarea(ig) |
---|
2510 | ENDDO |
---|
2511 | |
---|
2512 | ! |
---|
2513 | ! |
---|
2514 | ! Compute the fluxes which leave the routing scheme |
---|
2515 | ! |
---|
2516 | ! Lakeinflow is in Kg/dt |
---|
2517 | ! returnflow is in Kg/m^2/dt |
---|
2518 | ! |
---|
2519 | hydrographs(:) = zero |
---|
2520 | slowflow_diag(:) = zero |
---|
2521 | fast_diag(:) = zero |
---|
2522 | slow_diag(:) = zero |
---|
2523 | stream_diag(:) = zero |
---|
2524 | flood_diag(:) = zero |
---|
2525 | pond_diag(:) = zero |
---|
2526 | irrigation(:) = zero |
---|
2527 | ! |
---|
2528 | ! |
---|
2529 | DO ib=1,nbasmax |
---|
2530 | ! |
---|
2531 | DO ig=1,nbpt |
---|
2532 | IF (hydrodiag(ig,ib) > 0 ) THEN |
---|
2533 | hydrographs(ig) = hydrographs(ig) + fast_flow(ig,ib) + slow_flow(ig,ib) + & |
---|
2534 | & stream_flow(ig,ib) |
---|
2535 | slowflow_diag(ig) = slowflow_diag(ig) + slow_flow(ig,ib) |
---|
2536 | ENDIF |
---|
2537 | fast_diag(ig) = fast_diag(ig) + fast_reservoir(ig,ib) |
---|
2538 | slow_diag(ig) = slow_diag(ig) + slow_reservoir(ig,ib) |
---|
2539 | stream_diag(ig) = stream_diag(ig) + stream_reservoir(ig,ib) |
---|
2540 | flood_diag(ig) = flood_diag(ig) + flood_reservoir(ig,ib) |
---|
2541 | IF (do_fullirr) THEN |
---|
2542 | irrigation(ig) = irrigation(ig) + irrig_needs(ig,ib) |
---|
2543 | ! when fully irrigated, we interrupt the water balance, and bring |
---|
2544 | ! magic water |
---|
2545 | ELSE |
---|
2546 | irrigation (ig) = irrigation (ig) + irrig_actual(ig,ib) + irrig_adduct(ig,ib) |
---|
2547 | ENDIF |
---|
2548 | ENDDO |
---|
2549 | ENDDO |
---|
2550 | ! |
---|
2551 | DO ig=1,nbpt |
---|
2552 | fast_diag(ig) = fast_diag(ig)/totarea(ig) |
---|
2553 | slow_diag(ig) = slow_diag(ig)/totarea(ig) |
---|
2554 | stream_diag(ig) = stream_diag(ig)/totarea(ig) |
---|
2555 | flood_diag(ig) = flood_diag(ig)/totarea(ig) |
---|
2556 | pond_diag(ig) = pond_reservoir(ig)/totarea(ig) |
---|
2557 | ! |
---|
2558 | irrigation(ig) = irrigation(ig)/totarea(ig) |
---|
2559 | ! |
---|
2560 | ! The three output types for the routing : endoheric basins,, rivers and |
---|
2561 | ! diffuse coastal flow. |
---|
2562 | ! |
---|
2563 | lakeinflow(ig) = transport(ig,nbasmax+1) |
---|
2564 | coastalflow(ig) = transport(ig,nbasmax+2) |
---|
2565 | riverflow(ig) = transport(ig,nbasmax+3) |
---|
2566 | ! |
---|
2567 | ENDDO |
---|
2568 | ! |
---|
2569 | flood_res = flood_diag + pond_diag |
---|
2570 | |
---|
2571 | |
---|
2572 | !! Remove water from lake reservoir if it exceeds the maximum limit and distribute it |
---|
2573 | !! uniformly over all possible the coastflow gridcells |
---|
2574 | |
---|
2575 | ! Calculate lake_overflow and remove it from lake_reservoir |
---|
2576 | DO ig=1,nbpt |
---|
2577 | lake_overflow(ig) = MAX(0., lake_reservoir(ig) - max_lake_reservoir*totarea(ig)) |
---|
2578 | lake_reservoir(ig) = lake_reservoir(ig) - lake_overflow(ig) |
---|
2579 | END DO |
---|
2580 | ! Transform lake_overflow from kg/grid-cell/dt_routing into kg/m^2/s |
---|
2581 | CALL xios_orchidee_send_field("lake_overflow",lake_overflow(:)/totarea(:)/dt_routing) |
---|
2582 | |
---|
2583 | ! Calculate the sum of the lake_overflow and distribute it uniformly over all gridboxes |
---|
2584 | CALL gather(lake_overflow,lake_overflow_g) |
---|
2585 | IF (is_root_prc) THEN |
---|
2586 | total_lake_overflow=SUM(lake_overflow_g) |
---|
2587 | END IF |
---|
2588 | CALL bcast(total_lake_overflow) |
---|
2589 | |
---|
2590 | ! Distribute the lake_overflow uniformly over all coastal gridcells |
---|
2591 | ! lake_overflow_coast is only calculated to be used as diagnostics if needed |
---|
2592 | DO ig=1,nbpt |
---|
2593 | coastalflow(ig) = coastalflow(ig) + total_lake_overflow/nb_coast_gridcells * mask_coast(ig) |
---|
2594 | lake_overflow_coast(ig) = total_lake_overflow/nb_coast_gridcells * mask_coast(ig) |
---|
2595 | END DO |
---|
2596 | ! Transform from kg/grid-cell/dt_routing into m^3/grid-cell/s to match output unit of coastalflow |
---|
2597 | CALL xios_orchidee_send_field("lake_overflow_coast",lake_overflow_coast/mille/dt_routing) |
---|
2598 | |
---|
2599 | |
---|
2600 | END SUBROUTINE routing_flow |
---|
2601 | ! |
---|
2602 | !! ================================================================================================================================ |
---|
2603 | !! SUBROUTINE : routing_lake |
---|
2604 | !! |
---|
2605 | !>\BRIEF : This subroutine stores water in lakes so that it does not cycle through the runoff. |
---|
2606 | !! For the moment it only works for endoheric lakes but I can be extended in the future. |
---|
2607 | !! |
---|
2608 | !! DESCRIPTION (definitions, functional, design, flags): The return flow to the soil moisture reservoir |
---|
2609 | !! is based on a maximum lake evaporation rate (maxevap_lake). \n |
---|
2610 | !! |
---|
2611 | !! RECENT CHANGE(S): None |
---|
2612 | !! |
---|
2613 | !! MAIN OUTPUT VARIABLE(S): |
---|
2614 | !! |
---|
2615 | !! REFERENCES : None |
---|
2616 | !! |
---|
2617 | !! FLOWCHART :None |
---|
2618 | !! \n |
---|
2619 | !_ ================================================================================================================================ |
---|
2620 | |
---|
2621 | SUBROUTINE routing_lake(nbpt, dt_routing, lakeinflow, humrel, return_lakes) |
---|
2622 | ! |
---|
2623 | IMPLICIT NONE |
---|
2624 | ! |
---|
2625 | !! INPUT VARIABLES |
---|
2626 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
2627 | REAL(r_std), INTENT (in) :: dt_routing !! Routing time step (s) |
---|
2628 | REAL(r_std), INTENT(out) :: lakeinflow(nbpt) !! Water inflow to the lakes (kg/dt) |
---|
2629 | REAL(r_std), INTENT(in) :: humrel(nbpt) !! Soil moisture stress, root extraction potential (unitless) |
---|
2630 | ! |
---|
2631 | !! OUTPUT VARIABLES |
---|
2632 | REAL(r_std), INTENT(out) :: return_lakes(nbpt) !! Water from lakes flowing back into soil moisture (kg/m^2/dt) |
---|
2633 | ! |
---|
2634 | !! LOCAL VARIABLES |
---|
2635 | INTEGER(i_std) :: ig !! Indices (unitless) |
---|
2636 | REAL(r_std) :: refill !! |
---|
2637 | REAL(r_std) :: total_area !! Sum of all the surfaces of the basins (m^2) |
---|
2638 | |
---|
2639 | !_ ================================================================================================================================ |
---|
2640 | ! |
---|
2641 | ! |
---|
2642 | DO ig=1,nbpt |
---|
2643 | ! |
---|
2644 | total_area = SUM(routing_area(ig,:)) |
---|
2645 | ! |
---|
2646 | lake_reservoir(ig) = lake_reservoir(ig) + lakeinflow(ig) |
---|
2647 | |
---|
2648 | IF ( doswamps ) THEN |
---|
2649 | ! Calculate a return flow that will be extracted from the lake reservoir and reinserted in the soil in hydrol |
---|
2650 | ! Uptake in Kg/dt |
---|
2651 | refill = MAX(zero, maxevap_lake * (un - humrel(ig)) * dt_routing * total_area) |
---|
2652 | return_lakes(ig) = MIN(refill, lake_reservoir(ig)) |
---|
2653 | lake_reservoir(ig) = lake_reservoir(ig) - return_lakes(ig) |
---|
2654 | ! Return in Kg/m^2/dt |
---|
2655 | return_lakes(ig) = return_lakes(ig)/total_area |
---|
2656 | ELSE |
---|
2657 | return_lakes(ig) = zero |
---|
2658 | ENDIF |
---|
2659 | |
---|
2660 | ! This is the volume of the lake scaled to the entire grid. |
---|
2661 | ! It would be better to scale it to the size of the lake |
---|
2662 | ! but this information is not yet available. |
---|
2663 | lake_diag(ig) = lake_reservoir(ig)/total_area |
---|
2664 | |
---|
2665 | lakeinflow(ig) = lakeinflow(ig)/total_area |
---|
2666 | |
---|
2667 | ENDDO |
---|
2668 | ! |
---|
2669 | END SUBROUTINE routing_lake |
---|
2670 | ! |
---|
2671 | |
---|
2672 | !! ================================================================================================================================ |
---|
2673 | !! SUBROUTINE : routing_diagnostic_p |
---|
2674 | !! |
---|
2675 | !>\BRIEF This parallelized subroutine gives a diagnostic of the basins used |
---|
2676 | !! |
---|
2677 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
2678 | !! |
---|
2679 | !! RECENT CHANGE(S): None |
---|
2680 | !! |
---|
2681 | !! MAIN OUTPUT VARIABLE(S): |
---|
2682 | !! |
---|
2683 | !! REFERENCES : None |
---|
2684 | !! |
---|
2685 | !! FLOWCHART : None |
---|
2686 | !! \n |
---|
2687 | !_ ================================================================================================================================ |
---|
2688 | |
---|
2689 | SUBROUTINE routing_diagnostic_p(nbpt, index, lalo, resolution, contfrac, hist_id, hist2_id) |
---|
2690 | ! |
---|
2691 | IMPLICIT NONE |
---|
2692 | |
---|
2693 | !! INPUT VARIABLES |
---|
2694 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
2695 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Indices of the points on the map (unitless) |
---|
2696 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
2697 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
2698 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
2699 | INTEGER(i_std),INTENT (in) :: hist_id !! Access to history file (unitless) |
---|
2700 | INTEGER(i_std),INTENT (in) :: hist2_id !! Access to history file 2 (unitless) |
---|
2701 | ! |
---|
2702 | !! LOCAL VARIABLES |
---|
2703 | REAL(r_std), DIMENSION(nbpt) :: nbrivers !! Number of rivers in the grid (unitless) |
---|
2704 | REAL(r_std), DIMENSION(nbpt) :: basinmap !! Map of basins (unitless) |
---|
2705 | REAL(r_std), DIMENSION(nbp_glo) :: nbrivers_g !! Number of rivers in the grid (unitless) |
---|
2706 | REAL(r_std), DIMENSION(nbp_glo) :: basinmap_g !! Map of basins (unitless) |
---|
2707 | |
---|
2708 | !_ ================================================================================================================================ |
---|
2709 | routing_area => routing_area_glo |
---|
2710 | topo_resid => topo_resid_glo |
---|
2711 | route_togrid => route_togrid_glo |
---|
2712 | route_tobasin => route_tobasin_glo |
---|
2713 | route_nbintobas => route_nbintobas_glo |
---|
2714 | global_basinid => global_basinid_glo |
---|
2715 | hydrodiag=>hydrodiag_glo |
---|
2716 | hydroupbasin=>hydroupbasin_glo |
---|
2717 | |
---|
2718 | IF (is_root_prc) CALL routing_diagnostic(nbp_glo, index_g, lalo_g, resolution_g, contfrac_g, nbrivers_g,basinmap_g) |
---|
2719 | |
---|
2720 | routing_area => routing_area_loc |
---|
2721 | topo_resid => topo_resid_loc |
---|
2722 | route_togrid => route_togrid_loc |
---|
2723 | route_tobasin => route_tobasin_loc |
---|
2724 | route_nbintobas => route_nbintobas_loc |
---|
2725 | global_basinid => global_basinid_loc |
---|
2726 | hydrodiag=>hydrodiag_loc |
---|
2727 | hydroupbasin=>hydroupbasin_loc |
---|
2728 | |
---|
2729 | CALL scatter(nbrivers_g,nbrivers) |
---|
2730 | CALL scatter(basinmap_g,basinmap) |
---|
2731 | CALL scatter(hydrodiag_glo,hydrodiag_loc) |
---|
2732 | CALL scatter(hydroupbasin_glo,hydroupbasin_loc) |
---|
2733 | |
---|
2734 | CALL xios_orchidee_send_field("basinmap",basinmap) |
---|
2735 | CALL xios_orchidee_send_field("nbrivers",nbrivers) |
---|
2736 | |
---|
2737 | IF ( .NOT. almaoutput ) THEN |
---|
2738 | CALL histwrite_p(hist_id, 'basinmap', 1, basinmap, nbpt, index) |
---|
2739 | CALL histwrite_p(hist_id, 'nbrivers', 1, nbrivers, nbpt, index) |
---|
2740 | ELSE |
---|
2741 | ENDIF |
---|
2742 | IF ( hist2_id > 0 ) THEN |
---|
2743 | IF ( .NOT. almaoutput ) THEN |
---|
2744 | CALL histwrite_p(hist2_id, 'basinmap', 1, basinmap, nbpt, index) |
---|
2745 | CALL histwrite_p(hist2_id, 'nbrivers', 1, nbrivers, nbpt, index) |
---|
2746 | ELSE |
---|
2747 | ENDIF |
---|
2748 | ENDIF |
---|
2749 | |
---|
2750 | |
---|
2751 | END SUBROUTINE routing_diagnostic_p |
---|
2752 | |
---|
2753 | !! ================================================================================================================================ |
---|
2754 | !! SUBROUTINE : routing_diagnostic |
---|
2755 | !! |
---|
2756 | !>\BRIEF This non-parallelized subroutine gives a diagnostic of the basins used. This produces some information |
---|
2757 | !! on the rivers which are being diagnosed. |
---|
2758 | !! |
---|
2759 | !! DESCRIPTION (definitions, functional, design, flags) : As not all rivers can be monitored in the model, we will only |
---|
2760 | !! archive num_largest rivers. In this routine we will diagnose the num_largest largest rivers and print to the standard |
---|
2761 | !! output the names of these basins and their area. The list of names of these largest rivers are taken from a list coded in the |
---|
2762 | !! routine routing_names. As this standard output is not sufficient, we will also write it to a netCDF file with the routine |
---|
2763 | !! routing_diagncfile. It is important to keep for diagnostic the fraction of the largest basins in each grid box and keep information |
---|
2764 | !! how they are linked one to the other. |
---|
2765 | !! |
---|
2766 | !! RECENT CHANGE(S): None |
---|
2767 | !! |
---|
2768 | !! MAIN OUTPUT VARIABLE(S): No output variables. |
---|
2769 | !! |
---|
2770 | !! REFERENCES : None |
---|
2771 | !! |
---|
2772 | !! FLOWCHART :None |
---|
2773 | !! \n |
---|
2774 | !_ ================================================================================================================================ |
---|
2775 | |
---|
2776 | SUBROUTINE routing_diagnostic(nbpt, l_index, lalo, resolution, contfrac, nbrivers, basinmap) |
---|
2777 | ! |
---|
2778 | IMPLICIT NONE |
---|
2779 | ! |
---|
2780 | !! INPUT VARIABLES |
---|
2781 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
2782 | INTEGER(i_std), INTENT(in) :: l_index(nbpt) !! Indices of the points on the map (unitless) |
---|
2783 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
2784 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
2785 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
2786 | ! |
---|
2787 | !! OUTPUT VARIABLES |
---|
2788 | REAL(r_std), DIMENSION(nbpt), INTENT(out) :: nbrivers !! Number of rivers in the grid (unitless) |
---|
2789 | REAL(r_std), DIMENSION(nbpt), INTENT(out) :: basinmap !! Map of basins (unitless) |
---|
2790 | ! |
---|
2791 | !! LOCAL VARIABLES |
---|
2792 | INTEGER(i_std), DIMENSION(nbpt,nbasmax) :: outids !! IDs of river to which this basin contributes (unitless) |
---|
2793 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: pts !! List the points belonging to the basin (unitless) |
---|
2794 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: ptbas !! List the basin number for this point (unitless) |
---|
2795 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: outpt !! Outflow point for each basin (unitless) |
---|
2796 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: nb_pts !! Number of points in the basin (unitless) |
---|
2797 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: totarea !! Total area of basin (m^2) |
---|
2798 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: tmparea !! |
---|
2799 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: topids !! The IDs of the first num_largest basins (unitless) |
---|
2800 | CHARACTER(LEN=25), ALLOCATABLE, DIMENSION(:) :: basin_names !! Names of the rivers (unitless) |
---|
2801 | CHARACTER(LEN=25) :: name_str !! |
---|
2802 | ! |
---|
2803 | LOGICAL :: river_file !! Choose to write a description of the rivers (true/false) |
---|
2804 | CHARACTER(LEN=80) :: river_file_name !! Filename in which we write the description of the rivers (unitless) |
---|
2805 | ! |
---|
2806 | CHARACTER(LEN=25), ALLOCATABLE, DIMENSION(:) :: sorted_names !! |
---|
2807 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: streams_nb !! Number of streams in basin (unitless) |
---|
2808 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: streams_avehops !! Average number of hops in streams (unitless) |
---|
2809 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: streams_minhops !! Minimum number of hops in streams (unitless) |
---|
2810 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: streams_maxhops !! Minimum number of hops in streams (unitless) |
---|
2811 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: streams_resid !! Average residence time |
---|
2812 | ! |
---|
2813 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lbasin_area !! |
---|
2814 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lbasin_uparea !! |
---|
2815 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: lrivercode !! |
---|
2816 | ! |
---|
2817 | INTEGER(i_std) :: ig, ib, og, ob, ign, ibn, ff(1), ic, icc, nb_small, idbas, slen, ii !! Indices (unitless) |
---|
2818 | INTEGER(i_std) :: ier !! Error handling |
---|
2819 | CHARACTER(LEN=1) :: nn !! |
---|
2820 | INTEGER(i_std) :: name_found !! |
---|
2821 | ! |
---|
2822 | REAL(r_std) :: averesid !! |
---|
2823 | REAL(r_std), DIMENSION(nbasmax) :: tmpbas !! |
---|
2824 | REAL(r_std), DIMENSION(nbpt,nbasmax) :: areaupbasin !! |
---|
2825 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: sortedrivs !! |
---|
2826 | ! |
---|
2827 | ! Variables for the river coding |
---|
2828 | ! |
---|
2829 | INTEGER(i_std) :: longest_river !! |
---|
2830 | INTEGER(i_std) :: nbmax !! |
---|
2831 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: allstreams !! |
---|
2832 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: upstreamchange !! |
---|
2833 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: tstreams, tslen, tpts, tptbas, tcode !! |
---|
2834 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: tuparea !! |
---|
2835 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: tupstreamchange !! |
---|
2836 | ! |
---|
2837 | LOGICAL :: err_nbpt_grid_basin !! (true/false) |
---|
2838 | LOGICAL :: err_basin_number !! (true/false) |
---|
2839 | |
---|
2840 | !_ ================================================================================================================================ |
---|
2841 | ! |
---|
2842 | ! |
---|
2843 | ALLOCATE(pts(num_largest, nbpt), stat=ier) |
---|
2844 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for pts','','') |
---|
2845 | |
---|
2846 | ALLOCATE(ptbas(num_largest, nbpt), stat=ier) |
---|
2847 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for ptbas','','') |
---|
2848 | |
---|
2849 | ALLOCATE(outpt(num_largest, 2), stat=ier) |
---|
2850 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for outpt','','') |
---|
2851 | |
---|
2852 | ALLOCATE(nb_pts(num_largest), stat=ier) |
---|
2853 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for nb_pts','','') |
---|
2854 | |
---|
2855 | ALLOCATE(totarea(num_largest), tmparea(num_largest), stat=ier) |
---|
2856 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for totarea','','') |
---|
2857 | |
---|
2858 | ALLOCATE(topids(num_largest), stat=ier) |
---|
2859 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for topids','','') |
---|
2860 | |
---|
2861 | ALLOCATE(sortedrivs(num_largest), stat=ier) |
---|
2862 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for sortedrivs','','') |
---|
2863 | |
---|
2864 | ALLOCATE(sorted_names(num_largest), stat=ier) |
---|
2865 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for sorted_names','','') |
---|
2866 | |
---|
2867 | ALLOCATE(streams_nb(num_largest), streams_avehops(num_largest), streams_minhops(num_largest), stat=ier) |
---|
2868 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for streams_nb','','') |
---|
2869 | |
---|
2870 | ALLOCATE(streams_maxhops(num_largest), stat=ier) |
---|
2871 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for streams_maxhops','','') |
---|
2872 | |
---|
2873 | ALLOCATE(streams_resid(num_largest), stat=ier) |
---|
2874 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for streams_resid','','') |
---|
2875 | |
---|
2876 | ALLOCATE(lbasin_area(num_largest,nbpt), lbasin_uparea(num_largest,nbpt), lrivercode(num_largest,nbpt), stat=ier) |
---|
2877 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for lbasin_area','','') |
---|
2878 | |
---|
2879 | IF ( .NOT. is_root_prc) THEN |
---|
2880 | WRITE(numout,*) "routing_diagnostic is not suitable for running in parallel" |
---|
2881 | WRITE(numout,*) "We are here on a non root processor. is_root_prc = ", is_root_prc |
---|
2882 | WRITE(numout,*) "STOP from routing_diagnostic" |
---|
2883 | CALL ipslerr_p(3,'routing_diagnostic','This routine is not suitable for running in parallel','','') |
---|
2884 | ENDIF |
---|
2885 | |
---|
2886 | |
---|
2887 | !Config Key = RIVER_DESC |
---|
2888 | !Config Desc = Writes out a description of the rivers |
---|
2889 | !Config If = RIVER_ROUTING |
---|
2890 | !Config Def = n |
---|
2891 | !Config Help = This flag allows to write out a file containing the list of |
---|
2892 | !Config rivers which are beeing simulated. It provides location of outflow |
---|
2893 | !Config drainage area, name and ID. |
---|
2894 | !Config Units = [FLAG] |
---|
2895 | ! |
---|
2896 | river_file=.FALSE. |
---|
2897 | CALL getin('RIVER_DESC', river_file) |
---|
2898 | ! |
---|
2899 | !Config Key = RIVER_DESC_FILE |
---|
2900 | !Config Desc = Filename in which we write the description of the rivers. If suffix is ".nc" a netCDF file is created |
---|
2901 | !Config If = RIVER_DESC |
---|
2902 | !Config Def = river_desc.nc |
---|
2903 | !Config Help = File name where we will write the information. If the suffix is ".nc" a netCDF file is generated. Else |
---|
2904 | !Config a simple text file will contain some information. The netCDF file is valuable for post-processing the |
---|
2905 | ! data as it will contain the fraction of the large basins in each grid box. |
---|
2906 | !Config Units = [FILE] |
---|
2907 | ! |
---|
2908 | river_file_name="river_desc.nc" |
---|
2909 | CALL getin('RIVER_DESC_FILE', river_file_name) |
---|
2910 | ! |
---|
2911 | ! |
---|
2912 | ! First we get the list of all river outflow points |
---|
2913 | ! We work under the assumption that we only have num_largest basins finishing with |
---|
2914 | ! nbasmax+3. This is checked in routing_truncate. |
---|
2915 | ! |
---|
2916 | nb_small = 1 |
---|
2917 | outpt(:,:) = -1 |
---|
2918 | ic = 0 |
---|
2919 | DO ig=1,nbpt |
---|
2920 | DO ib=1,nbasmax |
---|
2921 | ign = route_togrid(ig, ib) |
---|
2922 | ibn = route_tobasin(ig, ib) |
---|
2923 | IF ( ibn .EQ. nbasmax+3) THEN |
---|
2924 | ic = ic + 1 |
---|
2925 | outpt(ic,1) = ig |
---|
2926 | outpt(ic,2) = ib |
---|
2927 | ! |
---|
2928 | ! Get the largest id of the basins we call a river. This is |
---|
2929 | ! to extract the names of all rivers. |
---|
2930 | ! |
---|
2931 | IF ( global_basinid(ig,ib) > nb_small ) THEN |
---|
2932 | nb_small = global_basinid(ig,ib) |
---|
2933 | ENDIF |
---|
2934 | ENDIF |
---|
2935 | ENDDO |
---|
2936 | ENDDO |
---|
2937 | |
---|
2938 | nb_small = MIN(nb_small, 349) |
---|
2939 | |
---|
2940 | ALLOCATE(basin_names(nb_small), stat=ier) |
---|
2941 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for basins_names','','') |
---|
2942 | |
---|
2943 | CALL routing_names(nb_small, basin_names) |
---|
2944 | ! |
---|
2945 | ! Go through all points and basins to see if they outflow as a river and store the |
---|
2946 | ! information needed in the various arrays. |
---|
2947 | ! |
---|
2948 | nb_pts(:) = 0 |
---|
2949 | totarea(:) = zero |
---|
2950 | hydrodiag(:,:) = 0 |
---|
2951 | areaupbasin(:,:) = zero |
---|
2952 | outids(:,:) = -1 |
---|
2953 | ob = -1 |
---|
2954 | og = -1 |
---|
2955 | lbasin_area(:,:) = zero |
---|
2956 | lbasin_uparea(:,:) = zero |
---|
2957 | longest_river = 0 |
---|
2958 | ! |
---|
2959 | err_nbpt_grid_basin = .FALSE. |
---|
2960 | loopgridbasin : DO ig=1,nbpt |
---|
2961 | ! |
---|
2962 | DO ib=1,nbasmax |
---|
2963 | IF ( routing_area(ig,ib) .GT. zero ) THEN |
---|
2964 | ic = 0 |
---|
2965 | ign = ig |
---|
2966 | ibn = ib |
---|
2967 | ! Locate outflow point |
---|
2968 | DO WHILE (ibn .GT. 0 .AND. ibn .LE. nbasmax .AND. ic .LT. nbasmax*nbpt) |
---|
2969 | ic = ic + 1 |
---|
2970 | og = ign |
---|
2971 | ob = ibn |
---|
2972 | ign = route_togrid(og, ob) |
---|
2973 | ibn = route_tobasin(og, ob) |
---|
2974 | areaupbasin(og, ob) = areaupbasin(og, ob) + routing_area(ig,ib) |
---|
2975 | ENDDO |
---|
2976 | ! |
---|
2977 | longest_river = MAX(longest_river, ic) |
---|
2978 | ! |
---|
2979 | ! Now that we have an outflow check if it is one of the num_largest rivers. |
---|
2980 | ! In this case we keeps the location so we diagnose it. |
---|
2981 | ! |
---|
2982 | IF ( ibn .EQ. nbasmax + 3) THEN |
---|
2983 | DO icc = 1,num_largest |
---|
2984 | IF ( outpt(icc,1) .EQ. og .AND. outpt(icc,2) .EQ. ob ) THEN |
---|
2985 | ! |
---|
2986 | ! We only keep this point for our map if it is large enough. |
---|
2987 | ! |
---|
2988 | nb_pts(icc) = nb_pts(icc) + 1 |
---|
2989 | ! |
---|
2990 | ! |
---|
2991 | IF ( nb_pts(icc) > nbpt ) THEN |
---|
2992 | err_nbpt_grid_basin = .TRUE. |
---|
2993 | EXIT loopgridbasin |
---|
2994 | ENDIF |
---|
2995 | ! |
---|
2996 | pts(icc, nb_pts(icc)) = ig |
---|
2997 | ptbas(icc, nb_pts(icc)) = ib |
---|
2998 | totarea(icc) = totarea(icc) + routing_area(ig,ib) |
---|
2999 | ! |
---|
3000 | lbasin_area(icc,nb_pts(icc)) = routing_area(ig,ib) |
---|
3001 | ! |
---|
3002 | ! ID of the river is taken from the last point before the outflow. |
---|
3003 | topids(icc) = global_basinid(og,ob) |
---|
3004 | outids(ig,ib) = global_basinid(og,ob) |
---|
3005 | ! |
---|
3006 | ! On this gridbox and basin we will diagnose the hydrograph |
---|
3007 | ! |
---|
3008 | hydrodiag(ig, ib) = 1 |
---|
3009 | ! |
---|
3010 | ENDIF |
---|
3011 | ENDDO |
---|
3012 | ENDIF |
---|
3013 | ENDIF |
---|
3014 | ! |
---|
3015 | ENDDO |
---|
3016 | ! |
---|
3017 | ENDDO loopgridbasin |
---|
3018 | ! |
---|
3019 | IF ( err_nbpt_grid_basin ) THEN |
---|
3020 | WRITE(numout, *) "routing_diagnostic : The number of grid points in basin ", icc |
---|
3021 | WRITE(numout, *) "routing_diagnostic : is larger than anticiped. " |
---|
3022 | CALL ipslerr_p(3, 'routing_diagnostic', 'We are heading for a out of bounds in arrays pts, ptsbas and lbasin_area.',& |
---|
3023 | & 'Increase the last dimension of these arrays.','') |
---|
3024 | ENDIF |
---|
3025 | ! |
---|
3026 | ! Now we decide which points we will keep from the largest basins |
---|
3027 | ! |
---|
3028 | ! Temporary fix |
---|
3029 | route_nbintobas(:,:) = 0 |
---|
3030 | ! |
---|
3031 | basinmap(:) = zero |
---|
3032 | DO ig=1,nbpt |
---|
3033 | ! |
---|
3034 | ! Look for the dominant basin in this grid. This information only affects some |
---|
3035 | ! diagnostics : hydrographs and saved area upstream. |
---|
3036 | ! |
---|
3037 | icc = 0 |
---|
3038 | idbas = -1 |
---|
3039 | ! |
---|
3040 | DO ib=1,nbasmax |
---|
3041 | IF ( outids(ig,ib) > 0 ) THEN |
---|
3042 | IF ( COUNT(outids(ig,:) == outids(ig,ib)) > icc ) THEN |
---|
3043 | icc = COUNT(outids(ig,:) == outids(ig,ib)) |
---|
3044 | idbas = outids(ig,ib) |
---|
3045 | ENDIF |
---|
3046 | ENDIF |
---|
3047 | ENDDO |
---|
3048 | ! |
---|
3049 | ! If we have found a point from the large basins and decided which one |
---|
3050 | ! takes over this grid then we note it on the map. |
---|
3051 | ! Clean-up a little the hydrodiag array |
---|
3052 | ! |
---|
3053 | IF ( idbas > 0 ) THEN |
---|
3054 | basinmap(ig) = REAL(idbas, r_std) |
---|
3055 | ENDIF |
---|
3056 | ! |
---|
3057 | ! Now place the hydrograph diagnostic on the point closest to the |
---|
3058 | ! ocean. |
---|
3059 | ! |
---|
3060 | tmpbas(:) = zero |
---|
3061 | DO ib=1,nbasmax |
---|
3062 | IF ( outids(ig,ib) .EQ. idbas) THEN |
---|
3063 | tmpbas(ib) = areaupbasin(ig,ib) |
---|
3064 | ENDIF |
---|
3065 | ENDDO |
---|
3066 | hydrodiag(ig,:) = 0 |
---|
3067 | ff=MAXLOC(tmpbas) |
---|
3068 | hydrodiag(ig,ff(1)) = 1 |
---|
3069 | hydroupbasin(ig) = areaupbasin(ig,ff(1)) |
---|
3070 | ! |
---|
3071 | ENDDO |
---|
3072 | ! |
---|
3073 | ! |
---|
3074 | ! |
---|
3075 | tmparea(:) = totarea(:) |
---|
3076 | DO icc = 1, num_largest |
---|
3077 | ff = MAXLOC(tmparea) |
---|
3078 | sortedrivs(icc) = ff(1) |
---|
3079 | tmparea(ff(1)) = 0.0 |
---|
3080 | ENDDO |
---|
3081 | ! |
---|
3082 | ! Diagnose the complexity of the basins obtained and determine their code in the Pfafstetter system |
---|
3083 | ! |
---|
3084 | nbmax=MAXVAL(nb_pts) |
---|
3085 | ALLOCATE(allstreams(nbmax, longest_river), upstreamchange(nbmax, longest_river), stat=ier) |
---|
3086 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for allstreams','','') |
---|
3087 | |
---|
3088 | ALLOCATE(tstreams(longest_river), tupstreamchange(longest_river), stat=ier) |
---|
3089 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for tstreams','','') |
---|
3090 | |
---|
3091 | ALLOCATE(tslen(nbmax), tpts(nbmax), tptbas(nbmax), tuparea(nbmax), stat=ier) |
---|
3092 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for tslen','','') |
---|
3093 | |
---|
3094 | ALLOCATE(tcode(nbmax), stat=ier) |
---|
3095 | IF (ier /= 0) CALL ipslerr_p(3,'routing_diagnostic','Pb in allocate for tcode','','') |
---|
3096 | |
---|
3097 | DO icc = 1, num_largest |
---|
3098 | ! |
---|
3099 | ! Work through the largest basins |
---|
3100 | ! |
---|
3101 | idbas = sortedrivs(icc) |
---|
3102 | ! |
---|
3103 | streams_nb(idbas) = 0 |
---|
3104 | streams_avehops(idbas) = 0 |
---|
3105 | streams_minhops(idbas) = undef_int |
---|
3106 | streams_maxhops(idbas) = 0 |
---|
3107 | streams_resid(idbas) = zero |
---|
3108 | tslen(:) = 0 |
---|
3109 | ! |
---|
3110 | allstreams(:,:) = 0 |
---|
3111 | upstreamchange(:,:) = zero |
---|
3112 | ! |
---|
3113 | DO ii=1,nb_pts(idbas) |
---|
3114 | ! |
---|
3115 | ig = pts(idbas, ii) |
---|
3116 | ib = ptbas(idbas, ii) |
---|
3117 | ! |
---|
3118 | lbasin_uparea(idbas,ii) = areaupbasin(ig,ib) |
---|
3119 | ! |
---|
3120 | slen = 0 |
---|
3121 | ign = ig |
---|
3122 | ibn = ib |
---|
3123 | og = ig |
---|
3124 | ob = ib |
---|
3125 | ! |
---|
3126 | averesid = zero |
---|
3127 | tupstreamchange(:) = zero |
---|
3128 | ! go to outflow point to count the number of hops |
---|
3129 | DO WHILE (ibn .GT. 0 .AND. ibn .LE. nbasmax) |
---|
3130 | ! Store data |
---|
3131 | slen = slen + 1 |
---|
3132 | tstreams(slen) = ign |
---|
3133 | tupstreamchange(slen) = areaupbasin(ign,ibn)-areaupbasin(og,ob) |
---|
3134 | ! Move to next point |
---|
3135 | og = ign |
---|
3136 | ob = ibn |
---|
3137 | ign = route_togrid(og, ob) |
---|
3138 | ibn = route_tobasin(og, ob) |
---|
3139 | averesid = averesid + topo_resid(og, ob)**2 |
---|
3140 | ENDDO |
---|
3141 | ! |
---|
3142 | allstreams(ii,1:slen) = tstreams(slen:1:-1) |
---|
3143 | upstreamchange(ii,1:slen) = tupstreamchange(slen:1:-1) |
---|
3144 | tslen(ii) = slen |
---|
3145 | ! |
---|
3146 | ! Save diagnostics |
---|
3147 | ! |
---|
3148 | streams_nb(idbas) = streams_nb(idbas) + 1 |
---|
3149 | streams_avehops(idbas) = streams_avehops(idbas) + slen |
---|
3150 | streams_resid(idbas) = streams_resid(idbas) + SQRT(averesid) |
---|
3151 | IF ( slen < streams_minhops(idbas) ) THEN |
---|
3152 | streams_minhops(idbas) = slen |
---|
3153 | ENDIF |
---|
3154 | IF ( slen > streams_maxhops(idbas) ) THEN |
---|
3155 | streams_maxhops(idbas) = slen |
---|
3156 | ENDIF |
---|
3157 | ! |
---|
3158 | ENDDO |
---|
3159 | ! build the average |
---|
3160 | IF ( streams_nb(idbas) > 0 ) THEN |
---|
3161 | streams_avehops(idbas) = streams_avehops(idbas)/streams_nb(idbas) |
---|
3162 | streams_resid(idbas) = streams_resid(idbas)/REAL(streams_nb(idbas), r_std) |
---|
3163 | ELSE |
---|
3164 | ! River without streams ... very rare but happens |
---|
3165 | streams_avehops(idbas) = zero |
---|
3166 | streams_resid(idbas) = zero |
---|
3167 | streams_maxhops(idbas) = zero |
---|
3168 | streams_minhops(idbas) = zero |
---|
3169 | ENDIF |
---|
3170 | ! |
---|
3171 | ! |
---|
3172 | ii=nb_pts(idbas) |
---|
3173 | tpts(:) = 0 |
---|
3174 | tpts(1:ii) = pts(idbas,1:ii) |
---|
3175 | tptbas(:) = 0 |
---|
3176 | tptbas(1:ii) = ptbas(idbas,1:ii) |
---|
3177 | tuparea(:) = 0 |
---|
3178 | tuparea(1:ii) = lbasin_uparea(idbas,1:ii) |
---|
3179 | ! |
---|
3180 | CALL routing_diagcode(ii, tpts, tptbas, tuparea, tslen, MAXVAL(tslen), allstreams, upstreamchange, tcode) |
---|
3181 | ! |
---|
3182 | lrivercode(idbas,:) = 0 |
---|
3183 | lrivercode(idbas,1:ii) = tcode(1:ii) |
---|
3184 | ! |
---|
3185 | ENDDO |
---|
3186 | ! |
---|
3187 | ! Create the sorted list of names |
---|
3188 | ! |
---|
3189 | err_basin_number = .FALSE. |
---|
3190 | DO icc = 1, num_largest |
---|
3191 | ! |
---|
3192 | ib=sortedrivs(icc) |
---|
3193 | ! |
---|
3194 | IF ( topids(ib) .GT. nb_small ) THEN |
---|
3195 | IF (topids(ib) <= 99 ) THEN |
---|
3196 | WRITE(sorted_names(icc), '("Nb_",I2.2)') topids(ib) |
---|
3197 | ELSE IF (topids(ib) <= 999 ) THEN |
---|
3198 | WRITE(sorted_names(icc), '("Nb_",I3.3)') topids(ib) |
---|
3199 | ELSE IF (topids(ib) <= 9999 ) THEN |
---|
3200 | WRITE(sorted_names(icc), '("Nb_",I4.4)') topids(ib) |
---|
3201 | ELSE IF (topids(ib) <= 99999 ) THEN |
---|
3202 | WRITE(sorted_names(icc), '("Nb_",I5.5)') topids(ib) |
---|
3203 | ELSE IF (topids(ib) <= 999999 ) THEN |
---|
3204 | WRITE(sorted_names(icc), '("Nb_",I6.6)') topids(ib) |
---|
3205 | ELSE |
---|
3206 | err_basin_number = .TRUE. |
---|
3207 | EXIT |
---|
3208 | ENDIF |
---|
3209 | |
---|
3210 | ELSE |
---|
3211 | sorted_names(icc) = basin_names(topids(ib)) |
---|
3212 | ENDIF |
---|
3213 | ! |
---|
3214 | ENDDO |
---|
3215 | ! |
---|
3216 | IF ( err_basin_number ) THEN |
---|
3217 | CALL ipslerr_p(3, 'routing_diagnostic', 'We found a basin number larger than 999999.',& |
---|
3218 | & 'This is impossible. Please verify your configuration.','') |
---|
3219 | ENDIF |
---|
3220 | ! |
---|
3221 | ! Check for doubles and rename if needed |
---|
3222 | ! |
---|
3223 | DO icc = 1, num_largest |
---|
3224 | name_found=0 |
---|
3225 | DO ic=1, num_largest |
---|
3226 | IF ( TRIM(sorted_names(icc)) == TRIM(sorted_names(ic)) ) THEN |
---|
3227 | name_found = name_found + 1 |
---|
3228 | ENDIF |
---|
3229 | ENDDO |
---|
3230 | ! |
---|
3231 | IF ( name_found > 1 ) THEN |
---|
3232 | DO ic=num_largest,1,-1 |
---|
3233 | IF ( TRIM(sorted_names(icc)) == TRIM(sorted_names(ic)) ) THEN |
---|
3234 | IF ( name_found > 1 ) THEN |
---|
3235 | WRITE(nn,'(I1)') name_found |
---|
3236 | sorted_names(ic) = TRIM(sorted_names(ic))//nn |
---|
3237 | name_found = name_found - 1 |
---|
3238 | ENDIF |
---|
3239 | ENDIF |
---|
3240 | ENDDO |
---|
3241 | ENDIF |
---|
3242 | ! |
---|
3243 | ENDDO |
---|
3244 | ! |
---|
3245 | ! Print to stdout on ROOT_PROC the diagnostics for the largest basins we have found. |
---|
3246 | ! |
---|
3247 | DO icc = 1, num_largest |
---|
3248 | ! |
---|
3249 | IF ( nb_pts(sortedrivs(icc)) .GT. 2 ) THEN |
---|
3250 | name_str = sorted_names(icc) |
---|
3251 | WRITE(numout,'("Basin ID ", I5," ", A15, " Area [km^2] : ", F13.4, " Nb points : ", I4)')& |
---|
3252 | & topids(sortedrivs(icc)), name_str(1:15), totarea(sortedrivs(icc))/1.e6, nb_pts(sortedrivs(icc)) |
---|
3253 | ENDIF |
---|
3254 | ! |
---|
3255 | ENDDO |
---|
3256 | ! |
---|
3257 | ! Save some of the basin information into files. |
---|
3258 | ! |
---|
3259 | IF ( river_file ) THEN |
---|
3260 | |
---|
3261 | IF ( INDEX(river_file_name,".nc") > 1 ) THEN |
---|
3262 | |
---|
3263 | CALL routing_diagncfile(river_file_name, nbpt, lalo, nb_pts, topids, sorted_names, sortedrivs, & |
---|
3264 | & pts, lbasin_area, lbasin_uparea, lrivercode, outpt, streams_nb, streams_avehops, & |
---|
3265 | & streams_minhops, streams_maxhops, streams_resid) |
---|
3266 | |
---|
3267 | ELSE |
---|
3268 | |
---|
3269 | OPEN(diagunit, FILE=river_file_name) |
---|
3270 | WRITE(diagunit,'(A)') "Basin ID, Area [km^2], Nb points, Lon and Lat of outflow" |
---|
3271 | WRITE(diagunit,'(A)') "Nb streams, total number of hops, min, ave and max number of hops per stream" |
---|
3272 | ! |
---|
3273 | DO icc = 1, num_largest |
---|
3274 | ! |
---|
3275 | IF ( nb_pts(sortedrivs(icc)) .GT. 2 ) THEN |
---|
3276 | ! |
---|
3277 | name_str = sorted_names(icc) |
---|
3278 | ! |
---|
3279 | WRITE(diagunit,'(I5,A25,F14.5,I5,2F9.2)') topids(sortedrivs(icc)), name_str(1:15), totarea(sortedrivs(icc))/1.e6, & |
---|
3280 | & nb_pts(sortedrivs(icc)), lalo(outpt(sortedrivs(icc),1),2), lalo(outpt(sortedrivs(icc),1),1) |
---|
3281 | WRITE(diagunit,'(5I9,F16.4)') streams_nb(sortedrivs(icc)), & |
---|
3282 | & streams_avehops(sortedrivs(icc))*streams_nb(sortedrivs(icc)), & |
---|
3283 | & streams_minhops(sortedrivs(icc)), & |
---|
3284 | & streams_avehops(sortedrivs(icc)), & |
---|
3285 | & streams_maxhops(sortedrivs(icc)), streams_resid(sortedrivs(icc)) |
---|
3286 | ! |
---|
3287 | ENDIF |
---|
3288 | ! |
---|
3289 | ENDDO |
---|
3290 | ! |
---|
3291 | CLOSE(diagunit) |
---|
3292 | ! |
---|
3293 | ENDIF |
---|
3294 | ! |
---|
3295 | ENDIF |
---|
3296 | ! |
---|
3297 | ! |
---|
3298 | nbrivers(:) = zero |
---|
3299 | DO ig=1,nbpt |
---|
3300 | nbrivers(ig) = COUNT(route_tobasin(ig,1:nbasmax) == nbasmax+3) |
---|
3301 | ENDDO |
---|
3302 | DO ig=1,nbpt |
---|
3303 | IF ( nbrivers(ig) > 1 ) THEN |
---|
3304 | WRITE(numout,*) 'Grid box ', ig, ' has ', NINT(nbrivers(ig)), ' outflow points.' |
---|
3305 | WRITE(numout,*) 'The rivers which flow into the ocean at this point are :' |
---|
3306 | DO icc=1,nbasmax |
---|
3307 | IF ( route_tobasin(ig,icc) == nbasmax+3) THEN |
---|
3308 | IF ( global_basinid(ig,icc) <= nb_small ) THEN |
---|
3309 | WRITE(numout,*) 'ID = ',global_basinid(ig,icc), ' Name = ', basin_names(global_basinid(ig,icc)) |
---|
3310 | ELSE |
---|
3311 | WRITE(numout,*) 'ID = ',global_basinid(ig,icc), ' Problem ===== ID is larger than possible' |
---|
3312 | ENDIF |
---|
3313 | ENDIF |
---|
3314 | ENDDO |
---|
3315 | ENDIF |
---|
3316 | ENDDO |
---|
3317 | ! |
---|
3318 | WRITE(numout,*) 'Maximum topographic index :', MAXVAL(topo_resid) |
---|
3319 | ic = COUNT(topo_resid .GT. 0.) |
---|
3320 | WRITE(numout,*) 'Mean topographic index :', SUM(topo_resid, MASK=topo_resid .GT. zero)/ic |
---|
3321 | WRITE(numout,*) 'Minimum topographic index :', MINVAL(topo_resid, MASK=topo_resid .GT. zero) |
---|
3322 | ! |
---|
3323 | DEALLOCATE(pts) |
---|
3324 | DEALLOCATE(outpt) |
---|
3325 | DEALLOCATE(nb_pts) |
---|
3326 | DEALLOCATE(totarea, tmparea) |
---|
3327 | DEALLOCATE(streams_nb, streams_avehops, streams_minhops, streams_maxhops) |
---|
3328 | ! |
---|
3329 | DEALLOCATE(lbasin_area, lbasin_uparea, lrivercode) |
---|
3330 | ! |
---|
3331 | DEALLOCATE(allstreams) |
---|
3332 | DEALLOCATE(tstreams) |
---|
3333 | DEALLOCATE(tslen, tpts, tptbas, tuparea) |
---|
3334 | DEALLOCATE(tcode) |
---|
3335 | ! |
---|
3336 | WRITE(numout,*) 'Maximum topographic index :', MAXVAL(topo_resid) |
---|
3337 | ic = COUNT(topo_resid .GT. 0.) |
---|
3338 | WRITE(numout,*) 'Mean topographic index :', SUM(topo_resid, MASK=topo_resid .GT. 0.)/ic |
---|
3339 | WRITE(numout,*) 'Minimum topographic index :', MINVAL(topo_resid, MASK=topo_resid .GT. 0.) |
---|
3340 | ! |
---|
3341 | ! |
---|
3342 | END SUBROUTINE routing_diagnostic |
---|
3343 | ! |
---|
3344 | !! ================================================================================================================================ |
---|
3345 | !! SUBROUTINE : routing_diagcode |
---|
3346 | !! |
---|
3347 | !>\BRIEF This subroutine determines the code in the Pfafstetter system for all points |
---|
3348 | !! within the given catchment. |
---|
3349 | !! |
---|
3350 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
3351 | !! |
---|
3352 | !! RECENT CHANGE(S): None |
---|
3353 | !! |
---|
3354 | !! MAIN OUTPUT VARIABLE(S): streamcode |
---|
3355 | !! |
---|
3356 | !! REFERENCES : None |
---|
3357 | !! |
---|
3358 | !! FLOWCHART :None |
---|
3359 | !! \n |
---|
3360 | !_ ================================================================================================================================ |
---|
3361 | |
---|
3362 | SUBROUTINE routing_diagcode(ip, tpts, tpbas, tuparea, tslen, ls, allstreams, upstreamchange, streamcode) |
---|
3363 | ! |
---|
3364 | IMPLICIT NONE |
---|
3365 | ! |
---|
3366 | !! INPUT VARIABLES |
---|
3367 | INTEGER(i_std), INTENT(in) :: ip !! |
---|
3368 | INTEGER(i_std), INTENT(in) :: ls !! |
---|
3369 | INTEGER(i_std), DIMENSION(ip), INTENT(in) :: tpts !! |
---|
3370 | INTEGER(i_std), DIMENSION(ip), INTENT(in) :: tpbas !! |
---|
3371 | REAL(r_std), DIMENSION(ip), INTENT(in) :: tuparea !! |
---|
3372 | INTEGER(i_std), DIMENSION(ip), INTENT(in) :: tslen !! |
---|
3373 | INTEGER(i_std), DIMENSION(ip,ls), INTENT(in) :: allstreams !! |
---|
3374 | REAL(r_std), DIMENSION(ip,ls), INTENT(in) :: upstreamchange !! |
---|
3375 | ! |
---|
3376 | !! OUTPUT VARIABLES |
---|
3377 | INTEGER(i_std), DIMENSION(ip), INTENT(out) :: streamcode !! |
---|
3378 | ! |
---|
3379 | !! LOCAL VARIABLES |
---|
3380 | INTEGER(i_std) :: ilev, cntsubbas, ib, ic, i, it, ilevmax, imaxlen, nbzero !! |
---|
3381 | INTEGER(i_std) :: tstreamcode(ip)!! |
---|
3382 | INTEGER(i_std) :: indsubbas(ip) !! |
---|
3383 | INTEGER(i_std) :: iw(ip) !! |
---|
3384 | INTEGER(i_std) :: tdiff(ip) !! |
---|
3385 | INTEGER(i_std) :: tmpjunc(4) !! |
---|
3386 | INTEGER(i_std) :: junction(4) !! |
---|
3387 | INTEGER(i_std) :: ff(1) !! |
---|
3388 | INTEGER(i_std) :: ll !! |
---|
3389 | REAL(r_std) :: chguparea(ip) !! |
---|
3390 | REAL(r_std) :: largest !! |
---|
3391 | |
---|
3392 | !_ ================================================================================================================================ |
---|
3393 | ! |
---|
3394 | streamcode(:) = 0 |
---|
3395 | ! |
---|
3396 | ! If we accept 4 grid boxes per coded basin then per level we need at least |
---|
3397 | ! 4*9=36 boxes. |
---|
3398 | ! |
---|
3399 | ilevmax = 0 |
---|
3400 | it = ip |
---|
3401 | DO WHILE (it >= 36) |
---|
3402 | ilevmax = ilevmax+1 |
---|
3403 | it = it/9 |
---|
3404 | ENDDO |
---|
3405 | ! |
---|
3406 | DO ilev=1,ilevmax |
---|
3407 | ! |
---|
3408 | ! Count number of sub-basins we already have |
---|
3409 | ! |
---|
3410 | cntsubbas=0 |
---|
3411 | tstreamcode(:) = streamcode(:) |
---|
3412 | DO WHILE ( COUNT(tstreamcode(:) >= 0) > 0 ) |
---|
3413 | cntsubbas=cntsubbas+1 |
---|
3414 | indsubbas(cntsubbas) = MAXVAL(tstreamcode(:)) |
---|
3415 | WHERE ( tstreamcode(:) == indsubbas(cntsubbas) ) tstreamcode = -1 |
---|
3416 | ENDDO |
---|
3417 | ! |
---|
3418 | ! Go through all these basins in order to find the next Pfafstetter numbers |
---|
3419 | ! |
---|
3420 | DO ib=1,cntsubbas |
---|
3421 | ! |
---|
3422 | ! Get all the streams which have the current Pfadstetter number |
---|
3423 | ! |
---|
3424 | it=0 |
---|
3425 | DO ic=1,ip |
---|
3426 | IF ( streamcode(ic) == indsubbas(ib) ) THEN |
---|
3427 | it =it+1 |
---|
3428 | iw(it)=ic |
---|
3429 | ENDIF |
---|
3430 | ENDDO |
---|
3431 | ! |
---|
3432 | ! Which is the longest stream in this basin ? |
---|
3433 | ! |
---|
3434 | ff=MAXLOC(tslen(iw(1:it))) |
---|
3435 | imaxlen=iw(ff(1)) |
---|
3436 | chguparea(:) = zero |
---|
3437 | chguparea(1:tslen(imaxlen)) = upstreamchange(imaxlen, 1:tslen(imaxlen)) |
---|
3438 | ! |
---|
3439 | IF ( COUNT(chguparea(1:tslen(imaxlen)) > 0) < 4 ) THEN |
---|
3440 | ! |
---|
3441 | ! If this subbasin is too small we just set all points to zero |
---|
3442 | ! |
---|
3443 | DO i=1,it |
---|
3444 | streamcode(iw(i)) = streamcode(iw(i))*10 |
---|
3445 | ENDDO |
---|
3446 | ELSE |
---|
3447 | ! |
---|
3448 | ! Else do the Pfafstetter numbering |
---|
3449 | ! |
---|
3450 | ! |
---|
3451 | ! Where do we have the 4 largest change in upstream area on this stream. |
---|
3452 | ! This must be the confluence of 2 rivers and thus a junction point. |
---|
3453 | ! |
---|
3454 | largest=pi*R_Earth*R_Earth |
---|
3455 | DO i=1,4 |
---|
3456 | ff = MAXLOC(chguparea(1:tslen(imaxlen)), MASK = chguparea(1:tslen(imaxlen)) < largest) |
---|
3457 | tmpjunc(i) = ff(1) |
---|
3458 | largest=chguparea(tmpjunc(i)) |
---|
3459 | ENDDO |
---|
3460 | ! sort junctions to go from the outflow up-stream |
---|
3461 | ff(1)=0 |
---|
3462 | DO i=1,4 |
---|
3463 | junction(i) = MINVAL(tmpjunc, MASK=tmpjunc > ff(1)) |
---|
3464 | ff(1) = junction(i) |
---|
3465 | ENDDO |
---|
3466 | ! |
---|
3467 | ! Find all streams which are identical up to that junction and increase their code accordingly |
---|
3468 | ! |
---|
3469 | DO i=1,it |
---|
3470 | ll=MIN(tslen(imaxlen),tslen(iw(i))) |
---|
3471 | tdiff(1:ll) = allstreams(imaxlen,1:ll)-allstreams(iw(i),1:ll) |
---|
3472 | nbzero = COUNT(tdiff(1:ll) == 0) |
---|
3473 | IF (nbzero < junction(1) ) THEN |
---|
3474 | ! Before first of the 4 largest basins |
---|
3475 | streamcode(iw(i)) = streamcode(iw(i))*10+1 |
---|
3476 | ELSE IF (nbzero == junction(1) ) THEN |
---|
3477 | ! Stream part of the first largest basin |
---|
3478 | streamcode(iw(i)) = streamcode(iw(i))*10+2 |
---|
3479 | ELSE IF (nbzero < junction(2) ) THEN |
---|
3480 | ! Between first and second stream |
---|
3481 | streamcode(iw(i)) = streamcode(iw(i))*10+3 |
---|
3482 | ELSE IF (nbzero == junction(2) ) THEN |
---|
3483 | ! Stream part of the second basin |
---|
3484 | streamcode(iw(i)) = streamcode(iw(i))*10+4 |
---|
3485 | ELSE IF (nbzero < junction(3) ) THEN |
---|
3486 | ! In between stream 2 and 3 |
---|
3487 | streamcode(iw(i)) = streamcode(iw(i))*10+5 |
---|
3488 | ELSE IF (nbzero == junction(3) ) THEN |
---|
3489 | ! Part of 3rd basin |
---|
3490 | streamcode(iw(i)) = streamcode(iw(i))*10+6 |
---|
3491 | ELSE IF (nbzero < junction(4) ) THEN |
---|
3492 | ! In between 3 and 4th basins |
---|
3493 | streamcode(iw(i)) = streamcode(iw(i))*10+7 |
---|
3494 | ELSE IF (nbzero == junction(4) ) THEN |
---|
3495 | ! Final of the 4 largest basins |
---|
3496 | streamcode(iw(i)) = streamcode(iw(i))*10+8 |
---|
3497 | ELSE |
---|
3498 | ! The rest of the points and also the basin of the longest stream |
---|
3499 | streamcode(iw(i)) = streamcode(iw(i))*10+9 |
---|
3500 | ENDIF |
---|
3501 | ENDDO |
---|
3502 | ENDIF |
---|
3503 | ENDDO |
---|
3504 | ! |
---|
3505 | ENDDO |
---|
3506 | ! |
---|
3507 | ! |
---|
3508 | END SUBROUTINE routing_diagcode |
---|
3509 | ! |
---|
3510 | !! ================================================================================================================================ |
---|
3511 | !! SUBROUTINE : routing_diagncfile |
---|
3512 | !! |
---|
3513 | !>\BRIEF This subroutine creates a netCDF file containing all the informations |
---|
3514 | !! on the largest rivers which can be used for a refined analysis. |
---|
3515 | !! |
---|
3516 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
3517 | !! |
---|
3518 | !! RECENT CHANGE(S): None |
---|
3519 | !! |
---|
3520 | !! MAIN OUTPUT VARIABLE(S): None |
---|
3521 | !! |
---|
3522 | !! REFERENCES : None |
---|
3523 | !! |
---|
3524 | !! FLOWCHART : None |
---|
3525 | !! \n |
---|
3526 | !_ ================================================================================================================================ |
---|
3527 | |
---|
3528 | SUBROUTINE routing_diagncfile(river_file_name, nbpt, lalo, nb_pts, topids, sorted_names, sortedrivs, & |
---|
3529 | & lbasin_index, lbasin_area, lbasin_uparea, lrivercode, outpt, streams_nb, streams_avehops, & |
---|
3530 | & streams_minhops, streams_maxhops, streams_resid) |
---|
3531 | ! |
---|
3532 | USE netcdf |
---|
3533 | ! |
---|
3534 | IMPLICIT NONE |
---|
3535 | ! |
---|
3536 | ! |
---|
3537 | !! INPUT VARIABLES |
---|
3538 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
3539 | |
---|
3540 | !! LOCAL VARIABLES |
---|
3541 | CHARACTER(LEN=80) :: river_file_name !! Filename in which we write the description of the rivers (1) |
---|
3542 | INTEGER(i_std) :: nbpt !! Domain size (unitless) |
---|
3543 | INTEGER(i_std), DIMENSION(num_largest) :: nb_pts !! Number of points in the basin (unitless) |
---|
3544 | INTEGER(i_std), DIMENSION(num_largest) :: topids !! The IDs of the first num_largest basins (unitless) |
---|
3545 | CHARACTER(LEN=25), DIMENSION(num_largest) :: sorted_names !! Names of the basins to be put into the file (unitless) |
---|
3546 | INTEGER(i_std), DIMENSION(num_largest) :: sortedrivs !! |
---|
3547 | INTEGER(i_std), DIMENSION(num_largest,nbpt) :: lbasin_index !! |
---|
3548 | REAL(r_std), DIMENSION(num_largest,nbpt) :: lbasin_area !! |
---|
3549 | REAL(r_std), DIMENSION(num_largest,nbpt) :: lbasin_uparea !! |
---|
3550 | INTEGER(i_std), DIMENSION(num_largest,nbpt) :: lrivercode !! |
---|
3551 | ! |
---|
3552 | INTEGER(i_std), DIMENSION(num_largest,2) :: outpt !! Outflow point for each basin (unitless) |
---|
3553 | INTEGER(i_std), DIMENSION(num_largest) :: streams_nb !! Number of streams in basin (unitless) |
---|
3554 | INTEGER(i_std), DIMENSION(num_largest) :: streams_avehops !! Average number of hops in streams (unitless) |
---|
3555 | INTEGER(i_std), DIMENSION(num_largest) :: streams_minhops !! Minimum number of hops in streams (unitless) |
---|
3556 | INTEGER(i_std), DIMENSION(num_largest) :: streams_maxhops !! Minimum number of hops in streams (unitless) |
---|
3557 | REAL(r_std), DIMENSION(num_largest) :: streams_resid !! Average residence time |
---|
3558 | ! |
---|
3559 | INTEGER(i_std) :: icc, fid, iret, ierr_tot, ib, ij, ik, i, j, lcc !! Indices (unitless) |
---|
3560 | INTEGER(i_std) :: nlonid, nlatid, varid, varid2, varid3 |
---|
3561 | INTEGER(i_std) :: dims(2) !! |
---|
3562 | REAL(r_std) :: lon_min, lon_max, lat_min, lat_max |
---|
3563 | CHARACTER(LEN=80) :: lon_name, lat_name, var_name, long_name, nc_name, att_str |
---|
3564 | CHARACTER(LEN=15) :: gridtype !! |
---|
3565 | ! |
---|
3566 | REAL(r_std) :: basinfrac(iim_g,jjm_g) !! |
---|
3567 | REAL(r_std) :: basinuparea(iim_g,jjm_g) !! |
---|
3568 | INTEGER(i_std) :: basincode(iim_g,jjm_g) !! |
---|
3569 | ! |
---|
3570 | LOGICAL :: check=.FALSE. !! (true/false) |
---|
3571 | ! |
---|
3572 | !! PARAMETERS |
---|
3573 | INTEGER(i_std),PARAMETER :: kind_r_diag=NF90_REAL8 !! |
---|
3574 | INTEGER(i_std),PARAMETER :: kind_i_diag=NF90_INT !! |
---|
3575 | |
---|
3576 | !_ ================================================================================================================================ |
---|
3577 | ! |
---|
3578 | ! |
---|
3579 | ! 1.0 Create the NETCDF file and store the coordinates. |
---|
3580 | ! |
---|
3581 | ! This variable should be defined and computed in the module grid.f90. |
---|
3582 | ! Jan |
---|
3583 | gridtype="regular" |
---|
3584 | ! |
---|
3585 | iret = NF90_CREATE(TRIM(river_file_name), NF90_CLOBBER, fid) |
---|
3586 | IF (iret /= NF90_NOERR) THEN |
---|
3587 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not create file :', & |
---|
3588 | & TRIM(river_file_name), '(Problem with disk place or filename ?)') |
---|
3589 | ENDIF |
---|
3590 | ! |
---|
3591 | ! 1.1 Define dimensions |
---|
3592 | ! |
---|
3593 | IF ( INDEX(gridtype, "regular") == 1 ) THEN |
---|
3594 | ! |
---|
3595 | ! 1.1.1 regular grid |
---|
3596 | ! |
---|
3597 | iret = NF90_DEF_DIM(fid, 'lon', iim_g, dims(1)) |
---|
3598 | IF (iret /= NF90_NOERR) THEN |
---|
3599 | CALL ipslerr_p (3,'routing_diagncfile', 'Dimension "x" can not be defined for the file : ', & |
---|
3600 | & TRIM(river_file_name),'(Solution ?)') |
---|
3601 | ENDIF |
---|
3602 | iret = NF90_DEF_DIM(fid, 'lat', jjm_g, dims(2)) |
---|
3603 | IF (iret /= NF90_NOERR) THEN |
---|
3604 | CALL ipslerr_p (3,'routing_diagncfile', 'Dimension "y" can not be defined for the file : ', & |
---|
3605 | & TRIM(river_file_name),'(Solution ?)') |
---|
3606 | ENDIF |
---|
3607 | ELSE |
---|
3608 | ! |
---|
3609 | ! 1.1.2 irregular grid |
---|
3610 | ! |
---|
3611 | iret = NF90_DEF_DIM(fid, 'x', iim_g, dims(1)) |
---|
3612 | IF (iret /= NF90_NOERR) THEN |
---|
3613 | CALL ipslerr_p (3,'routing_diagncfile', 'Dimension "x" can not be defined for the file : ', & |
---|
3614 | & TRIM(river_file_name),'(Solution ?)') |
---|
3615 | ENDIF |
---|
3616 | |
---|
3617 | iret = NF90_DEF_DIM(fid, 'y', jjm_g, dims(2)) |
---|
3618 | IF (iret /= NF90_NOERR) THEN |
---|
3619 | CALL ipslerr_p (3,'routing_diagncfile', 'Dimension "y" can not be defined for the file : ', & |
---|
3620 | & TRIM(river_file_name),'(Solution ?)') |
---|
3621 | ENDIF |
---|
3622 | ENDIF |
---|
3623 | ! |
---|
3624 | ! |
---|
3625 | ! 1.2 Define variables and attributes |
---|
3626 | ! |
---|
3627 | IF ( INDEX(gridtype, "regular") == 1 ) THEN |
---|
3628 | ! |
---|
3629 | ! 1.2.1 regular grid |
---|
3630 | ! |
---|
3631 | lon_name = 'lon' |
---|
3632 | ! |
---|
3633 | iret = NF90_DEF_VAR(fid, lon_name, kind_r_diag, dims(1), nlonid) |
---|
3634 | IF (iret /= NF90_NOERR) THEN |
---|
3635 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//lon_name//' can not be defined for the file : ', & |
---|
3636 | & TRIM(river_file_name),'(Solution ?)') |
---|
3637 | ENDIF |
---|
3638 | ! |
---|
3639 | lat_name = 'lat' |
---|
3640 | iret = NF90_DEF_VAR(fid, lat_name, kind_r_diag, dims(2), nlatid) |
---|
3641 | IF (iret /= NF90_NOERR) THEN |
---|
3642 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//lat_name//' can not be defined for the file : ', & |
---|
3643 | & TRIM(river_file_name),'(Solution ?)') |
---|
3644 | ENDIF |
---|
3645 | ! |
---|
3646 | ELSE |
---|
3647 | ! |
---|
3648 | ! 1.2.2 irregular grid |
---|
3649 | ! |
---|
3650 | lon_name = 'nav_lon' |
---|
3651 | ! |
---|
3652 | iret = NF90_DEF_VAR(fid, lon_name, kind_r_diag, dims, nlonid) |
---|
3653 | IF (iret /= NF90_NOERR) THEN |
---|
3654 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//lon_name//' can not be defined for the file : ', & |
---|
3655 | & TRIM(river_file_name),'(Solution ?)') |
---|
3656 | ENDIF |
---|
3657 | ! |
---|
3658 | lat_name = 'nav_lat' |
---|
3659 | iret = NF90_DEF_VAR(fid, lat_name, kind_r_diag, dims, nlatid) |
---|
3660 | IF (iret /= NF90_NOERR) THEN |
---|
3661 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//lat_name//' can not be defined for the file : ', & |
---|
3662 | & TRIM(river_file_name),'(Solution ?)') |
---|
3663 | ENDIF |
---|
3664 | ! |
---|
3665 | ENDIF |
---|
3666 | ! |
---|
3667 | ! 1.3 Add attributes to the coordinate variables |
---|
3668 | ! |
---|
3669 | iret = NF90_PUT_ATT(fid, nlonid, 'units', "degrees_east") |
---|
3670 | IF (iret /= NF90_NOERR) THEN |
---|
3671 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lon_name//' for the file :', & |
---|
3672 | & TRIM(river_file_name),'(Solution ?)') |
---|
3673 | ENDIF |
---|
3674 | ! |
---|
3675 | lon_min = -180. |
---|
3676 | lon_max = 180. |
---|
3677 | ! |
---|
3678 | iret = NF90_PUT_ATT(fid, nlonid, 'valid_min', lon_min) |
---|
3679 | IF (iret /= NF90_NOERR) THEN |
---|
3680 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lon_name//' for the file :', & |
---|
3681 | & TRIM(river_file_name),'(Solution ?)') |
---|
3682 | ENDIF |
---|
3683 | iret = NF90_PUT_ATT(fid, nlonid, 'valid_max', lon_max) |
---|
3684 | IF (iret /= NF90_NOERR) THEN |
---|
3685 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lon_name//' for the file :', & |
---|
3686 | & TRIM(river_file_name),'(Solution ?)') |
---|
3687 | ENDIF |
---|
3688 | ! |
---|
3689 | iret = NF90_PUT_ATT(fid, nlonid, 'long_name', "Longitude") |
---|
3690 | IF (iret /= NF90_NOERR) THEN |
---|
3691 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lon_name//' for the file :', & |
---|
3692 | & TRIM(river_file_name),'(Solution ?)') |
---|
3693 | ENDIF |
---|
3694 | iret = NF90_PUT_ATT(fid, nlatid, 'units', "degrees_north") |
---|
3695 | IF (iret /= NF90_NOERR) THEN |
---|
3696 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lat_name//' for the file :', & |
---|
3697 | & TRIM(river_file_name),'(Solution ?)') |
---|
3698 | ENDIF |
---|
3699 | ! |
---|
3700 | lat_max = 90. |
---|
3701 | lat_min = -90. |
---|
3702 | ! |
---|
3703 | iret = NF90_PUT_ATT(fid, nlatid, 'valid_min', lat_min) |
---|
3704 | IF (iret /= NF90_NOERR) THEN |
---|
3705 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lat_name//' for the file :', & |
---|
3706 | & TRIM(river_file_name),'(Solution ?)') |
---|
3707 | ENDIF |
---|
3708 | iret = NF90_PUT_ATT(fid, nlatid, 'valid_max', lat_max) |
---|
3709 | IF (iret /= NF90_NOERR) THEN |
---|
3710 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lat_name//' for the file :', & |
---|
3711 | & TRIM(river_file_name),'(Solution ?)') |
---|
3712 | ENDIF |
---|
3713 | iret = NF90_PUT_ATT(fid, nlatid, 'long_name', "Latitude") |
---|
3714 | IF (iret /= NF90_NOERR) THEN |
---|
3715 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add attribut to variable '//lat_name//' for the file :', & |
---|
3716 | & TRIM(river_file_name),'(Solution ?)') |
---|
3717 | ENDIF |
---|
3718 | ! |
---|
3719 | iret = NF90_ENDDEF(fid) |
---|
3720 | IF (iret /= NF90_NOERR) THEN |
---|
3721 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not end definitions in the file : ', & |
---|
3722 | & TRIM(river_file_name),'(Solution ?)') |
---|
3723 | ENDIF |
---|
3724 | ! |
---|
3725 | ! 1.4 Write coordinates |
---|
3726 | ! |
---|
3727 | IF ( INDEX(gridtype, "regular") == 1 ) THEN |
---|
3728 | ! |
---|
3729 | ! 1.4.1 regular grid |
---|
3730 | ! |
---|
3731 | iret = NF90_PUT_VAR(fid, nlonid, lon_g(1:iim_g,1)) |
---|
3732 | IF (iret /= NF90_NOERR) THEN |
---|
3733 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable nav_lon in the file : ', & |
---|
3734 | & TRIM(river_file_name),'(Solution ?)') |
---|
3735 | ENDIF |
---|
3736 | ! |
---|
3737 | iret = NF90_PUT_VAR(fid, nlatid, lat_g(1,1:jjm_g)) |
---|
3738 | IF (iret /= NF90_NOERR) THEN |
---|
3739 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable nav_lat in the file : ', & |
---|
3740 | & TRIM(river_file_name),'(Solution ?)') |
---|
3741 | ENDIF |
---|
3742 | ELSE |
---|
3743 | ! |
---|
3744 | ! 1.4.2 irregular grid |
---|
3745 | ! |
---|
3746 | iret = NF90_PUT_VAR(fid, nlonid, lon_g) |
---|
3747 | IF (iret /= NF90_NOERR) THEN |
---|
3748 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable nav_lon in the file : ', & |
---|
3749 | & TRIM(river_file_name),'(Solution ?)') |
---|
3750 | ENDIF |
---|
3751 | ! |
---|
3752 | iret = NF90_PUT_VAR(fid, nlatid, lat_g) |
---|
3753 | IF (iret /= NF90_NOERR) THEN |
---|
3754 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable nav_lat in the file : ', & |
---|
3755 | & TRIM(river_file_name),'(Solution ?)') |
---|
3756 | ENDIF |
---|
3757 | ENDIF |
---|
3758 | ! |
---|
3759 | ! 2.0 Go through all basins and wirte the information into the netCDF file. |
---|
3760 | ! |
---|
3761 | DO icc = 1, num_largest |
---|
3762 | ! |
---|
3763 | ! 2.1 Compute the fields to be saved in the file |
---|
3764 | ! |
---|
3765 | ib=sortedrivs(icc) |
---|
3766 | ! |
---|
3767 | ! |
---|
3768 | IF ( nb_pts(ib) > 2 ) THEN |
---|
3769 | ! |
---|
3770 | basinfrac(:,:) = zero |
---|
3771 | basinuparea(:,:) = zero |
---|
3772 | basincode(:,:) = zero |
---|
3773 | ! |
---|
3774 | DO ij=1, nb_pts(ib) |
---|
3775 | |
---|
3776 | ik=lbasin_index(ib,ij) |
---|
3777 | |
---|
3778 | j = ((index_g(ik)-1)/iim_g) + 1 |
---|
3779 | i = (index_g(ik)-(j-1)*iim_g) |
---|
3780 | |
---|
3781 | basinfrac(i,j) = basinfrac(i,j) + lbasin_area(ib,ij)/(resolution_g(ik,1)*resolution_g(ik,2)) |
---|
3782 | basinuparea(i,j) = MAX(basinuparea(i,j), lbasin_uparea(ib,ij)) |
---|
3783 | basincode(i,j) = lrivercode(ib,ij) |
---|
3784 | |
---|
3785 | ENDDO |
---|
3786 | ! |
---|
3787 | DO i=1,iim_g |
---|
3788 | DO j=1,jjm_g |
---|
3789 | IF ( basinfrac(i,j) <= EPSILON(zero) ) THEN |
---|
3790 | basinfrac(i,j) = undef_sechiba |
---|
3791 | basinuparea(i,j) = undef_sechiba |
---|
3792 | basincode(i,j) = undef_int |
---|
3793 | ELSE |
---|
3794 | basinfrac(i,j) = MIN(basinfrac(i,j), un) |
---|
3795 | ENDIF |
---|
3796 | ENDDO |
---|
3797 | ENDDO |
---|
3798 | ! |
---|
3799 | ! |
---|
3800 | ! 2.2 Define the variables in the netCDF file |
---|
3801 | ! |
---|
3802 | iret = NF90_REDEF(fid) |
---|
3803 | IF (iret /= NF90_NOERR) THEN |
---|
3804 | CALL ipslerr_p (3,'routing_diagncfile', & |
---|
3805 | & 'Could not restart definitions in the file : ', & |
---|
3806 | & TRIM(river_file_name),'(Solution ?)') |
---|
3807 | ENDIF |
---|
3808 | ! |
---|
3809 | ! Create a name more suitable for a variable in a netCDF file |
---|
3810 | ! |
---|
3811 | nc_name = TRIM(sorted_names(icc)) |
---|
3812 | ! Take out all character which could cause problems |
---|
3813 | lcc=LEN_TRIM(nc_name) |
---|
3814 | DO ij=1,lcc |
---|
3815 | IF ( nc_name(ij:ij) == " " ) nc_name(ij:ij) = "_" |
---|
3816 | IF ( nc_name(ij:ij) == "(" ) nc_name(ij:ij) = "_" |
---|
3817 | IF ( nc_name(ij:ij) == ")" ) nc_name(ij:ij) = "_" |
---|
3818 | ENDDO |
---|
3819 | ! reduce redundant "__" |
---|
3820 | DO ij=1,lcc |
---|
3821 | IF ( nc_name(ij:ij+1) == "__" ) nc_name(ij+1:)=nc_name(ij+2:lcc) |
---|
3822 | ENDDO |
---|
3823 | lcc=LEN_TRIM(nc_name) |
---|
3824 | IF ( nc_name(lcc:lcc) == "_" ) nc_name(lcc:lcc) = " " |
---|
3825 | ! |
---|
3826 | ! |
---|
3827 | ! 2.3 Fraction variable |
---|
3828 | ! |
---|
3829 | IF (check) WRITE(numout,*) "Define Fraction variable and add attributes" |
---|
3830 | ! |
---|
3831 | var_name = TRIM(nc_name)//"_frac" |
---|
3832 | ! |
---|
3833 | iret = NF90_DEF_VAR(fid, TRIM(var_name), kind_r_diag, dims, varid) |
---|
3834 | IF (iret /= NF90_NOERR) THEN |
---|
3835 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//TRIM(var_name)//' can not be defined for the file : ', & |
---|
3836 | & TRIM(river_file_name),'(Solution ?)') |
---|
3837 | ENDIF |
---|
3838 | ! |
---|
3839 | ierr_tot = 0 |
---|
3840 | ! Units |
---|
3841 | iret = NF90_PUT_ATT(fid, varid, 'units', "-") |
---|
3842 | IF (iret /= NF90_NOERR) THEN |
---|
3843 | WRITE(numout,*) 'Units', iret |
---|
3844 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3845 | ierr_tot = ierr_tot + 1 |
---|
3846 | ENDIF |
---|
3847 | ! Long name |
---|
3848 | long_name = "Fraction of basin "//TRIM(sorted_names(icc))//" per grid box" |
---|
3849 | iret = NF90_PUT_ATT(fid, varid, 'long_name', long_name) |
---|
3850 | IF (iret /= NF90_NOERR) THEN |
---|
3851 | WRITE(numout,*) 'Long_Name', long_name, iret |
---|
3852 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3853 | ierr_tot = ierr_tot + 1 |
---|
3854 | ENDIF |
---|
3855 | ! Missing value |
---|
3856 | iret = NF90_PUT_ATT(fid, varid, 'missing_value', undef_sechiba) |
---|
3857 | IF (iret /= NF90_NOERR) THEN |
---|
3858 | WRITE(numout,*) 'Missing value', undef_sechiba, iret |
---|
3859 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3860 | ierr_tot = ierr_tot + 1 |
---|
3861 | ENDIF |
---|
3862 | ! |
---|
3863 | ib=sortedrivs(icc) |
---|
3864 | IF ( check ) WRITE(numout,*) "Doing basin ", icc," corrsdponding to index = ", ib, "num_largest : ", num_largest |
---|
3865 | ! |
---|
3866 | ! Nb of grid points in basin |
---|
3867 | att_str='Nb_of_grid_points_in_basin' |
---|
3868 | iret = NF90_PUT_ATT(fid, varid, att_str, nb_pts(ib)) |
---|
3869 | IF (iret /= NF90_NOERR) THEN |
---|
3870 | WRITE(numout,*) 'Nb of grid points in basin', nb_pts(ib), iret |
---|
3871 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3872 | ierr_tot = ierr_tot + 1 |
---|
3873 | ENDIF |
---|
3874 | ! |
---|
3875 | ! Longitude of outflow point |
---|
3876 | att_str='Longitude_of_outflow_point' |
---|
3877 | iret = NF90_PUT_ATT(fid, varid, att_str, lalo(outpt(ib,1),2)) |
---|
3878 | IF (iret /= NF90_NOERR) THEN |
---|
3879 | WRITE(numout,*) 'Longitude of outflow point', lalo(outpt(ib,1),2), iret |
---|
3880 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3881 | ierr_tot = ierr_tot + 1 |
---|
3882 | ENDIF |
---|
3883 | ! |
---|
3884 | ! Latitide of outflow point |
---|
3885 | att_str='Latitude_of_outflow_point' |
---|
3886 | iret = NF90_PUT_ATT(fid, varid, att_str, lalo(outpt(ib,1),1)) |
---|
3887 | IF (iret /= NF90_NOERR) THEN |
---|
3888 | WRITE(numout,*) 'Latitude of outflow point', lalo(outpt(ib,1),1), iret |
---|
3889 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3890 | ierr_tot = ierr_tot + 1 |
---|
3891 | ENDIF |
---|
3892 | ! |
---|
3893 | ! Number of streams |
---|
3894 | att_str= 'Number_of_streams' |
---|
3895 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_nb(ib)) |
---|
3896 | IF (iret /= NF90_NOERR) THEN |
---|
3897 | WRITE(numout,*) 'Number of streams', streams_nb(ib), iret |
---|
3898 | WRITE(numout,*) TRIM(NF90_STRERROR(iret)) |
---|
3899 | ierr_tot = ierr_tot + 1 |
---|
3900 | ENDIF |
---|
3901 | ! |
---|
3902 | ! Total number of hops to go to the oceans |
---|
3903 | att_str='Total_number_of_hops_to_ocean' |
---|
3904 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_avehops(ib)*streams_nb(ib)) |
---|
3905 | IF (iret /= NF90_NOERR) THEN |
---|
3906 | WRITE(numout,*) 'Total number of hops to go to the oceans ', streams_avehops(ib)*streams_nb(ib), iret |
---|
3907 | ierr_tot = ierr_tot + 1 |
---|
3908 | ENDIF |
---|
3909 | ! |
---|
3910 | ! Minimum number of hops to go to the ocean for any stream |
---|
3911 | att_str='Minimum_number_of_hops_to_ocean_for_any_stream' |
---|
3912 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_minhops(ib)) |
---|
3913 | IF (iret /= NF90_NOERR) THEN |
---|
3914 | WRITE(numout,*) 'Minimum number of hops to go tp the ocean for any stream', streams_minhops(ib), iret |
---|
3915 | ierr_tot = ierr_tot + 1 |
---|
3916 | ENDIF |
---|
3917 | ! |
---|
3918 | ! Average number of hops to go to the ocean for any stream |
---|
3919 | att_str='Average_number_of_hops_to_ocean_for_any_stream' |
---|
3920 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_avehops(ib)) |
---|
3921 | IF (iret /= NF90_NOERR) THEN |
---|
3922 | WRITE(numout,*) 'Average number of hops to go tp the ocean for any stream', streams_avehops(ib), iret |
---|
3923 | ierr_tot = ierr_tot + 1 |
---|
3924 | ENDIF |
---|
3925 | ! |
---|
3926 | ! Maximum number of hops to go to the ocean for any stream |
---|
3927 | att_str='Maximum_number_of_hops_to_ocean_for_any_stream' |
---|
3928 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_maxhops(ib)) |
---|
3929 | IF (iret /= NF90_NOERR) THEN |
---|
3930 | WRITE(numout,*) 'Maximum number of hops to go tp the ocean for any stream', streams_maxhops(ib), iret |
---|
3931 | ierr_tot = ierr_tot + 1 |
---|
3932 | ENDIF |
---|
3933 | ! |
---|
3934 | ! Average residence time in the basin |
---|
3935 | att_str='Average_residence_time_in_basin' |
---|
3936 | iret = NF90_PUT_ATT(fid, varid, att_str, streams_resid(ib)) |
---|
3937 | IF (iret /= NF90_NOERR) THEN |
---|
3938 | WRITE(numout,*) 'Average residence time in the basin', streams_resid(ib), iret |
---|
3939 | ierr_tot = ierr_tot + 1 |
---|
3940 | ENDIF |
---|
3941 | ! |
---|
3942 | IF (ierr_tot > 0 ) THEN |
---|
3943 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add some attributes to variable '//var_name//' for the file :', & |
---|
3944 | & TRIM(river_file_name),'(Solution ?)') |
---|
3945 | ENDIF |
---|
3946 | ! |
---|
3947 | ! 2.4 Upstream area variable variable |
---|
3948 | ! |
---|
3949 | IF (check) WRITE(numout,*) "Define Upstream variable and add attributes" |
---|
3950 | ! |
---|
3951 | ! Create a name more suitable for a variable in a netCDF file |
---|
3952 | ! |
---|
3953 | var_name = TRIM(nc_name)//"_upstream" |
---|
3954 | DO ij=1,LEN_TRIM(var_name) |
---|
3955 | IF ( var_name(ij:ij) == " " ) var_name(ij:ij) = "_" |
---|
3956 | ENDDO |
---|
3957 | ! |
---|
3958 | iret = NF90_DEF_VAR(fid, TRIM(var_name), kind_r_diag, dims, varid2) |
---|
3959 | IF (iret /= NF90_NOERR) THEN |
---|
3960 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//TRIM(var_name)//' can not be defined for the file : ', & |
---|
3961 | & TRIM(river_file_name),'(Solution ?)') |
---|
3962 | ENDIF |
---|
3963 | ! |
---|
3964 | ierr_tot = 0 |
---|
3965 | ! Units |
---|
3966 | iret = NF90_PUT_ATT(fid, varid2, 'units', "m^2") |
---|
3967 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
3968 | ! Long name |
---|
3969 | long_name = "Upstream area of basin "//TRIM(sorted_names(icc))//" in the grid box" |
---|
3970 | iret = NF90_PUT_ATT(fid, varid2, 'long_name', long_name) |
---|
3971 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
3972 | ! Missing value |
---|
3973 | iret = NF90_PUT_ATT(fid, varid2, 'missing_value', undef_sechiba) |
---|
3974 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
3975 | ! |
---|
3976 | IF (ierr_tot > 0 ) THEN |
---|
3977 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add some attributes to variable '//var_name//' for the file :', & |
---|
3978 | & TRIM(river_file_name),'(Solution ?)') |
---|
3979 | ENDIF |
---|
3980 | ! |
---|
3981 | ! 2.5 Pfafstetter codes for basins |
---|
3982 | ! |
---|
3983 | IF (check) WRITE(numout,*) "Define Pfafstetter codes variable and add attributes" |
---|
3984 | ! |
---|
3985 | var_name = TRIM(nc_name)//"_coding" |
---|
3986 | DO ij=1,LEN_TRIM(var_name) |
---|
3987 | IF ( var_name(ij:ij) == " " ) var_name(ij:ij) = "_" |
---|
3988 | ENDDO |
---|
3989 | ! |
---|
3990 | iret = NF90_DEF_VAR(fid, TRIM(var_name), kind_i_diag, dims, varid3) |
---|
3991 | IF (iret /= NF90_NOERR) THEN |
---|
3992 | CALL ipslerr_p (3,'routing_diagncfile', 'Variable '//TRIM(var_name)//' can not be defined for the file : ', & |
---|
3993 | & TRIM(river_file_name),'(Solution ?)') |
---|
3994 | ENDIF |
---|
3995 | ! |
---|
3996 | ierr_tot = 0 |
---|
3997 | ! Units |
---|
3998 | iret = NF90_PUT_ATT(fid, varid3, 'units', "-") |
---|
3999 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
4000 | ! Long name |
---|
4001 | long_name = "Pfafstetter codes of grid boxes in basin "//TRIM(sorted_names(icc)) |
---|
4002 | iret = NF90_PUT_ATT(fid, varid3, 'long_name', long_name) |
---|
4003 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
4004 | ! Missing value |
---|
4005 | iret = NF90_PUT_ATT(fid, varid3, 'missing_value', undef_int) |
---|
4006 | IF (iret /= NF90_NOERR) ierr_tot = ierr_tot + 1 |
---|
4007 | ! |
---|
4008 | IF (ierr_tot > 0 ) THEN |
---|
4009 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not add some attributes to variable '//var_name//' for the file :', & |
---|
4010 | & TRIM(river_file_name),'(Solution ?)') |
---|
4011 | ENDIF |
---|
4012 | ! |
---|
4013 | ! 2.6 ENDDEF of netCDF file |
---|
4014 | ! |
---|
4015 | IF (check) WRITE(numout,*) "END define" |
---|
4016 | ! |
---|
4017 | iret = NF90_ENDDEF(fid) |
---|
4018 | IF (iret /= NF90_NOERR) THEN |
---|
4019 | CALL ipslerr_p (3,'routing_diagncfile', & |
---|
4020 | & 'Could not end definitions in the file : ', & |
---|
4021 | & TRIM(river_file_name),'(Solution ?)') |
---|
4022 | ENDIF |
---|
4023 | ! |
---|
4024 | ! 2.7 Write the data to the file |
---|
4025 | ! |
---|
4026 | IF (check) WRITE(numout,*) "Put basinfrac" |
---|
4027 | iret = NF90_PUT_VAR(fid, varid, basinfrac) |
---|
4028 | IF (iret /= NF90_NOERR) THEN |
---|
4029 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable basinfrac in the file : ', & |
---|
4030 | & TRIM(river_file_name),'(Solution ?)') |
---|
4031 | ENDIF |
---|
4032 | |
---|
4033 | IF (check) WRITE(numout,*) "Put basinuparea" |
---|
4034 | iret = NF90_PUT_VAR(fid, varid2, basinuparea) |
---|
4035 | IF (iret /= NF90_NOERR) THEN |
---|
4036 | CALL ipslerr_p (3,'routing_diagncfile', 'Could not put variable basinuparea in the file : ', & |
---|
4037 | & TRIM(river_file_name),'(Solution ?)') |
---|
4038 | ENDIF |
---|
4039 | |
---|
4040 | IF (check) WRITE(numout,*) "Put basincode" |
---|
4041 | iret = NF90_PUT_VAR(fid, varid3, basincode) |
---|
4042 | IF (iret /= NF90_NOERR) THEN |
---|
4043 | CALL ipslerr_p (3,'routing_diagfile', 'Could not put variable basincode in the file : ', & |
---|
4044 | & TRIM(river_file_name),'(Solution ?)') |
---|
4045 | ENDIF |
---|
4046 | ! |
---|
4047 | ENDIF |
---|
4048 | ! |
---|
4049 | ENDDO |
---|
4050 | ! |
---|
4051 | IF (check) WRITE(numout,*) "Close file" |
---|
4052 | ! |
---|
4053 | ! Close netCDF file and do some memory management. |
---|
4054 | ! |
---|
4055 | iret = NF90_CLOSE(fid) |
---|
4056 | IF (iret /= NF90_NOERR) THEN |
---|
4057 | CALL ipslerr_p (3,'routing_diagncfile', & |
---|
4058 | & 'Could not end definitions in the file : ', & |
---|
4059 | & TRIM(river_file_name),'(Solution ?)') |
---|
4060 | ENDIF |
---|
4061 | ! |
---|
4062 | ! |
---|
4063 | END SUBROUTINE routing_diagncfile |
---|
4064 | ! |
---|
4065 | !! ================================================================================================================================ |
---|
4066 | !! SUBROUTINE : routing_basins_p |
---|
4067 | !! |
---|
4068 | !>\BRIEF This parallelized subroutine computes the routing map if needed. |
---|
4069 | !! |
---|
4070 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
4071 | !! |
---|
4072 | !! RECENT CHANGE(S): None |
---|
4073 | !! |
---|
4074 | !! MAIN OUTPUT VARIABLE(S): |
---|
4075 | !! |
---|
4076 | !! REFERENCES : None |
---|
4077 | !! |
---|
4078 | !! FLOWCHART : None |
---|
4079 | !! \n |
---|
4080 | !_ ================================================================================================================================ |
---|
4081 | |
---|
4082 | SUBROUTINE routing_basins_p(nbpt, lalo, neighbours, resolution, contfrac) |
---|
4083 | ! |
---|
4084 | IMPLICIT NONE |
---|
4085 | ! |
---|
4086 | !! INPUT VARIABLES |
---|
4087 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
4088 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
4089 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point (1=North and then clockwise) (unitless) |
---|
4090 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
4091 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
4092 | |
---|
4093 | !_ ================================================================================================================================ |
---|
4094 | |
---|
4095 | ! INTEGER(i_std) :: neighbours_tmp(nbpt,8) |
---|
4096 | ! INTEGER(i_std) :: i,j |
---|
4097 | |
---|
4098 | ! DO i=1,nbp_loc |
---|
4099 | ! DO j=1,NbNeighb |
---|
4100 | ! IF (neighbours(i,j)==-1) THEN |
---|
4101 | ! neighbours_tmp(i,j)=neighbours(i,j) |
---|
4102 | ! ELSE |
---|
4103 | ! neighbours_tmp(i,j)=neighbours(i,j)+nbp_para_begin(mpi_rank)-1 |
---|
4104 | ! ENDIF |
---|
4105 | ! ENDDO |
---|
4106 | ! ENDDO |
---|
4107 | |
---|
4108 | routing_area => routing_area_glo |
---|
4109 | topo_resid => topo_resid_glo |
---|
4110 | route_togrid => route_togrid_glo |
---|
4111 | route_tobasin => route_tobasin_glo |
---|
4112 | route_nbintobas => route_nbintobas_glo |
---|
4113 | global_basinid => global_basinid_glo |
---|
4114 | |
---|
4115 | IF (is_root_prc) CALL routing_basins(nbp_glo,lalo_g, neighbours_g, resolution_g, contfrac_g) |
---|
4116 | |
---|
4117 | routing_area => routing_area_loc |
---|
4118 | topo_resid => topo_resid_loc |
---|
4119 | route_togrid => route_togrid_loc |
---|
4120 | route_tobasin => route_tobasin_loc |
---|
4121 | route_nbintobas => route_nbintobas_loc |
---|
4122 | global_basinid => global_basinid_loc |
---|
4123 | |
---|
4124 | CALL scatter(routing_area_glo,routing_area_loc) |
---|
4125 | CALL scatter(topo_resid_glo,topo_resid_loc) |
---|
4126 | CALL scatter(route_togrid_glo,route_togrid_loc) |
---|
4127 | CALL scatter(route_tobasin_glo,route_tobasin_loc) |
---|
4128 | CALL scatter(route_nbintobas_glo,route_nbintobas_loc) |
---|
4129 | CALL scatter(global_basinid_glo,global_basinid_loc) |
---|
4130 | |
---|
4131 | END SUBROUTINE routing_basins_p |
---|
4132 | ! |
---|
4133 | |
---|
4134 | !! ================================================================================================================================ |
---|
4135 | !! SUBROUTINE : routing_basins |
---|
4136 | !! |
---|
4137 | !>\BRIEF This non-parallelized subroutine reads in the map of basins and flow direction to construct |
---|
4138 | !! the catchments of each grid box. |
---|
4139 | !! |
---|
4140 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
4141 | !! The work is done in a number of steps which are performed locally on the |
---|
4142 | !! GCM grid: |
---|
4143 | !! 1) First we find the grid-points of the high resolution routing grid which are |
---|
4144 | !! within the coarser grid of the GCM. |
---|
4145 | !! 2) When we have these grid points we decompose them into basins in the routine |
---|
4146 | !! routing_findbasins. A number of simplifications are done if needed. |
---|
4147 | !! 3) In the routine routing_globalize we put the basin information of this grid |
---|
4148 | !! into the global fields. |
---|
4149 | !! Then we work on the global grid to perform the following tasks : |
---|
4150 | !! 1) We link up the basins of the various grid points and check the global consistency. |
---|
4151 | !! 2) The area of each outflow point is computed. |
---|
4152 | !! 3) The final step is to reduce the number of basins in order to fit into the truncation.\n |
---|
4153 | !! |
---|
4154 | !! RECENT CHANGE(S): None |
---|
4155 | !! |
---|
4156 | !! MAIN OUTPUT VARIABLE(S): None, as the routine puts information into the global variables of the module. |
---|
4157 | !! |
---|
4158 | !! REFERENCES : None |
---|
4159 | !! |
---|
4160 | !! FLOWCHART : None |
---|
4161 | !! \n |
---|
4162 | !_ ================================================================================================================================ |
---|
4163 | |
---|
4164 | SUBROUTINE routing_basins(nbpt, lalo, neighbours, resolution, contfrac) |
---|
4165 | ! |
---|
4166 | IMPLICIT NONE |
---|
4167 | ! |
---|
4168 | !! INPUT VARIABLES |
---|
4169 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
4170 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
4171 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
4172 | !! (1=North and then cloxkwise) |
---|
4173 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
4174 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
4175 | ! |
---|
4176 | !! LOCAL VARIABLES |
---|
4177 | CHARACTER(LEN=80) :: filename !! Name of the netcdf file (unitless) |
---|
4178 | INTEGER(i_std) :: iml, jml, lml, tml, fid, ib, ip, jp, fopt !! Indices (unitless) |
---|
4179 | REAL(r_std) :: lev(1), date, dt, coslat |
---|
4180 | INTEGER(i_std) :: itau(1) !! |
---|
4181 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: trip !! The trip field (unitless) |
---|
4182 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: basins !! The basin field (unitless) |
---|
4183 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: topoindex !! Topographic index of the residence time (m) |
---|
4184 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: hierarchy !! |
---|
4185 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lat_rel !! |
---|
4186 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lon_rel !! |
---|
4187 | ! |
---|
4188 | INTEGER(i_std) :: nbi, nbj !! Number of point in x and y within the grid (unitless) |
---|
4189 | REAL(r_std) :: min_topoind !! The current minimum of topographic index (m) |
---|
4190 | REAL(r_std) :: max_basins !! |
---|
4191 | REAL(r_std) :: invented_basins !! |
---|
4192 | ! |
---|
4193 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: area_bx !! Area of each small box in the grid box (m^2) |
---|
4194 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: hierarchy_bx !! Level in the basin of the point |
---|
4195 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lon_bx !! |
---|
4196 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lat_bx !! |
---|
4197 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: topoind_bx !! Topographic index of the residence time for each of the smaller boxes (m) |
---|
4198 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: trip_bx !! The trip field for each of the smaller boxes (unitless) |
---|
4199 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: basin_bx !! |
---|
4200 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: coast_pts !! The coastal flow points (unitless) |
---|
4201 | ! |
---|
4202 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: basin_count !! |
---|
4203 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: basin_id !! |
---|
4204 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: basin_area !! |
---|
4205 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: basin_hierarchy !! |
---|
4206 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: basin_topoind !! Topographic index of the residence time for a basin (m) |
---|
4207 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: fetch_basin !! |
---|
4208 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: basin_flowdir !! Water flow directions in the basin (unitless) |
---|
4209 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
4210 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: outflow_basin !! |
---|
4211 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: inflow_number !! |
---|
4212 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: inflow_basin !! |
---|
4213 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: inflow_grid !! |
---|
4214 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: nbcoastal !! |
---|
4215 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: coastal_basin !! |
---|
4216 | ! |
---|
4217 | ! Interpolation help variables |
---|
4218 | ! |
---|
4219 | INTEGER(i_std) :: nix, njx !! |
---|
4220 | CHARACTER(LEN=30) :: callsign !! |
---|
4221 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: resol_lu !! Resolution |
---|
4222 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: mask !! Mask to exclude some points (unitless) |
---|
4223 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: sub_area !! Area on the fine grid (m^2) |
---|
4224 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: sub_index !! Indices of the points we need on the fine grid (unitless) |
---|
4225 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: sub_pts !! Number of high resolution points on this grid (unitless) |
---|
4226 | INTEGER :: ALLOC_ERR !! |
---|
4227 | LOGICAL :: ok_interpol = .FALSE. !! Flag for interpolation (true/false) |
---|
4228 | ! |
---|
4229 | INTEGER(i_std) :: nb_basin !! Number of sub-basins (unitless) |
---|
4230 | INTEGER(i_std) :: nwbas !! |
---|
4231 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: basin_inbxid !! |
---|
4232 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: basin_sz !! |
---|
4233 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: basin_bxout !! |
---|
4234 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: basin_pts !! |
---|
4235 | CHARACTER(LEN=7) :: fmt !! |
---|
4236 | LOGICAL :: debug = .FALSE. !! (true/false) |
---|
4237 | ! |
---|
4238 | INTEGER(i_std), DIMENSION(2) :: diagbox = (/ 1, 2 /) !! |
---|
4239 | |
---|
4240 | !_ ================================================================================================================================ |
---|
4241 | ! |
---|
4242 | ! |
---|
4243 | IF ( .NOT. is_root_prc) THEN |
---|
4244 | WRITE(numout,*) "is_root_prc = ", is_root_prc |
---|
4245 | CALL ipslerr_p (3,'routing_basins', & |
---|
4246 | & 'routing_basins is not suitable for running in parallel', & |
---|
4247 | & 'We are here on a non root processor. ','(STOP from routing_basins)') |
---|
4248 | ENDIF |
---|
4249 | ! |
---|
4250 | ! Test on diagbox and nbpt |
---|
4251 | ! |
---|
4252 | IF (debug) THEN |
---|
4253 | IF (ANY(diagbox .GT. nbpt)) THEN |
---|
4254 | WRITE(numout,*) "Debug diganostics : nbpt, diagbox", nbpt, diagbox |
---|
4255 | call ipslerr_p(3,'routing_basin', & |
---|
4256 | & 'Problem with diagbox in debug mode.', & |
---|
4257 | & 'diagbox values can''t be greater than land points number.', & |
---|
4258 | & '(decrease diagbox wrong value)') |
---|
4259 | ENDIF |
---|
4260 | ENDIF |
---|
4261 | ! |
---|
4262 | ! |
---|
4263 | ! Needs to be a configurable variable |
---|
4264 | ! |
---|
4265 | ! |
---|
4266 | !Config Key = ROUTING_FILE |
---|
4267 | !Config Desc = Name of file which contains the routing information |
---|
4268 | !Config If = RIVER_ROUTING |
---|
4269 | !Config Def = routing.nc |
---|
4270 | !Config Help = The file provided here should alow the routing module to |
---|
4271 | !Config read the high resolution grid of basins and the flow direction |
---|
4272 | !Config from one mesh to the other. |
---|
4273 | !Config Units = [FILE] |
---|
4274 | ! |
---|
4275 | filename = 'routing.nc' |
---|
4276 | CALL getin('ROUTING_FILE',filename) |
---|
4277 | ! |
---|
4278 | CALL flininfo(filename,iml, jml, lml, tml, fid) |
---|
4279 | CALL flinclo(fid) |
---|
4280 | ! |
---|
4281 | ! soils_param.nc file is 1° soit texture file. |
---|
4282 | ! |
---|
4283 | ALLOCATE(lat_rel(iml,jml), STAT=ALLOC_ERR) |
---|
4284 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for lat_rel','','') |
---|
4285 | |
---|
4286 | ALLOCATE(lon_rel(iml,jml), STAT=ALLOC_ERR) |
---|
4287 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for lon_rel','','') |
---|
4288 | |
---|
4289 | ALLOCATE (trip(iml,jml), STAT=ALLOC_ERR) |
---|
4290 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for trip','','') |
---|
4291 | |
---|
4292 | ALLOCATE (basins(iml,jml), STAT=ALLOC_ERR) |
---|
4293 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basins','','') |
---|
4294 | |
---|
4295 | ALLOCATE (topoindex(iml,jml), STAT=ALLOC_ERR) |
---|
4296 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for topoindex','','') |
---|
4297 | |
---|
4298 | ALLOCATE (hierarchy(iml,jml), STAT=ALLOC_ERR) |
---|
4299 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for hierarchy','','') |
---|
4300 | |
---|
4301 | ! |
---|
4302 | CALL flinopen(filename, .FALSE., iml, jml, lml, lon_rel, lat_rel, lev, tml, itau, date, dt, fid) |
---|
4303 | !! |
---|
4304 | !! From the basin description data we will read the following variables : |
---|
4305 | !! |
---|
4306 | !! Trip : Provides the flow direction following the convention : |
---|
4307 | !! trip = 1 : flow = N |
---|
4308 | !! trip = 2 : flow = NE |
---|
4309 | !! trip = 3 : flow = E |
---|
4310 | !! trip = 4 : flow = SE |
---|
4311 | !! trip = 5 : flow = S |
---|
4312 | !! trip = 6 : flow = SW |
---|
4313 | !! trip = 7 : flow = W |
---|
4314 | !! trip = 8 : flow = NW |
---|
4315 | !! trip = 97 : return flow into the ground |
---|
4316 | !! trip = 98 : coastal flow (diffuse flow into the oceans) |
---|
4317 | !! trip = 99 : river flow into the oceans |
---|
4318 | !! |
---|
4319 | !! Basins : Provides a uniqe ID for each basin. These IDs are also used to get |
---|
4320 | !! the name of the basin from the table in routine routing_names. |
---|
4321 | !! |
---|
4322 | !! Topoind : is the topographic index for the retention time of the water in the |
---|
4323 | !! grid box. It has been computed with the following formula : 1000 x sqrt(d^3/Dz) |
---|
4324 | !! where d is the distance of the river from the current grid box to the next one |
---|
4325 | !! as indicated by the variable trip. |
---|
4326 | !! Dz the hight difference between between the two grid boxes. |
---|
4327 | !! All these variables are in meters. |
---|
4328 | !! Furthermore we have to limit the height difference to 5m in order to avoid any unpleasant |
---|
4329 | !! surprises. If dz < 5m then dz=5. |
---|
4330 | !! |
---|
4331 | ! |
---|
4332 | CALL flinget(fid, 'trip', iml, jml, lml, tml, 1, 1, trip) |
---|
4333 | ! |
---|
4334 | CALL flinget(fid, 'basins', iml, jml, lml, tml, 1, 1, basins) |
---|
4335 | ! |
---|
4336 | CALL flinget(fid, 'topoind', iml, jml, lml, tml, 1, 1, topoindex) |
---|
4337 | ! |
---|
4338 | CALL flinclo(fid) |
---|
4339 | ! |
---|
4340 | min_topoind = MINVAL(topoindex, MASK=topoindex .LT. undef_sechiba-un) |
---|
4341 | ! |
---|
4342 | DO ip=1,iml |
---|
4343 | DO jp=1,jml |
---|
4344 | IF ( trip(ip,jp) < 1.e10 .AND. topoindex(ip,jp) > 1.e10) THEN |
---|
4345 | WRITE(numout,*) 'trip exists but not topoind :' |
---|
4346 | WRITE(numout,*) 'ip, jp :', ip, jp |
---|
4347 | WRITE(numout,*) 'trip, topoind : ', trip(ip,jp), topoindex(ip,jp) |
---|
4348 | CALL ipslerr_p(3,'routing_basins','trip exists but not topoind','','') |
---|
4349 | ENDIF |
---|
4350 | ENDDO |
---|
4351 | ENDDO |
---|
4352 | |
---|
4353 | ALLOCATE(resol_lu(iml,jml,2), STAT=ALLOC_ERR) |
---|
4354 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for resol_lu','','') |
---|
4355 | |
---|
4356 | ALLOCATE(mask(iml,jml), STAT=ALLOC_ERR) |
---|
4357 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for mask','','') |
---|
4358 | ! |
---|
4359 | ! Consider all points a priori |
---|
4360 | ! |
---|
4361 | mask(:,:) = 0 |
---|
4362 | ! |
---|
4363 | DO ip=1,iml |
---|
4364 | DO jp=1,jml |
---|
4365 | ! |
---|
4366 | ! Determine the land mask of the basin map read from the file ROUTING_FILE |
---|
4367 | ! |
---|
4368 | IF ( trip(ip,jp) < 1.e10 ) THEN |
---|
4369 | mask(ip,jp) = 1 |
---|
4370 | ENDIF |
---|
4371 | ! |
---|
4372 | ! Resolution in longitude |
---|
4373 | ! |
---|
4374 | coslat = MAX( COS( lat_rel(ip,jp) * pi/180. ), mincos ) |
---|
4375 | IF ( ip .EQ. 1 ) THEN |
---|
4376 | resol_lu(ip,jp,1) = ABS( lon_rel(ip+1,jp) - lon_rel(ip,jp) ) * pi/180. * R_Earth * coslat |
---|
4377 | ELSEIF ( ip .EQ. iml ) THEN |
---|
4378 | resol_lu(ip,jp,1) = ABS( lon_rel(ip,jp) - lon_rel(ip-1,jp) ) * pi/180. * R_Earth * coslat |
---|
4379 | ELSE |
---|
4380 | resol_lu(ip,jp,1) = ABS( lon_rel(ip+1,jp) - lon_rel(ip-1,jp) )/2. * pi/180. * R_Earth * coslat |
---|
4381 | ENDIF |
---|
4382 | ! |
---|
4383 | ! Resolution in latitude |
---|
4384 | ! |
---|
4385 | IF ( jp .EQ. 1 ) THEN |
---|
4386 | resol_lu(ip,jp,2) = ABS( lat_rel(ip,jp) - lat_rel(ip,jp+1) ) * pi/180. * R_Earth |
---|
4387 | ELSEIF ( jp .EQ. jml ) THEN |
---|
4388 | resol_lu(ip,jp,2) = ABS( lat_rel(ip,jp-1) - lat_rel(ip,jp) ) * pi/180. * R_Earth |
---|
4389 | ELSE |
---|
4390 | resol_lu(ip,jp,2) = ABS( lat_rel(ip,jp-1) - lat_rel(ip,jp+1) )/2. * pi/180. * R_Earth |
---|
4391 | ENDIF |
---|
4392 | ! |
---|
4393 | ENDDO |
---|
4394 | ENDDO |
---|
4395 | ! |
---|
4396 | ! The maximum number of points of the source map (basin description here) which can fit into |
---|
4397 | ! any grid point of the ORCHIDEE grid is stimated here. |
---|
4398 | ! Some margin is taken. |
---|
4399 | ! |
---|
4400 | callsign = "routing_basins" |
---|
4401 | ok_interpol = .FALSE. |
---|
4402 | ! |
---|
4403 | nix=INT(MAXVAL(resolution_g(:,1))/MAXVAL(resol_lu(:,:,1)))+2 |
---|
4404 | njx=INT(MAXVAL(resolution_g(:,2))/MAXVAL(resol_lu(:,:,2)))+2 |
---|
4405 | nbvmax = nix*njx*2 |
---|
4406 | ! |
---|
4407 | ! We are on the root processor here as this routine is not in parallel. So no need to broadcast. |
---|
4408 | ! |
---|
4409 | WRITE(numout,*) "Projection arrays for ",callsign," : " |
---|
4410 | WRITE(numout,*) "Routing : nbvmax = ", nbvmax |
---|
4411 | |
---|
4412 | |
---|
4413 | ALLOCATE (sub_area(nbpt,nbvmax), STAT=ALLOC_ERR) |
---|
4414 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for sub_area','','') |
---|
4415 | sub_area(:,:)=zero |
---|
4416 | |
---|
4417 | ALLOCATE (sub_index(nbpt,nbvmax,2), STAT=ALLOC_ERR) |
---|
4418 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for sub_index','','') |
---|
4419 | sub_index(:,:,:)=0 |
---|
4420 | |
---|
4421 | ALLOCATE (sub_pts(nbpt), STAT=ALLOC_ERR) |
---|
4422 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for sub_pts','','') |
---|
4423 | sub_pts(:)=0 |
---|
4424 | ! |
---|
4425 | ! routine aggregate will for each point of the ORCHIDEE grid determine which points |
---|
4426 | ! of the source grid (basin definitions here) fit in there and which fraction of |
---|
4427 | ! of the ORCHIDEE grid it represents. |
---|
4428 | ! |
---|
4429 | CALL aggregate(nbpt, lalo, neighbours, resolution, contfrac, & |
---|
4430 | & iml, jml, lon_rel, lat_rel, mask, callsign, & |
---|
4431 | & nbvmax, sub_index, sub_area, ok_interpol) |
---|
4432 | ! |
---|
4433 | WHERE (sub_area < 0) sub_area=zero |
---|
4434 | ! |
---|
4435 | ! Some verifications |
---|
4436 | ! |
---|
4437 | DO ib=1,nbpt |
---|
4438 | sub_pts(ib) = COUNT(sub_area(ib,:) > zero) |
---|
4439 | DO fopt=1,sub_pts(ib) |
---|
4440 | IF (sub_area(ib, fopt) == 0 ) THEN |
---|
4441 | WRITE(numout,*) "Zero Area - Sub_area > 0 : ", ib, fopt |
---|
4442 | WRITE(numout,*) "Zero Area - lon : ",lalo(ib,2) |
---|
4443 | WRITE(numout,*) "Zero Area - lon_rel : ", lon_rel(sub_index(ib, fopt, 1),sub_index(ib, fopt, 2)) |
---|
4444 | WRITE(numout,*) "Zero Area - lat : ",lalo(ib,1) |
---|
4445 | WRITE(numout,*) "Zero Area - lat_rel : ", lat_rel(sub_index(ib, fopt, 1),sub_index(ib, fopt, 2)) |
---|
4446 | ENDIF |
---|
4447 | ENDDO |
---|
4448 | ENDDO |
---|
4449 | ! |
---|
4450 | ! Do some memory management. |
---|
4451 | ! |
---|
4452 | nwbas = MAX(MAXVAL(sub_pts), NbNeighb+1) |
---|
4453 | ! |
---|
4454 | ALLOCATE (area_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4455 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for area_bx','','') |
---|
4456 | ALLOCATE (hierarchy_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4457 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for hierarchy_bx','','') |
---|
4458 | ALLOCATE (lon_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4459 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for lon_bx','','') |
---|
4460 | ALLOCATE (lat_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4461 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for lat_bx','','') |
---|
4462 | ALLOCATE (topoind_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4463 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for topoind_bx','','') |
---|
4464 | ALLOCATE (trip_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4465 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for trip_bx','','') |
---|
4466 | ALLOCATE (basin_bx(nbvmax,nbvmax), stat=ALLOC_ERR) |
---|
4467 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_bx','','') |
---|
4468 | ALLOCATE (coast_pts(nbvmax), stat=ALLOC_ERR) |
---|
4469 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for coast_pts','','') |
---|
4470 | ALLOCATE (basin_inbxid(nbvmax), stat=ALLOC_ERR) |
---|
4471 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_inbxid','','') |
---|
4472 | ALLOCATE (basin_sz(nbvmax), stat=ALLOC_ERR) |
---|
4473 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_sz','','') |
---|
4474 | ALLOCATE (basin_pts(nbvmax,nbvmax,2), stat=ALLOC_ERR) |
---|
4475 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_pts','','') |
---|
4476 | ALLOCATE (basin_bxout(nbvmax), stat=ALLOC_ERR) |
---|
4477 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_bxout','','') |
---|
4478 | ALLOCATE (basin_count(nbpt), stat=ALLOC_ERR) |
---|
4479 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_count','','') |
---|
4480 | ALLOCATE (basin_area(nbpt,nwbas), basin_hierarchy(nbpt,nwbas), basin_topoind(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4481 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_area','','') |
---|
4482 | ALLOCATE (fetch_basin(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4483 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for fetch_basin','','') |
---|
4484 | ALLOCATE (basin_id(nbpt,nwbas), basin_flowdir(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4485 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for basin_id','','') |
---|
4486 | ALLOCATE (outflow_grid(nbpt,nwbas),outflow_basin(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4487 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for outflow_grid','','') |
---|
4488 | ALLOCATE (inflow_number(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4489 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for inflow_number','','') |
---|
4490 | ALLOCATE (inflow_basin(nbpt,nwbas,nbvmax), inflow_grid(nbpt,nwbas,nbvmax), stat=ALLOC_ERR) |
---|
4491 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for inflow_basin','','') |
---|
4492 | ALLOCATE (nbcoastal(nbpt), coastal_basin(nbpt,nwbas), stat=ALLOC_ERR) |
---|
4493 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_basins','Pb in allocate for nbcoastal','','') |
---|
4494 | |
---|
4495 | ! Order all sub points in each grid_box and find the sub basins |
---|
4496 | ! |
---|
4497 | ! before we start we set the maps to empty |
---|
4498 | ! |
---|
4499 | basin_id(:,:) = undef_int |
---|
4500 | basin_count(:) = 0 |
---|
4501 | hierarchy(:,:) = undef_sechiba |
---|
4502 | max_basins = MAXVAL(basins, MASK=basins .LT. 1.e10) |
---|
4503 | invented_basins = max_basins |
---|
4504 | nbcoastal(:) = 0 |
---|
4505 | ! |
---|
4506 | !! Finds,in each grid box, the distance to the outflow point ... this defines the order in which |
---|
4507 | !! the water will go through the sub-basins and grid boxes. |
---|
4508 | ! |
---|
4509 | CALL routing_hierarchy(iml, jml, trip, topoindex, hierarchy) |
---|
4510 | ! |
---|
4511 | ! |
---|
4512 | DO ib =1, nbpt |
---|
4513 | ! |
---|
4514 | ! |
---|
4515 | ! extract the information for this grid box |
---|
4516 | ! |
---|
4517 | !! Extracts from the global high resolution fields the data for the current grid box. |
---|
4518 | ! |
---|
4519 | CALL routing_getgrid(nbpt, iml, jml, ib, sub_pts, sub_index, sub_area, max_basins, min_topoind, & |
---|
4520 | & lon_rel, lat_rel, lalo, resolution, contfrac, trip, basins, topoindex, hierarchy, & |
---|
4521 | & nbi, nbj, area_bx, trip_bx, basin_bx, topoind_bx, hierarchy_bx, lon_bx, lat_bx) |
---|
4522 | ! |
---|
4523 | !! Finds the basins: returns the list of all points which are within the same basin of the grid box. |
---|
4524 | ! |
---|
4525 | CALL routing_findbasins(nbi, nbj, trip_bx, basin_bx, hierarchy_bx, topoind_bx,& |
---|
4526 | & nb_basin, basin_inbxid, basin_sz, basin_bxout, basin_pts, coast_pts) |
---|
4527 | |
---|
4528 | #ifdef STRICT_CHECK |
---|
4529 | IF (ANY(basin_inbxid(1:nb_basin) < 0)) THEN |
---|
4530 | CALL ipslerr_p(3, 'routing_basins', 'basin_inbxid cannot have negative values.', 'Those will be later used as index in an array.', '') |
---|
4531 | ENDIF |
---|
4532 | #endif |
---|
4533 | |
---|
4534 | ! |
---|
4535 | ! Deal with the case where nb_basin=0 for this grid box. In this case all goes into coastal flow. |
---|
4536 | ! |
---|
4537 | IF ( debug .AND. (COUNT(diagbox .EQ. ib) .GT. 0) ) THEN |
---|
4538 | WRITE(numout,*) '===================== IB = :', ib |
---|
4539 | WRITE(numout,*) "sub_pts(ib) :", sub_pts(ib), "sub_area(ib,:) :",sub_area(ib,1:2) |
---|
4540 | WRITE(numout,*) 'LON LAT of GCM :', lalo(ib,2), lalo(ib,1) |
---|
4541 | WRITE(numout,*) 'Neighbor options :', neighbours(ib,1:NbNeighb) |
---|
4542 | WRITE(numout,*) 'Resolution :', resolution(ib,1:2) |
---|
4543 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
4544 | WRITE(numout,*) '-------------> trip ', trip_bx(1,1) |
---|
4545 | DO jp=1,nbj |
---|
4546 | WRITE(numout,fmt) trip_bx(1:nbi,jp) |
---|
4547 | ENDDO |
---|
4548 | WRITE(numout,*) '-------------> basin ',basin_bx(1,1) |
---|
4549 | DO jp=1,nbj |
---|
4550 | WRITE(numout,fmt) basin_bx(1:nbi,jp) |
---|
4551 | ENDDO |
---|
4552 | WRITE(numout,*) '-------------> hierarchy ',hierarchy_bx(1,1) |
---|
4553 | DO jp=1,nbj |
---|
4554 | WRITE(numout,fmt) INT(hierarchy_bx(1:nbi,jp)/1000.) |
---|
4555 | ENDDO |
---|
4556 | WRITE(numout,*) '-------------> topoindex ',topoind_bx(1,1) |
---|
4557 | DO jp=1,nbj |
---|
4558 | WRITE(numout,fmt) INT(topoind_bx(1:nbi,jp)/1000.) |
---|
4559 | ENDDO |
---|
4560 | ! |
---|
4561 | WRITE(numout,*) '------------> The basins we retain' |
---|
4562 | DO jp=1,nb_basin |
---|
4563 | WRITE(numout,*) 'index, size, bxout, coast :', basin_inbxid(jp), basin_sz(jp),& |
---|
4564 | & basin_bxout(jp), coast_pts(jp) |
---|
4565 | ENDDO |
---|
4566 | ! |
---|
4567 | ENDIF |
---|
4568 | ! |
---|
4569 | !! Puts the basins found for the current grid box in the context of the global map. |
---|
4570 | ! |
---|
4571 | CALL routing_globalize(nbpt, ib, neighbours, area_bx, trip_bx, hierarchy_bx, topoind_bx, min_topoind,& |
---|
4572 | & nb_basin, basin_inbxid, basin_sz, basin_pts, basin_bxout, coast_pts, nwbas, basin_count,& |
---|
4573 | & basin_area, basin_hierarchy, basin_topoind, basin_id, basin_flowdir, outflow_grid,& |
---|
4574 | & nbcoastal, coastal_basin) |
---|
4575 | ! |
---|
4576 | ! |
---|
4577 | IF ( debug .AND. (COUNT(diagbox .EQ. ib) .GT. 0) ) THEN |
---|
4578 | WRITE(numout,*) 'GLOBAL information after routing_globalize for grid ', ib |
---|
4579 | DO jp=1,basin_count(ib) |
---|
4580 | WRITE(numout,*) 'Basin ID : ', basin_id(ib, jp) |
---|
4581 | WRITE(numout,*) 'Basin flowdir :', basin_flowdir(ib, jp) |
---|
4582 | WRITE(numout,*) 'Basin hierarchy :', basin_hierarchy(ib, jp) |
---|
4583 | WRITE(numout,*) 'Basin topoindex :', basin_topoind(ib, jp) |
---|
4584 | WRITE(numout,*) 'Basin outflow grid :', outflow_grid(ib,jp) |
---|
4585 | ENDDO |
---|
4586 | ENDIF |
---|
4587 | ! |
---|
4588 | ENDDO |
---|
4589 | ! |
---|
4590 | !! Makes the connections between the bains and ensures global coherence. |
---|
4591 | ! |
---|
4592 | CALL routing_linkup(nbpt, contfrac, neighbours, nwbas, basin_count, basin_area, basin_id, basin_flowdir, & |
---|
4593 | & basin_hierarchy, outflow_grid, outflow_basin, inflow_number, inflow_grid, inflow_basin, & |
---|
4594 | & nbcoastal, coastal_basin, invented_basins) |
---|
4595 | ! |
---|
4596 | ! |
---|
4597 | WRITE(numout,*) 'The maximum number of basins in any grid :', MAXVAL(basin_count) |
---|
4598 | ! |
---|
4599 | IF ( debug ) THEN |
---|
4600 | DO ib=1,SIZE(diagbox) |
---|
4601 | IF ( diagbox(ib) .GT. 0 ) THEN |
---|
4602 | WRITE(numout,*) 'After routing_linkup information for grid ', diagbox(ib) |
---|
4603 | DO jp=1,basin_count(diagbox(ib)) |
---|
4604 | WRITE(numout,*) 'Basin ID : ', basin_id(diagbox(ib), jp) |
---|
4605 | WRITE(numout,*) 'Basin outflow_grid :', outflow_grid(diagbox(ib), jp) |
---|
4606 | WRITE(numout,*) 'Basin outflow_basin:', outflow_basin(diagbox(ib), jp) |
---|
4607 | WRITE(numout,*) 'Basin hierarchy :', basin_hierarchy(diagbox(ib), jp) |
---|
4608 | ENDDO |
---|
4609 | ENDIF |
---|
4610 | ENDDO |
---|
4611 | ENDIF |
---|
4612 | ! |
---|
4613 | !! Computes the fetch of each basin, upstream area in known. |
---|
4614 | ! |
---|
4615 | CALL routing_fetch(nbpt, resolution, contfrac, nwbas, basin_count, basin_area, basin_id, outflow_grid, & |
---|
4616 | & outflow_basin, fetch_basin) |
---|
4617 | ! |
---|
4618 | ! |
---|
4619 | WRITE(numout,*) "Start reducing the number of basins per grid to meet the required truncation." |
---|
4620 | ! |
---|
4621 | !! Reduces the number of basins per grid to the value chosen by the user. |
---|
4622 | ! |
---|
4623 | CALL routing_truncate(nbpt, resolution, contfrac, nwbas, basin_count, basin_area, basin_topoind,& |
---|
4624 | & fetch_basin, basin_id, basin_flowdir, outflow_grid, outflow_basin, inflow_number,& |
---|
4625 | & inflow_grid, inflow_basin) |
---|
4626 | ! |
---|
4627 | DEALLOCATE (lat_rel) |
---|
4628 | DEALLOCATE (lon_rel) |
---|
4629 | ! |
---|
4630 | DEALLOCATE (trip) |
---|
4631 | DEALLOCATE (basins) |
---|
4632 | DEALLOCATE (topoindex) |
---|
4633 | DEALLOCATE (hierarchy) |
---|
4634 | ! |
---|
4635 | DEALLOCATE (sub_area) |
---|
4636 | DEALLOCATE (sub_index) |
---|
4637 | DEALLOCATE (sub_pts) |
---|
4638 | ! |
---|
4639 | DEALLOCATE (mask) |
---|
4640 | DEALLOCATE (resol_lu) |
---|
4641 | ! |
---|
4642 | DEALLOCATE (basin_count) |
---|
4643 | DEALLOCATE (basin_area, basin_hierarchy, basin_topoind, fetch_basin) |
---|
4644 | DEALLOCATE (basin_id, basin_flowdir) |
---|
4645 | DEALLOCATE (outflow_grid,outflow_basin) |
---|
4646 | DEALLOCATE (inflow_number) |
---|
4647 | DEALLOCATE (inflow_basin, inflow_grid) |
---|
4648 | DEALLOCATE (nbcoastal, coastal_basin) |
---|
4649 | |
---|
4650 | END SUBROUTINE routing_basins |
---|
4651 | |
---|
4652 | |
---|
4653 | !! ================================================================================================================================ |
---|
4654 | !! SUBROUTINE : routing_getgrid |
---|
4655 | !! |
---|
4656 | !>\BRIEF This subroutine extracts from the global high resolution fields |
---|
4657 | !! the data for the current grid box we are dealing with. |
---|
4658 | !! |
---|
4659 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
4660 | !! Convention for trip on the input : |
---|
4661 | !! The trip field follows the following convention for the flow of the water : |
---|
4662 | !! trip = 1 : flow = N |
---|
4663 | !! trip = 2 : flow = NE |
---|
4664 | !! trip = 3 : flow = E |
---|
4665 | !! trip = 4 : flow = SE |
---|
4666 | !! trip = 5 : flow = S |
---|
4667 | !! trip = 6 : flow = SW |
---|
4668 | !! trip = 7 : flow = W |
---|
4669 | !! trip = 8 : flow = NW |
---|
4670 | !! trip = 97 : return flow into the ground |
---|
4671 | !! trip = 98 : coastal flow (diffuse flow into the oceans) These values are created here |
---|
4672 | !! trip = 99 : river flow into the oceans |
---|
4673 | !! |
---|
4674 | !! On output, the grid boxes of the basin map which flow out of the GCM grid are identified |
---|
4675 | !! by numbers larger than 100 : |
---|
4676 | !! trip = 101 : flow = N out of the coarse grid |
---|
4677 | !! trip = 102 : flow = NE out of the coarse grid |
---|
4678 | !! trip = 103 : flow = E out of the coarse grid |
---|
4679 | !! trip = 104 : flow = SE out of the coarse grid |
---|
4680 | !! trip = 105 : flow = S out of the coarse grid |
---|
4681 | !! trip = 106 : flow = SW out of the coarse grid |
---|
4682 | !! trip = 107 : flow = W out of the coarse grid |
---|
4683 | !! trip = 108 : flow = NW out of the coarse grid |
---|
4684 | !! Inside the grid the convention remains the same as above (ie between 1 and 99).:\n |
---|
4685 | !! |
---|
4686 | !! RECENT CHANGE(S): None |
---|
4687 | !! |
---|
4688 | !! MAIN OUTPUT VARIABLE(S): |
---|
4689 | !! |
---|
4690 | !! REFERENCES : None |
---|
4691 | !! |
---|
4692 | !! FLOWCHART : None |
---|
4693 | !! \n |
---|
4694 | !_ ================================================================================================================================ |
---|
4695 | |
---|
4696 | SUBROUTINE routing_getgrid(nbpt, iml, jml, ib, sub_pts, sub_index, sub_area, max_basins, min_topoind, & |
---|
4697 | & lon_rel, lat_rel, lalo, resolution, contfrac, trip, basins, topoindex, hierarchy, & |
---|
4698 | & nbi, nbj, area_bx, trip_bx, basin_bx, topoind_bx, hierarchy_bx, lon_bx, lat_bx) |
---|
4699 | ! |
---|
4700 | IMPLICIT NONE |
---|
4701 | ! |
---|
4702 | !! INPUT VARIABLES |
---|
4703 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
4704 | INTEGER(i_std), INTENT(in) :: iml !! X resolution of the high resolution grid |
---|
4705 | INTEGER(i_std), INTENT(in) :: jml !! Y resolution of the high resolution grid |
---|
4706 | INTEGER(i_std), INTENT(in) :: ib !! Current basin (unitless) |
---|
4707 | INTEGER(i_std), INTENT(in) :: sub_pts(nbpt) !! Number of high resolution points on this grid (unitless) |
---|
4708 | INTEGER(i_std), INTENT(in) :: sub_index(nbpt,nbvmax,2) !! Indices of the points we need on the fine grid (unitless) |
---|
4709 | REAL(r_std), INTENT(inout) :: max_basins !! The current maximum of basins |
---|
4710 | REAL(r_std), INTENT(in) :: min_topoind !! The current minimum of topographic index (m) |
---|
4711 | REAL(r_std), INTENT(in) :: sub_area(nbpt,nbvmax) !! Area on the fine grid (m^2) |
---|
4712 | REAL(r_std), INTENT(in) :: lon_rel(iml,jml) !! |
---|
4713 | REAL(r_std), INTENT(in) :: lat_rel(iml,jml) !! coordinates of the fine grid |
---|
4714 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
4715 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
4716 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
4717 | REAL(r_std), INTENT(inout) :: trip(iml,jml) !! The trip field (unitless) |
---|
4718 | REAL(r_std), INTENT(inout) :: basins(iml,jml) !! data on the fine grid |
---|
4719 | REAL(r_std), INTENT(inout) :: topoindex(iml,jml) !! Topographic index of the residence time (m) |
---|
4720 | REAL(r_std), INTENT(inout) :: hierarchy(iml, jml) !! data on the fine grid |
---|
4721 | ! |
---|
4722 | !! OUTPUT VARIABLES |
---|
4723 | INTEGER(i_std), INTENT(out) :: nbi, nbj !! Number of point in x and y within the grid (unitless) |
---|
4724 | REAL(r_std), INTENT(out) :: area_bx(nbvmax,nbvmax) !! Area of each small box in the grid box (m^2) |
---|
4725 | REAL(r_std), INTENT(out) :: hierarchy_bx(nbvmax,nbvmax) !! Level in the basin of the point |
---|
4726 | REAL(r_std), INTENT(out) :: lon_bx(nbvmax,nbvmax) !! |
---|
4727 | REAL(r_std), INTENT(out) :: lat_bx(nbvmax,nbvmax) !! |
---|
4728 | REAL(r_std), INTENT(out) :: topoind_bx(nbvmax,nbvmax) !! Topographic index of the residence time for each of the smaller boxes (m) |
---|
4729 | INTEGER(i_std), INTENT(out) :: trip_bx(nbvmax,nbvmax) !! The trip field for each of the smaller boxes (unitless) |
---|
4730 | INTEGER(i_std), INTENT(out) :: basin_bx(nbvmax,nbvmax) !! |
---|
4731 | ! |
---|
4732 | !! LOCAL VARIABLES |
---|
4733 | INTEGER(i_std) :: ip, jp, ll(1), iloc, jloc !! Indices (unitless) |
---|
4734 | REAL(r_std) :: lonstr(nbvmax*nbvmax) !! |
---|
4735 | REAL(r_std) :: latstr(nbvmax*nbvmax) !! |
---|
4736 | |
---|
4737 | !_ ================================================================================================================================ |
---|
4738 | |
---|
4739 | ! |
---|
4740 | ! Set everything to undef to locate easily empty points |
---|
4741 | ! |
---|
4742 | trip_bx(:,:) = undef_int |
---|
4743 | basin_bx(:,:) = undef_int |
---|
4744 | topoind_bx(:,:) = undef_sechiba |
---|
4745 | area_bx(:,:) = undef_sechiba |
---|
4746 | hierarchy_bx(:,:) = undef_sechiba |
---|
4747 | ! |
---|
4748 | IF ( sub_pts(ib) > 0 ) THEN |
---|
4749 | ! |
---|
4750 | DO ip=1,sub_pts(ib) |
---|
4751 | lonstr(ip) = lon_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4752 | latstr(ip) = lat_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4753 | ENDDO |
---|
4754 | ! |
---|
4755 | ! Get the size of the area and order the coordinates to go from North to South and West to East |
---|
4756 | ! |
---|
4757 | CALL routing_sortcoord(sub_pts(ib), lonstr, 'WE', nbi) |
---|
4758 | CALL routing_sortcoord(sub_pts(ib), latstr, 'NS', nbj) |
---|
4759 | ! |
---|
4760 | ! Transfer the data in such a way that (1,1) is the North Western corner and |
---|
4761 | ! (nbi, nbj) the South Eastern. |
---|
4762 | ! |
---|
4763 | DO ip=1,sub_pts(ib) |
---|
4764 | ll = MINLOC(ABS(lonstr(1:nbi) - lon_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)))) |
---|
4765 | iloc = ll(1) |
---|
4766 | ll = MINLOC(ABS(latstr(1:nbj) - lat_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)))) |
---|
4767 | jloc = ll(1) |
---|
4768 | trip_bx(iloc, jloc) = NINT(trip(sub_index(ib, ip, 1), sub_index(ib, ip, 2))) |
---|
4769 | basin_bx(iloc, jloc) = NINT(basins(sub_index(ib, ip, 1), sub_index(ib, ip, 2))) |
---|
4770 | area_bx(iloc, jloc) = sub_area(ib, ip) |
---|
4771 | topoind_bx(iloc, jloc) = topoindex(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4772 | hierarchy_bx(iloc, jloc) = hierarchy(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4773 | lon_bx(iloc, jloc) = lon_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4774 | lat_bx(iloc, jloc) = lat_rel(sub_index(ib, ip, 1), sub_index(ib, ip, 2)) |
---|
4775 | ENDDO |
---|
4776 | ELSE |
---|
4777 | ! |
---|
4778 | ! This is the case where the model invented a continental point |
---|
4779 | ! |
---|
4780 | nbi = 1 |
---|
4781 | nbj = 1 |
---|
4782 | iloc = 1 |
---|
4783 | jloc = 1 |
---|
4784 | trip_bx(iloc, jloc) = 98 |
---|
4785 | basin_bx(iloc, jloc) = NINT(max_basins + 1) |
---|
4786 | max_basins = max_basins + 1 |
---|
4787 | area_bx(iloc, jloc) = resolution(ib,1)*resolution(ib,2)*contfrac(ib) |
---|
4788 | topoind_bx(iloc, jloc) = min_topoind |
---|
4789 | hierarchy_bx(iloc, jloc) = min_topoind |
---|
4790 | lon_bx(iloc, jloc) = lalo(ib,2) |
---|
4791 | lat_bx(iloc, jloc) = lalo(ib,1) |
---|
4792 | ! |
---|
4793 | ENDIF |
---|
4794 | ! |
---|
4795 | ! Tag in trip all the outflow conditions. The table is thus : |
---|
4796 | ! trip = 100+n : Outflow into another grid box |
---|
4797 | ! trip = 99 : River outflow into the ocean |
---|
4798 | ! trip = 98 : This will be coastal flow (not organized as a basin) |
---|
4799 | ! trip = 97 : return flow into the soil (local) |
---|
4800 | ! |
---|
4801 | DO jp=1,nbj |
---|
4802 | IF ( trip_bx(1,jp) .EQ. 8 .OR. trip_bx(1,jp) .EQ. 7 .OR. trip_bx(1,jp) .EQ. 6) THEN |
---|
4803 | trip_bx(1,jp) = trip_bx(1,jp) + 100 |
---|
4804 | ENDIF |
---|
4805 | IF ( trip_bx(nbi,jp) .EQ. 2 .OR. trip_bx(nbi,jp) .EQ. 3 .OR. trip_bx(nbi,jp) .EQ. 4) THEN |
---|
4806 | trip_bx(nbi,jp) = trip_bx(nbi,jp) + 100 |
---|
4807 | ENDIF |
---|
4808 | ENDDO |
---|
4809 | DO ip=1,nbi |
---|
4810 | IF ( trip_bx(ip,1) .EQ. 8 .OR. trip_bx(ip,1) .EQ. 1 .OR. trip_bx(ip,1) .EQ. 2) THEN |
---|
4811 | trip_bx(ip,1) = trip_bx(ip,1) + 100 |
---|
4812 | ENDIF |
---|
4813 | IF ( trip_bx(ip,nbj) .EQ. 6 .OR. trip_bx(ip,nbj) .EQ. 5 .OR. trip_bx(ip,nbj) .EQ. 4) THEN |
---|
4814 | trip_bx(ip,nbj) = trip_bx(ip,nbj) + 100 |
---|
4815 | ENDIF |
---|
4816 | ENDDO |
---|
4817 | ! |
---|
4818 | ! |
---|
4819 | ! We simplify the outflow. We only need the direction normal to the |
---|
4820 | ! box boundary and the 4 corners. |
---|
4821 | ! |
---|
4822 | ! Northern border |
---|
4823 | IF ( trip_bx(1,1) .EQ. 102 ) trip_bx(1,1) = 101 |
---|
4824 | IF ( trip_bx(nbi,1) .EQ. 108 ) trip_bx(nbi,1) = 101 |
---|
4825 | DO ip=2,nbi-1 |
---|
4826 | IF ( trip_bx(ip,1) .EQ. 108 .OR. trip_bx(ip,1) .EQ. 102 ) trip_bx(ip,1) = 101 |
---|
4827 | ENDDO |
---|
4828 | ! Southern border |
---|
4829 | IF ( trip_bx(1,nbj) .EQ. 104 ) trip_bx(1,nbj) = 105 |
---|
4830 | IF ( trip_bx(nbi,nbj) .EQ. 106 ) trip_bx(nbi,nbj) = 105 |
---|
4831 | DO ip=2,nbi-1 |
---|
4832 | IF ( trip_bx(ip,nbj) .EQ. 104 .OR. trip_bx(ip,nbj) .EQ. 106 ) trip_bx(ip,nbj) = 105 |
---|
4833 | ENDDO |
---|
4834 | ! Eastern border |
---|
4835 | IF ( trip_bx(nbi,1) .EQ. 104) trip_bx(nbi,1) = 103 |
---|
4836 | IF ( trip_bx(nbi,nbj) .EQ. 102) trip_bx(nbi,nbj) = 103 |
---|
4837 | DO jp=2,nbj-1 |
---|
4838 | IF ( trip_bx(nbi,jp) .EQ. 104 .OR. trip_bx(nbi,jp) .EQ. 102 ) trip_bx(nbi,jp) = 103 |
---|
4839 | ENDDO |
---|
4840 | ! Western border |
---|
4841 | IF ( trip_bx(1,1) .EQ. 106) trip_bx(1,1) = 107 |
---|
4842 | IF ( trip_bx(1,nbj) .EQ. 108) trip_bx(1,nbj) = 107 |
---|
4843 | DO jp=2,nbj-1 |
---|
4844 | IF ( trip_bx(1,jp) .EQ. 106 .OR. trip_bx(1,jp) .EQ. 108 ) trip_bx(1,jp) = 107 |
---|
4845 | ENDDO |
---|
4846 | ! |
---|
4847 | ! |
---|
4848 | END SUBROUTINE routing_getgrid |
---|
4849 | ! |
---|
4850 | !! ================================================================================================================================ |
---|
4851 | !! SUBROUTINE : routing_sortcoord |
---|
4852 | !! |
---|
4853 | !>\BRIEF This subroutines orders the coordinates to go from North to South and West to East. |
---|
4854 | !! |
---|
4855 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
4856 | !! |
---|
4857 | !! RECENT CHANGE(S): None |
---|
4858 | !! |
---|
4859 | !! MAIN OUTPUT VARIABLE(S): |
---|
4860 | !! |
---|
4861 | !! REFERENCES : None |
---|
4862 | !! |
---|
4863 | !! FLOWCHART : None |
---|
4864 | !! \n |
---|
4865 | !_ ================================================================================================================================ |
---|
4866 | |
---|
4867 | SUBROUTINE routing_sortcoord(nb_in, coords, direction, nb_out) |
---|
4868 | ! |
---|
4869 | IMPLICIT NONE |
---|
4870 | ! |
---|
4871 | !! INPUT VARIABLES |
---|
4872 | INTEGER(i_std), INTENT(in) :: nb_in !! |
---|
4873 | REAL(r_std), INTENT(inout) :: coords(nb_in) !! |
---|
4874 | ! |
---|
4875 | !! OUTPUT VARIABLES |
---|
4876 | INTEGER(i_std), INTENT(out) :: nb_out !! |
---|
4877 | ! |
---|
4878 | !! LOCAL VARIABLES |
---|
4879 | CHARACTER(LEN=2) :: direction !! |
---|
4880 | INTEGER(i_std) :: ipos !! |
---|
4881 | REAL(r_std) :: coords_tmp(nb_in) !! |
---|
4882 | INTEGER(i_std), DIMENSION(1) :: ll !! |
---|
4883 | INTEGER(i_std) :: ind(nb_in) !! |
---|
4884 | |
---|
4885 | !_ ================================================================================================================================ |
---|
4886 | ! |
---|
4887 | ipos = 1 |
---|
4888 | nb_out = nb_in |
---|
4889 | ! |
---|
4890 | ! Compress the coordinates array |
---|
4891 | ! |
---|
4892 | DO WHILE ( ipos < nb_in ) |
---|
4893 | IF ( coords(ipos+1) /= undef_sechiba) THEN |
---|
4894 | IF ( COUNT(coords(ipos:nb_out) == coords(ipos)) > 1 ) THEN |
---|
4895 | coords(ipos:nb_out-1) = coords(ipos+1:nb_out) |
---|
4896 | coords(nb_out:nb_in) = undef_sechiba |
---|
4897 | nb_out = nb_out - 1 |
---|
4898 | ELSE |
---|
4899 | ipos = ipos + 1 |
---|
4900 | ENDIF |
---|
4901 | ELSE |
---|
4902 | EXIT |
---|
4903 | ENDIF |
---|
4904 | ENDDO |
---|
4905 | ! |
---|
4906 | ! Sort it now |
---|
4907 | ! |
---|
4908 | ! First we get ready and adjust for the periodicity in longitude |
---|
4909 | ! |
---|
4910 | coords_tmp(:) = undef_sechiba |
---|
4911 | IF ( INDEX(direction, 'WE') == 1 .OR. INDEX(direction, 'EW') == 1) THEN |
---|
4912 | IF ( MAXVAL(ABS(coords(1:nb_out))) .GT. 160 ) THEN |
---|
4913 | coords_tmp(1:nb_out) = MOD(coords(1:nb_out) + 360.0, 360.0) |
---|
4914 | ELSE |
---|
4915 | coords_tmp(1:nb_out) = coords(1:nb_out) |
---|
4916 | ENDIF |
---|
4917 | ELSE IF ( INDEX(direction, 'NS') == 1 .OR. INDEX(direction, 'SN') == 1) THEN |
---|
4918 | coords_tmp(1:nb_out) = coords(1:nb_out) |
---|
4919 | ELSE |
---|
4920 | WRITE(numout,*) 'The chosen direction (', direction,') is not recognized' |
---|
4921 | CALL ipslerr_p(3,'routing_sortcoord','The chosen direction is not recognized','First section','') |
---|
4922 | ENDIF |
---|
4923 | ! |
---|
4924 | ! Get it sorted out now |
---|
4925 | ! |
---|
4926 | ipos = 1 |
---|
4927 | ! |
---|
4928 | IF ( INDEX(direction, 'WE') == 1 .OR. INDEX(direction, 'SN') == 1) THEN |
---|
4929 | DO WHILE (COUNT(ABS(coords_tmp(:)-undef_sechiba) > EPSILON(undef_sechiba)*10.) >= 1) |
---|
4930 | ll = MINLOC(coords_tmp(:), coords_tmp /= undef_sechiba) |
---|
4931 | ind(ipos) = ll(1) |
---|
4932 | coords_tmp(ll(1)) = undef_sechiba |
---|
4933 | ipos = ipos + 1 |
---|
4934 | ENDDO |
---|
4935 | ELSE IF ( INDEX(direction, 'EW') == 1 .OR. INDEX(direction, 'NS') == 1) THEN |
---|
4936 | DO WHILE (COUNT(ABS(coords_tmp(:)-undef_sechiba) > EPSILON(undef_sechiba)*10.) >= 1) |
---|
4937 | ll = MAXLOC(coords_tmp(:), coords_tmp /= undef_sechiba) |
---|
4938 | ind(ipos) = ll(1) |
---|
4939 | coords_tmp(ll(1)) = undef_sechiba |
---|
4940 | ipos = ipos + 1 |
---|
4941 | ENDDO |
---|
4942 | ELSE |
---|
4943 | WRITE(numout,*) 'The chosen direction (', direction,') is not recognized (second)' |
---|
4944 | CALL ipslerr_p(3,'routing_sortcoord','The chosen direction is not recognized','Second section','') |
---|
4945 | ENDIF |
---|
4946 | ! |
---|
4947 | coords(1:nb_out) = coords(ind(1:nb_out)) |
---|
4948 | IF (nb_out < nb_in) THEN |
---|
4949 | coords(nb_out+1:nb_in) = zero |
---|
4950 | ENDIF |
---|
4951 | ! |
---|
4952 | END SUBROUTINE routing_sortcoord |
---|
4953 | ! |
---|
4954 | |
---|
4955 | !! ================================================================================================================================ |
---|
4956 | !! SUBROUTINE : routing_findbasins |
---|
4957 | !! |
---|
4958 | !>\BRIEF This subroutine finds the basins and does some clean up. |
---|
4959 | !! The aim is to return the list off all points which are within the |
---|
4960 | !! same basin of the grid box. |
---|
4961 | !! |
---|
4962 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
4963 | !! We will also collect all points which directly flow into the ocean in one basin |
---|
4964 | !! Make sure that we do not have a basin with two outflows and other exceptions. |
---|
4965 | !! At this stage no effort is made to come down to the truncation of the model. |
---|
4966 | !! |
---|
4967 | !! Convention for trip \n |
---|
4968 | !! ------------------- \n |
---|
4969 | !! Inside of the box : \n |
---|
4970 | !! trip = 1 : flow = N \n |
---|
4971 | !! trip = 2 : flow = NE \n |
---|
4972 | !! trip = 3 : flow = E \n |
---|
4973 | !! trip = 4 : flow = SE \n |
---|
4974 | !! trip = 5 : flow = S \n |
---|
4975 | !! trip = 6 : flow = SW \n |
---|
4976 | !! trip = 7 : flow = W \n |
---|
4977 | !! trip = 8 : flow = NW \n |
---|
4978 | !! trip = 97 : return flow into the ground \n |
---|
4979 | !! trip = 98 : coastal flow (diffuse flow into the oceans) These values are created here \n |
---|
4980 | !! trip = 99 : river flow into the oceans \n |
---|
4981 | !! |
---|
4982 | !! Out flow from the grid : \n |
---|
4983 | !! trip = 101 : flow = N out of the coarse grid \n |
---|
4984 | !! trip = 102 : flow = NE out of the coarse grid \n |
---|
4985 | !! trip = 103 : flow = E out of the coarse grid \n |
---|
4986 | !! trip = 104 : flow = SE out of the coarse grid \n |
---|
4987 | !! trip = 105 : flow = S out of the coarse grid \n |
---|
4988 | !! trip = 106 : flow = SW out of the coarse grid \n |
---|
4989 | !! trip = 107 : flow = W out of the coarse grid \n |
---|
4990 | !! trip = 108 : flow = NW out of the coarse grid! \n |
---|
4991 | !! RECENT CHANGE(S): None |
---|
4992 | !! |
---|
4993 | !! MAIN OUTPUT VARIABLE(S): |
---|
4994 | !! |
---|
4995 | !! REFERENCES : None |
---|
4996 | !! |
---|
4997 | !! FLOWCHART : None |
---|
4998 | !! \n |
---|
4999 | !_ ================================================================================================================================ |
---|
5000 | |
---|
5001 | SUBROUTINE routing_findbasins(nbi, nbj, trip, basin, hierarchy, topoind, nb_basin, basin_inbxid, basin_sz,& |
---|
5002 | & basin_bxout, basin_pts, coast_pts) |
---|
5003 | ! |
---|
5004 | IMPLICIT NONE |
---|
5005 | ! |
---|
5006 | !! INPUT VARIABLES |
---|
5007 | INTEGER(i_std), INTENT(in) :: nbi !! Number of point in x within the grid (unitless) |
---|
5008 | INTEGER(i_std), INTENT(in) :: nbj !! Number of point in y within the grid (unitless) |
---|
5009 | REAL(r_std), INTENT(in) :: hierarchy(:,:) !! |
---|
5010 | REAL(r_std), INTENT(in) :: topoind(:,:) !! Topographic index of the residence time (m) |
---|
5011 | ! |
---|
5012 | ! Modified |
---|
5013 | INTEGER(i_std), INTENT(inout) :: trip(:,:) !! The trip field (unitless) |
---|
5014 | INTEGER(i_std), INTENT(inout) :: basin(:,:) !! |
---|
5015 | ! |
---|
5016 | !! OUTPUT VARIABLES |
---|
5017 | INTEGER(i_std), INTENT(out) :: nb_basin !! Number of sub-basins (unitless) |
---|
5018 | INTEGER(i_std), INTENT(out) :: basin_inbxid(nbvmax) !! |
---|
5019 | INTEGER(i_std), INTENT(out) :: basin_sz(nbvmax) !! |
---|
5020 | INTEGER(i_std), INTENT(out) :: basin_bxout(nbvmax) !! |
---|
5021 | INTEGER(i_std), INTENT(out) :: basin_pts(nbvmax, nbvmax, 2) !! |
---|
5022 | INTEGER(i_std), INTENT(out) :: coast_pts(nbvmax) !! The coastal flow points (unitless) |
---|
5023 | ! |
---|
5024 | !! LOCAL VARIABLES |
---|
5025 | INTEGER(i_std) :: ibas, ilf, nbb, nb_in !! |
---|
5026 | INTEGER(i_std) :: bname(nbvmax) !! |
---|
5027 | INTEGER(i_std) :: sz(nbvmax) !! |
---|
5028 | INTEGER(i_std) :: pts(nbvmax,nbvmax,2) !! |
---|
5029 | INTEGER(i_std) :: nbout(nbvmax) !! |
---|
5030 | INTEGER(i_std) :: new_nb !! |
---|
5031 | INTEGER(i_std) :: new_bname(nbvmax) !! |
---|
5032 | INTEGER(i_std) :: new_sz(nbvmax) !! |
---|
5033 | INTEGER(i_std) :: new_pts(nbvmax,nbvmax,2) !! |
---|
5034 | INTEGER(i_std) :: itrans !! |
---|
5035 | INTEGER(i_std) :: trans(nbvmax) !! |
---|
5036 | INTEGER(i_std) :: outdir(nbvmax) !! |
---|
5037 | INTEGER(i_std) :: tmpsz(nbvmax) !! |
---|
5038 | INTEGER(i_std) :: ip, jp, jpp(1), ipb !! |
---|
5039 | INTEGER(i_std) :: sortind(nbvmax) !! |
---|
5040 | CHARACTER(LEN=7) :: fmt !! |
---|
5041 | |
---|
5042 | !_ ================================================================================================================================ |
---|
5043 | ! |
---|
5044 | nbb = 0 |
---|
5045 | ibas = -1 |
---|
5046 | bname(:) = undef_int |
---|
5047 | sz(:) = 0 |
---|
5048 | nbout(:) = 0 |
---|
5049 | new_pts(:,:,:) = 0 |
---|
5050 | ! |
---|
5051 | ! 1.0 Find all basins within this grid box |
---|
5052 | ! Sort the variables per basin so that we can more easily |
---|
5053 | ! access data from the same basin (The variables are : |
---|
5054 | ! bname, sz, pts, nbout) |
---|
5055 | ! |
---|
5056 | DO ip=1,nbi |
---|
5057 | DO jp=1,nbj |
---|
5058 | IF ( basin(ip,jp) .LT. undef_int) THEN |
---|
5059 | IF ( COUNT(basin(ip,jp) .EQ. bname(:)) .EQ. 0 ) THEN |
---|
5060 | nbb = nbb + 1 |
---|
5061 | IF ( nbb .GT. nbvmax ) CALL ipslerr_p(3,'routing_findbasins','nbvmax too small','first section','') |
---|
5062 | bname(nbb) = basin(ip,jp) |
---|
5063 | sz(nbb) = 0 |
---|
5064 | ENDIF |
---|
5065 | ! |
---|
5066 | DO ilf=1,nbb |
---|
5067 | IF ( basin(ip,jp) .EQ. bname(ilf) ) THEN |
---|
5068 | ibas = ilf |
---|
5069 | ENDIF |
---|
5070 | ENDDO |
---|
5071 | ! |
---|
5072 | sz(ibas) = sz(ibas) + 1 |
---|
5073 | IF ( sz(ibas) .GT. nbvmax ) CALL ipslerr_p(3,'routing_findbasins','nbvmax too small','second section','') |
---|
5074 | pts(ibas, sz(ibas), 1) = ip |
---|
5075 | pts(ibas, sz(ibas), 2) = jp |
---|
5076 | ! We deal only with outflow and leave flow back into the grid box for later. |
---|
5077 | IF ( trip(ip,jp) .GE. 97 ) THEN |
---|
5078 | nbout(ibas) = nbout(ibas) + 1 |
---|
5079 | ENDIF |
---|
5080 | ! |
---|
5081 | ENDIF |
---|
5082 | ! |
---|
5083 | ENDDO |
---|
5084 | ENDDO |
---|
5085 | ! |
---|
5086 | ! 2.0 All basins which have size 1 and flow to the ocean are put together. |
---|
5087 | ! |
---|
5088 | itrans = 0 |
---|
5089 | coast_pts(:) = undef_int |
---|
5090 | ! Get all the points we can collect |
---|
5091 | DO ip=1,nbb |
---|
5092 | IF ( sz(ip) .EQ. 1 .AND. trip(pts(ip,1,1),pts(ip,1,2)) .EQ. 99) THEN |
---|
5093 | itrans = itrans + 1 |
---|
5094 | trans(itrans) = ip |
---|
5095 | trip(pts(ip,1,1),pts(ip,1,2)) = 98 |
---|
5096 | ENDIF |
---|
5097 | ENDDO |
---|
5098 | ! put everything in the first basin |
---|
5099 | IF ( itrans .GT. 1) THEN |
---|
5100 | ipb = trans(1) |
---|
5101 | coast_pts(sz(ipb)) = bname(ipb) |
---|
5102 | bname(ipb) = -1 |
---|
5103 | DO ip=2,itrans |
---|
5104 | sz(ipb) = sz(ipb) + 1 |
---|
5105 | coast_pts(sz(ipb)) = bname(trans(ip)) |
---|
5106 | sz(trans(ip)) = 0 |
---|
5107 | pts(ipb, sz(ipb), 1) = pts(trans(ip), 1, 1) |
---|
5108 | pts(ipb, sz(ipb), 2) = pts(trans(ip), 1, 2) |
---|
5109 | ENDDO |
---|
5110 | ENDIF |
---|
5111 | ! |
---|
5112 | ! 3.0 Make sure that we have only one outflow point in each basin |
---|
5113 | ! |
---|
5114 | ! nbb is the number of basins on this grid box. |
---|
5115 | new_nb = 0 |
---|
5116 | DO ip=1,nbb |
---|
5117 | ! We only do this for grid-points which have more than one outflow |
---|
5118 | IF ( sz(ip) .GT. 1 .AND. nbout(ip) .GT. 1) THEN |
---|
5119 | ! |
---|
5120 | ! Pick up all points needed and store them in trans |
---|
5121 | ! |
---|
5122 | itrans = 0 |
---|
5123 | DO jp=1,sz(ip) |
---|
5124 | IF ( trip(pts(ip,jp,1),pts(ip,jp,2)) .GE. 97) THEN |
---|
5125 | itrans = itrans + 1 |
---|
5126 | trans(itrans) = trip(pts(ip,jp,1),pts(ip,jp,2)) |
---|
5127 | ENDIF |
---|
5128 | ENDDO |
---|
5129 | ! |
---|
5130 | ! First issue : We have more than one point of the basin which flows into |
---|
5131 | ! the ocean. In this case we put everything into coastal flow. It will go into |
---|
5132 | ! a separate basin in the routing_globalize routine. |
---|
5133 | ! |
---|
5134 | IF ( (COUNT(trans(1:itrans) .EQ. 99) + COUNT(trans(1:itrans) .EQ. 98)) .GT. 1) THEN |
---|
5135 | DO jp=1,sz(ip) |
---|
5136 | IF ( trip(pts(ip,jp,1),pts(ip,jp,2)) .EQ. 99 ) THEN |
---|
5137 | trip(pts(ip,jp,1),pts(ip,jp,2)) = 98 |
---|
5138 | trans(itrans) = trip(pts(ip,jp,1),pts(ip,jp,2)) |
---|
5139 | ENDIF |
---|
5140 | ENDDO |
---|
5141 | ENDIF |
---|
5142 | ! |
---|
5143 | ! Second issue : We have redundant outflows at the boundaries. That is two small grid |
---|
5144 | ! boxes flowing into the same GCM grid box. |
---|
5145 | ! |
---|
5146 | IF ( COUNT(trans(1:itrans) .GT. 100) .GE. 1) THEN |
---|
5147 | CALL routing_simplify(nbi, nbj, trip, basin, hierarchy, bname(ip)) |
---|
5148 | itrans = 0 |
---|
5149 | DO jp=1,sz(ip) |
---|
5150 | IF ( trip(pts(ip,jp,1),pts(ip,jp,2)) .GE. 9) THEN |
---|
5151 | itrans = itrans + 1 |
---|
5152 | trans(itrans) = trip(pts(ip,jp,1),pts(ip,jp,2)) |
---|
5153 | ENDIF |
---|
5154 | ENDDO |
---|
5155 | ENDIF |
---|
5156 | ! |
---|
5157 | ! Third issue : we have more than one outflow from the boxes. This could be |
---|
5158 | ! - flow into 2 or more neighboring GCM grids |
---|
5159 | ! - flow into a neighboring GCM grids and into the ocean or be a return flow (=97. =98, =99) |
---|
5160 | ! - flow into a neighboring GCM grids or ocean and back into the same GCM grid box |
---|
5161 | ! The only solution is to cut the basin up in as many parts. |
---|
5162 | ! |
---|
5163 | IF ( COUNT(trans(1:itrans) .GE. 97) .GT. 1) THEN |
---|
5164 | ! |
---|
5165 | nb_in = new_nb |
---|
5166 | CALL routing_cutbasin(nbi, nbj, nbb, trip, basin, bname(ip), new_nb, new_bname, new_sz, new_pts) |
---|
5167 | ! |
---|
5168 | ! If we have split the basin then we need to cancel the old one |
---|
5169 | ! |
---|
5170 | IF ( nb_in .NE. new_nb) THEN |
---|
5171 | sz(ip) = 0 |
---|
5172 | ENDIF |
---|
5173 | ! |
---|
5174 | ENDIF |
---|
5175 | ! |
---|
5176 | ENDIF |
---|
5177 | ENDDO |
---|
5178 | ! |
---|
5179 | ! Add the new basins to the end of the list |
---|
5180 | ! |
---|
5181 | If ( nbb+new_nb .LE. nbvmax) THEN |
---|
5182 | DO ip=1,new_nb |
---|
5183 | bname(nbb+ip) = new_bname(ip) |
---|
5184 | sz(nbb+ip) = new_sz(ip) |
---|
5185 | pts(nbb+ip,:,:) = new_pts(ip,:,:) |
---|
5186 | ENDDO |
---|
5187 | nbb = nbb+new_nb |
---|
5188 | ELSE |
---|
5189 | WRITE(numout,*) 'Increase nbvmax. It is too small to contain all the basins (routing_findbasins)' |
---|
5190 | CALL ipslerr_p(3,'routing_findbasins','Increase nbvmax.','It is too small to contain all the basins','') |
---|
5191 | ENDIF |
---|
5192 | ! |
---|
5193 | ! Keep the output direction |
---|
5194 | ! |
---|
5195 | DO ip=1,nbb |
---|
5196 | IF ( sz(ip) .GT. 0 ) THEN |
---|
5197 | trans(:) = 0 |
---|
5198 | DO jp=1,sz(ip) |
---|
5199 | trans(jp) = trip(pts(ip,jp,1),pts(ip,jp,2)) |
---|
5200 | ENDDO |
---|
5201 | outdir(ip) = MAXVAL(trans(1:sz(ip))) |
---|
5202 | IF ( outdir(ip) .GE. 97 ) THEN |
---|
5203 | outdir(ip) = outdir(ip) - 100 |
---|
5204 | ELSE |
---|
5205 | WRITE(numout,*) 'Why are we here and can not find a trip larger than 96' |
---|
5206 | WRITE(numout,*) 'Does this mean that the basin does not have any outflow ', ip, bname(ip) |
---|
5207 | WRITE(fmt,"('(',I3,'I9)')") nbi |
---|
5208 | WRITE(numout,*) '-----------------------> trip' |
---|
5209 | DO jp=1,nbj |
---|
5210 | WRITE(numout,fmt) trip(1:nbi,jp) |
---|
5211 | ENDDO |
---|
5212 | WRITE(numout,*) '-----------------------> basin' |
---|
5213 | DO jp=1,nbj |
---|
5214 | WRITE(numout,fmt) basin(1:nbi,jp) |
---|
5215 | ENDDO |
---|
5216 | CALL ipslerr_p(3,'routing_findbasins','Probleme finding trip','','') |
---|
5217 | ENDIF |
---|
5218 | ENDIF |
---|
5219 | ENDDO |
---|
5220 | ! |
---|
5221 | ! |
---|
5222 | ! Sort the output by size of the various basins. |
---|
5223 | ! |
---|
5224 | nb_basin = COUNT(sz(1:nbb) .GT. 0) |
---|
5225 | tmpsz(:) = -1 |
---|
5226 | tmpsz(1:nbb) = sz(1:nbb) |
---|
5227 | DO ip=1,nbb |
---|
5228 | jpp = MAXLOC(tmpsz(:)) |
---|
5229 | IF ( sz(jpp(1)) .GT. 0) THEN |
---|
5230 | sortind(ip) = jpp(1) |
---|
5231 | tmpsz(jpp(1)) = -1 |
---|
5232 | ENDIF |
---|
5233 | ENDDO |
---|
5234 | basin_inbxid(1:nb_basin) = bname(sortind(1:nb_basin)) |
---|
5235 | basin_sz(1:nb_basin) = sz(sortind(1:nb_basin)) |
---|
5236 | basin_pts(1:nb_basin,:,:) = pts(sortind(1:nb_basin),:,:) |
---|
5237 | basin_bxout(1:nb_basin) = outdir(sortind(1:nb_basin)) |
---|
5238 | ! |
---|
5239 | ! We can only check if we have at least as many outflows as basins |
---|
5240 | ! |
---|
5241 | ip = COUNT(trip(1:nbi,1:nbj) .GE. 97 .AND. trip(1:nbi,1:nbj) .LT. undef_int) |
---|
5242 | !! ip = ip + COUNT(trip(1:nbi,1:nbj) .EQ. 97) |
---|
5243 | !! IF ( COUNT(trip(1:nbi,1:nbj) .EQ. 98) .GT. 0) ip = ip + 1 |
---|
5244 | IF ( ip .LT. nb_basin ) THEN |
---|
5245 | WRITE(numout,*) 'We have less outflow points than basins :', ip |
---|
5246 | WRITE(fmt,"('(',I3,'I9)')") nbi |
---|
5247 | WRITE(numout,*) '-----------------------> trip' |
---|
5248 | DO jp=1,nbj |
---|
5249 | WRITE(numout,fmt) trip(1:nbi,jp) |
---|
5250 | ENDDO |
---|
5251 | WRITE(numout,*) '-----------------------> basin' |
---|
5252 | DO jp=1,nbj |
---|
5253 | WRITE(numout,fmt) basin(1:nbi,jp) |
---|
5254 | ENDDO |
---|
5255 | WRITE(numout,*) 'nb_basin :', nb_basin |
---|
5256 | WRITE(numout,*) 'Basin sized :', basin_sz(1:nb_basin) |
---|
5257 | CALL ipslerr_p(3,'routing_findbasins','Probleme less outflow points than basins','','') |
---|
5258 | ENDIF |
---|
5259 | |
---|
5260 | END SUBROUTINE routing_findbasins |
---|
5261 | ! |
---|
5262 | !! ================================================================================================================================ |
---|
5263 | !! SUBROUTINE : routing_simplify |
---|
5264 | !! |
---|
5265 | !>\BRIEF This subroutine symplifies the routing out of each basin by taking |
---|
5266 | !! out redundancies at the borders of the GCM box. |
---|
5267 | !! The aim is to have only one outflow point per basin and grid box. |
---|
5268 | !! But here we will not change the direction of the outflow. |
---|
5269 | !! |
---|
5270 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
5271 | !! |
---|
5272 | !! RECENT CHANGE(S): None |
---|
5273 | !! |
---|
5274 | !! MAIN OUTPUT VARIABLE(S): |
---|
5275 | !! |
---|
5276 | !! REFERENCES : None |
---|
5277 | !! |
---|
5278 | !! FLOWCHART : None |
---|
5279 | !! \n |
---|
5280 | !_ ================================================================================================================================ |
---|
5281 | |
---|
5282 | SUBROUTINE routing_simplify(nbi, nbj, trip, basin, hierarchy, basin_inbxid) |
---|
5283 | ! |
---|
5284 | IMPLICIT NONE |
---|
5285 | ! |
---|
5286 | !! LOCAL VARIABLES |
---|
5287 | INTEGER(i_std) :: nbi !! Number of point in x within the grid (unitless) |
---|
5288 | INTEGER(i_std) :: nbj !! Number of point in y within the grid (unitless) |
---|
5289 | INTEGER(i_std) :: trip(:,:) !! The trip field (unitless) |
---|
5290 | INTEGER(i_std) :: basin(:,:) !! |
---|
5291 | REAL(r_std) :: hierarchy(:,:) !! |
---|
5292 | INTEGER(i_std) :: basin_inbxid !! |
---|
5293 | ! |
---|
5294 | INTEGER(i_std) :: ip, jp, nbout, basin_sz, iborder !! |
---|
5295 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax) :: trip_tmp !! Temporary trip field which only contains the values for the basin on which we currently work (1) |
---|
5296 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax,2) :: trip_flow !! |
---|
5297 | INTEGER(i_std), DIMENSION(nbvmax,2) :: outflow !! |
---|
5298 | INTEGER(i_std), DIMENSION(nbvmax) :: outsz !! |
---|
5299 | CHARACTER(LEN=7) :: fmt !! |
---|
5300 | ! |
---|
5301 | INTEGER(i_std), DIMENSION(8,2) :: inc !! |
---|
5302 | INTEGER(i_std) :: itodo, ill(1), icc, ismall, ibas, iip, jjp, ib, id !! Indices (unitless) |
---|
5303 | INTEGER(i_std), DIMENSION(nbvmax) :: todopt !! |
---|
5304 | !!$, todosz |
---|
5305 | REAL(r_std), DIMENSION(nbvmax) :: todohi !! |
---|
5306 | LOGICAL :: not_found, debug = .FALSE. !! (true/false) |
---|
5307 | |
---|
5308 | !_ ================================================================================================================================ |
---|
5309 | ! |
---|
5310 | ! |
---|
5311 | ! The routing code (i=1, j=2) |
---|
5312 | ! |
---|
5313 | inc(1,1) = 0 |
---|
5314 | inc(1,2) = -1 |
---|
5315 | inc(2,1) = 1 |
---|
5316 | inc(2,2) = -1 |
---|
5317 | inc(3,1) = 1 |
---|
5318 | inc(3,2) = 0 |
---|
5319 | inc(4,1) = 1 |
---|
5320 | inc(4,2) = 1 |
---|
5321 | inc(5,1) = 0 |
---|
5322 | inc(5,2) = 1 |
---|
5323 | inc(6,1) = -1 |
---|
5324 | inc(6,2) = 1 |
---|
5325 | inc(7,1) = -1 |
---|
5326 | inc(7,2) = 0 |
---|
5327 | inc(8,1) = -1 |
---|
5328 | inc(8,2) = -1 |
---|
5329 | ! |
---|
5330 | ! |
---|
5331 | ! Symplify the outflow conditions first. We are only interested in the |
---|
5332 | ! outflows which go to different GCM grid boxes. |
---|
5333 | ! |
---|
5334 | IF ( debug ) THEN |
---|
5335 | WRITE(numout,*) '+++++++++++++++++++ BEFORE ANYTHING ++++++++++++++++++++' |
---|
5336 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5337 | DO jp=1,nbj |
---|
5338 | WRITE(numout,fmt) trip_tmp(1:nbi,jp) |
---|
5339 | ENDDO |
---|
5340 | ENDIF |
---|
5341 | ! |
---|
5342 | ! transfer the trips into an array which only contains the basin we are interested in |
---|
5343 | ! |
---|
5344 | trip_tmp(:,:) = -1 |
---|
5345 | basin_sz = 0 |
---|
5346 | DO ip=1,nbi |
---|
5347 | DO jp=1,nbj |
---|
5348 | IF ( basin(ip,jp) .EQ. basin_inbxid) THEN |
---|
5349 | trip_tmp(ip,jp) = trip(ip,jp) |
---|
5350 | basin_sz = basin_sz + 1 |
---|
5351 | ENDIF |
---|
5352 | ENDDO |
---|
5353 | ENDDO |
---|
5354 | ! |
---|
5355 | ! Determine for each point where it flows to |
---|
5356 | ! |
---|
5357 | CALL routing_findrout(nbi, nbj, trip_tmp, basin_sz, basin_inbxid, nbout, outflow, trip_flow, outsz) |
---|
5358 | ! |
---|
5359 | ! |
---|
5360 | ! |
---|
5361 | ! |
---|
5362 | ! Over the width of a GCM grid box we can have many outflows but we are interested |
---|
5363 | ! in only one for each basin. Thus we wish to collect them all to form only one outflow |
---|
5364 | ! to the neighboring grid box. |
---|
5365 | ! |
---|
5366 | DO iborder = 101,107,2 |
---|
5367 | ! |
---|
5368 | ! If we have more than one of these outflows then we need to merge the sub-basins |
---|
5369 | ! |
---|
5370 | icc = COUNT(trip_tmp .EQ. iborder)-1 |
---|
5371 | DO WHILE ( icc .GT. 0) |
---|
5372 | ! Pick out all the points we will have to do |
---|
5373 | itodo = 0 |
---|
5374 | DO ip=1,nbout |
---|
5375 | IF (trip_tmp(outflow(ip,1),outflow(ip,2)) .EQ. iborder) THEN |
---|
5376 | itodo = itodo + 1 |
---|
5377 | todopt(itodo) = ip |
---|
5378 | !!$ todosz(itodo) = outsz(ip) |
---|
5379 | ! We take the hierarchy of the outflow point as we will try to |
---|
5380 | ! minimize if for the outflow of the entire basin. |
---|
5381 | todohi(itodo) = hierarchy(outflow(ip,1),outflow(ip,2)) |
---|
5382 | ENDIF |
---|
5383 | ENDDO |
---|
5384 | ! |
---|
5385 | ! We change the direction of the smallest basin. |
---|
5386 | ! |
---|
5387 | ill=MAXLOC(todohi(1:itodo)) |
---|
5388 | ismall = todopt(ill(1)) |
---|
5389 | ! |
---|
5390 | DO ip=1,nbi |
---|
5391 | DO jp=1,nbj |
---|
5392 | IF ( trip_flow(ip,jp,1) .EQ. outflow(ismall,1) .AND.& |
---|
5393 | & trip_flow(ip,jp,2) .EQ. outflow(ismall,2) ) THEN |
---|
5394 | ! Now that we have found a point of the smallest sub-basin we |
---|
5395 | ! look around for another sub-basin |
---|
5396 | ib = 1 |
---|
5397 | not_found = .TRUE. |
---|
5398 | DO WHILE ( not_found .AND. ib .LE. itodo ) |
---|
5399 | IF ( ib .NE. ill(1) ) THEN |
---|
5400 | ibas = todopt(ib) |
---|
5401 | DO id=1,8 |
---|
5402 | iip = ip + inc(id,1) |
---|
5403 | jjp = jp + inc(id,2) |
---|
5404 | ! Can we look at this points or is there any need to ? |
---|
5405 | IF ( iip .GE. 1 .AND. iip .LE. nbi .AND. & |
---|
5406 | & jjp .GE. 1 .AND. jjp .LE. nbj .AND. not_found) THEN |
---|
5407 | ! Is this point the one we look for ? |
---|
5408 | IF ( trip_flow(iip,jjp,1) .EQ. outflow(ibas,1) .AND. & |
---|
5409 | & trip_flow(iip,jjp,2) .EQ. outflow(ibas,2)) THEN |
---|
5410 | trip_flow(ip,jp,1) = outflow(ibas,1) |
---|
5411 | trip_flow(ip,jp,2) = outflow(ibas,2) |
---|
5412 | trip_tmp(ip,jp) = id |
---|
5413 | ! This last line ensures that we do not come back to this point |
---|
5414 | ! and that in the end the outer while will stop |
---|
5415 | not_found = .FALSE. |
---|
5416 | ENDIF |
---|
5417 | ENDIF |
---|
5418 | ENDDO |
---|
5419 | ENDIF |
---|
5420 | ib = ib + 1 |
---|
5421 | ENDDO |
---|
5422 | ENDIF |
---|
5423 | ENDDO |
---|
5424 | ENDDO |
---|
5425 | ! |
---|
5426 | icc = icc - 1 |
---|
5427 | ENDDO |
---|
5428 | ! |
---|
5429 | ! |
---|
5430 | ENDDO |
---|
5431 | ! |
---|
5432 | IF ( debug ) THEN |
---|
5433 | WRITE(numout,*) '+++++++++++++++++++ AFTER +++++++++++++++++++++++++++++' |
---|
5434 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5435 | DO jp=1,nbj |
---|
5436 | WRITE(numout,fmt) trip_tmp(1:nbi,jp) |
---|
5437 | ENDDO |
---|
5438 | ENDIF |
---|
5439 | ! |
---|
5440 | ! Put trip_tmp back into trip |
---|
5441 | ! |
---|
5442 | DO ip=1,nbi |
---|
5443 | DO jp=1,nbj |
---|
5444 | IF ( trip_tmp(ip,jp) .GT. 0) THEN |
---|
5445 | trip(ip,jp) = trip_tmp(ip,jp) |
---|
5446 | ENDIF |
---|
5447 | ENDDO |
---|
5448 | ENDDO |
---|
5449 | ! |
---|
5450 | END SUBROUTINE routing_simplify |
---|
5451 | ! |
---|
5452 | !! ================================================================================================================================ |
---|
5453 | !! SUBROUTINE : routing_cutbasin |
---|
5454 | !! |
---|
5455 | !>\BRIEF This subroutine cuts the original basin which has more than one outflow |
---|
5456 | !! into as many subbasins as outflow directions. |
---|
5457 | !! |
---|
5458 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
5459 | !! |
---|
5460 | !! RECENT CHANGE(S): None |
---|
5461 | !! |
---|
5462 | !! MAIN OUTPUT VARIABLE(S): |
---|
5463 | !! |
---|
5464 | !! REFERENCES : None |
---|
5465 | !! |
---|
5466 | !! FLOWCHART : None |
---|
5467 | !! \n |
---|
5468 | !_ ================================================================================================================================ |
---|
5469 | |
---|
5470 | SUBROUTINE routing_cutbasin (nbi, nbj, nbbasins, trip, basin, basin_inbxid, nb, bname, sz, pts) |
---|
5471 | ! |
---|
5472 | IMPLICIT NONE |
---|
5473 | ! |
---|
5474 | !! INPUT VARIABLES |
---|
5475 | INTEGER(i_std), INTENT(in) :: nbi, nbj !! Number of point in x and y within the grid (unitless) |
---|
5476 | INTEGER(i_std), INTENT(in) :: nbbasins !! |
---|
5477 | INTEGER(i_std), INTENT(in) :: basin_inbxid !! |
---|
5478 | ! |
---|
5479 | ! Modified |
---|
5480 | INTEGER(i_std), INTENT(inout) :: trip(:,:) !! The trip field (unitless) |
---|
5481 | INTEGER(i_std), INTENT(inout) :: basin(:,:) !! |
---|
5482 | ! |
---|
5483 | !! OUTPUT VARIABLES |
---|
5484 | INTEGER(i_std), INTENT(out) :: nb !! |
---|
5485 | INTEGER(i_std), INTENT(out) :: bname(nbvmax) !! |
---|
5486 | INTEGER(i_std), INTENT(out) :: sz(nbvmax) !! |
---|
5487 | INTEGER(i_std), INTENT(out) :: pts(nbvmax,nbvmax,2) !! |
---|
5488 | ! |
---|
5489 | !! LOCAL VARIABLES |
---|
5490 | INTEGER(i_std) :: ip, jp, iip, jjp, ib, ibb, id, nbout !! Indices (unitless) |
---|
5491 | INTEGER(i_std) :: basin_sz !! |
---|
5492 | INTEGER(i_std) :: nb_in !! |
---|
5493 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax) :: trip_tmp !! Temporary trip field which only contains the values for the basin on which we currently work (unitless) |
---|
5494 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax,2) :: trip_flow !! |
---|
5495 | INTEGER(i_std), DIMENSION(nbvmax,2) :: outflow !! |
---|
5496 | INTEGER(i_std), DIMENSION(nbvmax) :: outsz !! |
---|
5497 | CHARACTER(LEN=7) :: fmt !! |
---|
5498 | LOGICAL :: not_found !! (true/false) |
---|
5499 | LOGICAL :: debug=.FALSE. !! (true/false) |
---|
5500 | ! |
---|
5501 | INTEGER(i_std), DIMENSION(8,2) :: inc !! |
---|
5502 | |
---|
5503 | !_ ================================================================================================================================ |
---|
5504 | ! |
---|
5505 | ! |
---|
5506 | ! The routing code (i=1, j=2) |
---|
5507 | ! |
---|
5508 | inc(1,1) = 0 |
---|
5509 | inc(1,2) = -1 |
---|
5510 | inc(2,1) = 1 |
---|
5511 | inc(2,2) = -1 |
---|
5512 | inc(3,1) = 1 |
---|
5513 | inc(3,2) = 0 |
---|
5514 | inc(4,1) = 1 |
---|
5515 | inc(4,2) = 1 |
---|
5516 | inc(5,1) = 0 |
---|
5517 | inc(5,2) = 1 |
---|
5518 | inc(6,1) = -1 |
---|
5519 | inc(6,2) = 1 |
---|
5520 | inc(7,1) = -1 |
---|
5521 | inc(7,2) = 0 |
---|
5522 | inc(8,1) = -1 |
---|
5523 | inc(8,2) = -1 |
---|
5524 | ! |
---|
5525 | ! Set up a temporary trip field which only contains the values |
---|
5526 | ! for the basin on which we currently work. |
---|
5527 | ! |
---|
5528 | trip_tmp(:,:) = -1 |
---|
5529 | basin_sz = 0 |
---|
5530 | DO ip=1,nbi |
---|
5531 | DO jp=1,nbj |
---|
5532 | IF ( basin(ip,jp) .EQ. basin_inbxid) THEN |
---|
5533 | trip_tmp(ip,jp) = trip(ip,jp) |
---|
5534 | basin_sz = basin_sz + 1 |
---|
5535 | ENDIF |
---|
5536 | ENDDO |
---|
5537 | ENDDO |
---|
5538 | ! |
---|
5539 | CALL routing_findrout(nbi, nbj, trip_tmp, basin_sz, basin_inbxid, nbout, outflow, trip_flow, outsz) |
---|
5540 | ! |
---|
5541 | ! IF ( debug ) THEN |
---|
5542 | ! DO ib = nb_in+1,nb |
---|
5543 | ! DO ip=1,sz(ib) |
---|
5544 | ! trip_tmp(pts(ib, ip, 1),pts(ib, ip, 2)) = ib*(-1)-900 |
---|
5545 | ! ENDDO |
---|
5546 | ! ENDDO |
---|
5547 | ! WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5548 | ! WRITE(numout,*) 'BEFORE ------------> New basins ' |
---|
5549 | ! WRITE(numout,*) nb, ' sz :', sz(1:nb) |
---|
5550 | ! DO jp=1,nbj |
---|
5551 | ! WRITE(numout,fmt) trip_tmp(1:nbi,jp) |
---|
5552 | ! ENDDO |
---|
5553 | ! ENDIF |
---|
5554 | ! |
---|
5555 | ! Take out the small sub-basins. That is those which have only one grid box |
---|
5556 | ! This is only done if we need to save space in the number of basins. Else we |
---|
5557 | ! can take it easy and keep diverging sub-basins for the moment. |
---|
5558 | ! |
---|
5559 | IF ( nbbasins .GE. nbasmax ) THEN |
---|
5560 | DO ib=1,nbout |
---|
5561 | ! If the sub-basin is of size one and its larger neighbor is flowing into another |
---|
5562 | ! direction then we put them together. |
---|
5563 | IF ( outsz(ib) .EQ. 1 .AND. trip(outflow(ib,1), outflow(ib,2)) .GT. 99 ) THEN |
---|
5564 | ! |
---|
5565 | not_found = .TRUE. |
---|
5566 | DO id=1,8 |
---|
5567 | ip = outflow(ib,1) |
---|
5568 | jp = outflow(ib,2) |
---|
5569 | iip = ip + inc(id,1) |
---|
5570 | jjp = jp + inc(id,2) |
---|
5571 | ! Can we look at this points ? |
---|
5572 | IF ( iip .GE. 1 .AND. iip .LE. nbi .AND. & |
---|
5573 | & jjp .GE. 1 .AND. jjp .LE. nbj .AND. not_found) THEN |
---|
5574 | ! Did we find a direct neighbor which is an outflow point ? |
---|
5575 | IF ( trip_tmp(iip,jjp) .GT. 100 ) THEN |
---|
5576 | ! IF so direct the flow towards it and update the tables. |
---|
5577 | not_found = .FALSE. |
---|
5578 | trip(ip,jp) = id |
---|
5579 | trip_tmp(ip,jp) = id |
---|
5580 | outsz(ib) = 0 |
---|
5581 | ! update the table of this basin |
---|
5582 | DO ibb=1,nbout |
---|
5583 | IF ( iip .EQ. outflow(ibb,1) .AND. jjp .EQ. outflow(ibb,2) ) THEN |
---|
5584 | outsz(ibb) = outsz(ibb)+1 |
---|
5585 | trip_flow(ip,jp,1) = outflow(ibb,1) |
---|
5586 | trip_flow(ip,jp,2) = outflow(ibb,2) |
---|
5587 | ENDIF |
---|
5588 | ENDDO |
---|
5589 | ENDIF |
---|
5590 | ENDIF |
---|
5591 | ENDDO |
---|
5592 | ENDIF |
---|
5593 | ENDDO |
---|
5594 | ENDIF |
---|
5595 | ! |
---|
5596 | ! |
---|
5597 | ! Cut the basin if we have more than 1 left. |
---|
5598 | ! |
---|
5599 | ! |
---|
5600 | IF ( COUNT(outsz(1:nbout) .GT. 0) .GT. 1 ) THEN |
---|
5601 | ! |
---|
5602 | nb_in = nb |
---|
5603 | ! |
---|
5604 | DO ib = 1,nbout |
---|
5605 | IF ( outsz(ib) .GT. 0) THEN |
---|
5606 | nb = nb+1 |
---|
5607 | IF ( nb .GT. nbvmax) THEN |
---|
5608 | WRITE(numout,*) 'nbvmax too small, increase it (routing_cutbasin)' |
---|
5609 | ENDIF |
---|
5610 | bname(nb) = basin_inbxid |
---|
5611 | sz(nb) = 0 |
---|
5612 | DO ip=1,nbi |
---|
5613 | DO jp=1,nbj |
---|
5614 | IF ( (trip_flow(ip,jp,1) + trip_flow(ip,jp,1)) .GT. 0 .AND. & |
---|
5615 | & trip_flow(ip,jp,1) .EQ. outflow(ib,1) .AND. & |
---|
5616 | & trip_flow(ip,jp,2) .EQ. outflow(ib,2) ) THEN |
---|
5617 | sz(nb) = sz(nb) + 1 |
---|
5618 | pts(nb, sz(nb), 1) = ip |
---|
5619 | pts(nb, sz(nb), 2) = jp |
---|
5620 | ENDIF |
---|
5621 | ENDDO |
---|
5622 | ENDDO |
---|
5623 | ENDIF |
---|
5624 | ENDDO |
---|
5625 | ! A short verification |
---|
5626 | IF ( SUM(sz(nb_in+1:nb)) .NE. basin_sz) THEN |
---|
5627 | WRITE(numout,*) 'Lost some points while spliting the basin' |
---|
5628 | WRITE(numout,*) 'nbout :', nbout |
---|
5629 | DO ib = nb_in+1,nb |
---|
5630 | WRITE(numout,*) 'ib, SZ :', ib, sz(ib) |
---|
5631 | ENDDO |
---|
5632 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5633 | WRITE(numout,*) '-------------> trip ' |
---|
5634 | DO jp=1,nbj |
---|
5635 | WRITE(numout,fmt) trip_tmp(1:nbi,jp) |
---|
5636 | ENDDO |
---|
5637 | CALL ipslerr_p(3,'routing_cutbasin','Lost some points while spliting the basin','','') |
---|
5638 | ENDIF |
---|
5639 | |
---|
5640 | IF ( debug ) THEN |
---|
5641 | DO ib = nb_in+1,nb |
---|
5642 | DO ip=1,sz(ib) |
---|
5643 | trip_tmp(pts(ib, ip, 1),pts(ib, ip, 2)) = ib*(-1)-900 |
---|
5644 | ENDDO |
---|
5645 | ENDDO |
---|
5646 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5647 | WRITE(numout,*) 'AFTER-------------> New basins ' |
---|
5648 | WRITE(numout,*) nb, ' sz :', sz(1:nb) |
---|
5649 | DO jp=1,nbj |
---|
5650 | WRITE(numout,fmt) trip_tmp(1:nbi,jp) |
---|
5651 | ENDDO |
---|
5652 | IF ( MAXVAl(trip_tmp(1:nbi,1:nbj)) .GT. 0) THEN |
---|
5653 | CALL ipslerr_p(3,'routing_cutbasin','Error in debug checking','','') |
---|
5654 | ENDIF |
---|
5655 | ENDIF |
---|
5656 | ENDIF |
---|
5657 | ! |
---|
5658 | END SUBROUTINE routing_cutbasin |
---|
5659 | ! |
---|
5660 | !! ================================================================================================================================ |
---|
5661 | !! SUBROUTINE : routing_hierarchy |
---|
5662 | !! |
---|
5663 | !>\BRIEF This subroutine finds, for each point, the distance to the outflow |
---|
5664 | !! point along the flowlines of the basin. |
---|
5665 | !! |
---|
5666 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
5667 | !! |
---|
5668 | !! RECENT CHANGE(S): None |
---|
5669 | !! |
---|
5670 | !! MAIN OUTPUT VARIABLE(S): |
---|
5671 | !! |
---|
5672 | !! REFERENCES : None |
---|
5673 | !! |
---|
5674 | !! FLOWCHART : None |
---|
5675 | !! \n |
---|
5676 | !_ ================================================================================================================================ |
---|
5677 | |
---|
5678 | SUBROUTINE routing_hierarchy(iml, jml, trip, topoindex, hierarchy) |
---|
5679 | ! |
---|
5680 | IMPLICIT NONE |
---|
5681 | ! |
---|
5682 | !! LOCAL VARIABLES |
---|
5683 | INTEGER(i_std) :: iml !! X resolution of the high resolution grid |
---|
5684 | INTEGER(i_std) :: jml !! Y resolution of the high resolution grid |
---|
5685 | REAL(r_std), DIMENSION(iml,jml) :: trip !! The trip field (unitless) |
---|
5686 | REAL(r_std), DIMENSION(iml,jml) :: hierarchy !! |
---|
5687 | REAL(r_std), DIMENSION(iml,jml) :: topoindex !! Topographic index of the residence time (m) |
---|
5688 | ! |
---|
5689 | INTEGER(i_std), DIMENSION(8,2) :: inc !! |
---|
5690 | INTEGER(i_std) :: ip, jp, ib, ntripi, ntripj, cnt, trp !! |
---|
5691 | REAL(r_std) :: topohier !! The new value of topographically weighted hierarchy (m) |
---|
5692 | REAL(r_std) :: topohier_old !! The old value of topographically weighted hierarchy (m) |
---|
5693 | CHARACTER(LEN=7) :: fmt !! |
---|
5694 | |
---|
5695 | !_ ================================================================================================================================ |
---|
5696 | ! |
---|
5697 | ! The routing code (i=1, j=2) |
---|
5698 | ! |
---|
5699 | inc(1,1) = 0 |
---|
5700 | inc(1,2) = -1 |
---|
5701 | inc(2,1) = 1 |
---|
5702 | inc(2,2) = -1 |
---|
5703 | inc(3,1) = 1 |
---|
5704 | inc(3,2) = 0 |
---|
5705 | inc(4,1) = 1 |
---|
5706 | inc(4,2) = 1 |
---|
5707 | inc(5,1) = 0 |
---|
5708 | inc(5,2) = 1 |
---|
5709 | inc(6,1) = -1 |
---|
5710 | inc(6,2) = 1 |
---|
5711 | inc(7,1) = -1 |
---|
5712 | inc(7,2) = 0 |
---|
5713 | inc(8,1) = -1 |
---|
5714 | inc(8,2) = -1 |
---|
5715 | ! |
---|
5716 | DO ip=1,iml |
---|
5717 | DO jp=1,jml |
---|
5718 | IF ( trip(ip,jp) .LT. undef_sechiba ) THEN |
---|
5719 | ntripi = ip |
---|
5720 | ntripj = jp |
---|
5721 | trp = NINT(trip(ip,jp)) |
---|
5722 | cnt = 1 |
---|
5723 | ! Warn for extreme numbers |
---|
5724 | IF ( topoindex(ip,jp) .GT. 1.e10 ) THEN |
---|
5725 | WRITE(numout,*) 'We have a very large topographic index for point ', ip, jp |
---|
5726 | WRITE(numout,*) 'This can not be right :', topoindex(ip,jp) |
---|
5727 | CALL ipslerr_p(3,'routing_hierarchy','Too large topographic index','','') |
---|
5728 | ELSE |
---|
5729 | topohier = topoindex(ip,jp) |
---|
5730 | ENDIF |
---|
5731 | ! |
---|
5732 | DO WHILE ( trp .GT. 0 .AND. trp .LT. 9 .AND. cnt .LT. iml*jml) |
---|
5733 | cnt = cnt + 1 |
---|
5734 | ntripi = ntripi + inc(trp,1) |
---|
5735 | IF ( ntripi .LT. 1) ntripi = iml |
---|
5736 | IF ( ntripi .GT. iml) ntripi = 1 |
---|
5737 | ntripj = ntripj + inc(trp,2) |
---|
5738 | topohier_old = topohier |
---|
5739 | topohier = topohier + topoindex(ntripi, ntripj) |
---|
5740 | IF ( topohier_old .GT. topohier) THEN |
---|
5741 | WRITE(numout,*) 'Big Problem, how comes we climb up a hill ?' |
---|
5742 | WRITE(numout,*) 'The old value of topographicaly weighted hierarchy was : ', topohier_old |
---|
5743 | WRITE(numout,*) 'The new one is :', topohier |
---|
5744 | CALL ipslerr_p(3,'routing_hierarchy','Big Problem, how comes we climb up a hill ?','','') |
---|
5745 | ENDIF |
---|
5746 | trp = NINT(trip(ntripi, ntripj)) |
---|
5747 | ENDDO |
---|
5748 | |
---|
5749 | IF ( cnt .EQ. iml*jml) THEN |
---|
5750 | WRITE(numout,*) 'We could not route point (routing_findrout) :', ip, jp |
---|
5751 | WRITE(numout,*) '-------------> trip ' |
---|
5752 | WRITE(fmt,"('(',I3,'I6)')") iml |
---|
5753 | DO ib=1,jml |
---|
5754 | WRITE(numout,fmt) trip(1:iml,ib) |
---|
5755 | ENDDO |
---|
5756 | CALL ipslerr_p(3,'routing_hierarchy','We could not route point','','') |
---|
5757 | ENDIF |
---|
5758 | |
---|
5759 | hierarchy(ip,jp) = topohier |
---|
5760 | |
---|
5761 | ENDIF |
---|
5762 | ENDDO |
---|
5763 | ENDDO |
---|
5764 | ! |
---|
5765 | ! |
---|
5766 | END SUBROUTINE routing_hierarchy |
---|
5767 | ! |
---|
5768 | !! ================================================================================================================================ |
---|
5769 | !! SUBROUTINE : routing_findrout |
---|
5770 | !! |
---|
5771 | !>\BRIEF This subroutine simply computes the route to each outflow point |
---|
5772 | !! and returns the outflow point for each point in the basin. |
---|
5773 | !! |
---|
5774 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
5775 | !! |
---|
5776 | !! RECENT CHANGE(S): None |
---|
5777 | !! |
---|
5778 | !! MAIN OUTPUT VARIABLE(S): |
---|
5779 | !! |
---|
5780 | !! REFERENCES : None |
---|
5781 | !! |
---|
5782 | !! FLOWCHART : None |
---|
5783 | !! \n |
---|
5784 | !_ ================================================================================================================================ |
---|
5785 | |
---|
5786 | SUBROUTINE routing_findrout(nbi, nbj, trip, basin_sz, basinid, nbout, outflow, trip_flow, outsz) |
---|
5787 | ! |
---|
5788 | IMPLICIT NONE |
---|
5789 | ! |
---|
5790 | !! INPUT VARIABLES |
---|
5791 | INTEGER(i_std) :: nbi !! Number of point in x within the grid (unitless) |
---|
5792 | INTEGER(i_std) :: nbj !! Number of point in y within the grid (unitless) |
---|
5793 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax) :: trip !! The trip field (unitless) |
---|
5794 | INTEGER(i_std) :: basin_sz !! |
---|
5795 | INTEGER(i_std) :: basinid !! |
---|
5796 | ! |
---|
5797 | !! OUTPUT VARIABLES |
---|
5798 | INTEGER(i_std), DIMENSION(nbvmax,2), INTENT(out) :: outflow !! |
---|
5799 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax,2), INTENT(out) :: trip_flow !! |
---|
5800 | INTEGER(i_std), INTENT(out) :: nbout !! |
---|
5801 | INTEGER(i_std), DIMENSION(nbvmax), INTENT(out) :: outsz !! |
---|
5802 | ! |
---|
5803 | !! LOCAL VARIABLES |
---|
5804 | INTEGER(i_std), DIMENSION(8,2) :: inc !! |
---|
5805 | INTEGER(i_std) :: ip, jp, ib, cnt, trp, totsz !! Indices (unitless) |
---|
5806 | CHARACTER(LEN=7) :: fmt !! |
---|
5807 | |
---|
5808 | !_ ================================================================================================================================ |
---|
5809 | ! |
---|
5810 | ! |
---|
5811 | ! The routing code (i=1, j=2) |
---|
5812 | ! |
---|
5813 | inc(1,1) = 0 |
---|
5814 | inc(1,2) = -1 |
---|
5815 | inc(2,1) = 1 |
---|
5816 | inc(2,2) = -1 |
---|
5817 | inc(3,1) = 1 |
---|
5818 | inc(3,2) = 0 |
---|
5819 | inc(4,1) = 1 |
---|
5820 | inc(4,2) = 1 |
---|
5821 | inc(5,1) = 0 |
---|
5822 | inc(5,2) = 1 |
---|
5823 | inc(6,1) = -1 |
---|
5824 | inc(6,2) = 1 |
---|
5825 | inc(7,1) = -1 |
---|
5826 | inc(7,2) = 0 |
---|
5827 | inc(8,1) = -1 |
---|
5828 | inc(8,2) = -1 |
---|
5829 | ! |
---|
5830 | ! |
---|
5831 | ! Get the outflows and determine for each point to which outflow point it belong |
---|
5832 | ! |
---|
5833 | nbout = 0 |
---|
5834 | trip_flow(:,:,:) = 0 |
---|
5835 | DO ip=1,nbi |
---|
5836 | DO jp=1,nbj |
---|
5837 | IF ( trip(ip,jp) .GT. 9) THEN |
---|
5838 | nbout = nbout + 1 |
---|
5839 | outflow(nbout,1) = ip |
---|
5840 | outflow(nbout,2) = jp |
---|
5841 | ENDIF |
---|
5842 | IF ( trip(ip,jp) .GT. 0) THEN |
---|
5843 | trip_flow(ip,jp,1) = ip |
---|
5844 | trip_flow(ip,jp,2) = jp |
---|
5845 | ENDIF |
---|
5846 | ENDDO |
---|
5847 | ENDDO |
---|
5848 | ! |
---|
5849 | ! Follow the flow of the water |
---|
5850 | ! |
---|
5851 | DO ip=1,nbi |
---|
5852 | DO jp=1,nbj |
---|
5853 | IF ( (trip_flow(ip,jp,1) + trip_flow(ip,jp,2)) .GT. 0) THEN |
---|
5854 | trp = trip(trip_flow(ip,jp,1), trip_flow(ip,jp,2)) |
---|
5855 | cnt = 0 |
---|
5856 | DO WHILE ( trp .GT. 0 .AND. trp .LT. 9 .AND. cnt .LT. nbi*nbj) |
---|
5857 | cnt = cnt + 1 |
---|
5858 | trip_flow(ip,jp,1) = trip_flow(ip,jp,1) + inc(trp,1) |
---|
5859 | trip_flow(ip,jp,2) = trip_flow(ip,jp,2) + inc(trp,2) |
---|
5860 | trp = trip(trip_flow(ip,jp,1), trip_flow(ip,jp,2)) |
---|
5861 | ENDDO |
---|
5862 | IF ( cnt .EQ. nbi*nbj) THEN |
---|
5863 | WRITE(numout,*) 'We could not route point (routing_findrout) :', ip, jp |
---|
5864 | WRITE(numout,*) '-------------> trip ' |
---|
5865 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5866 | DO ib=1,nbj |
---|
5867 | WRITE(numout,fmt) trip(1:nbi,ib) |
---|
5868 | ENDDO |
---|
5869 | CALL ipslerr_p(3,'routing_findrout','We could not route point','','') |
---|
5870 | ENDIF |
---|
5871 | ENDIF |
---|
5872 | ENDDO |
---|
5873 | ENDDO |
---|
5874 | ! |
---|
5875 | ! What is the size of the region behind each outflow point ? |
---|
5876 | ! |
---|
5877 | totsz = 0 |
---|
5878 | DO ip=1,nbout |
---|
5879 | outsz(ip) = COUNT(trip_flow(:,:,1) .EQ. outflow(ip,1) .AND. trip_flow(:,:,2) .EQ. outflow(ip,2)) |
---|
5880 | totsz = totsz + outsz(ip) |
---|
5881 | ENDDO |
---|
5882 | IF ( basin_sz .NE. totsz) THEN |
---|
5883 | WRITE(numout,*) 'Water got lost while I tried to follow it ' |
---|
5884 | WRITE(numout,*) basin_sz, totsz |
---|
5885 | WRITE(numout,*) 'Basin id :', basinid |
---|
5886 | DO ip=1,nbout |
---|
5887 | WRITE(numout,*) 'ip :', ip, ' outsz :', outsz(ip), ' outflow :', outflow(ip,1), outflow(ip,2) |
---|
5888 | ENDDO |
---|
5889 | WRITE(numout,*) '-------------> trip ' |
---|
5890 | WRITE(fmt,"('(',I3,'I6)')") nbi |
---|
5891 | DO jp=1,nbj |
---|
5892 | WRITE(numout,fmt) trip(1:nbi,jp) |
---|
5893 | ENDDO |
---|
5894 | CALL ipslerr_p(3,'routing_findrout','Water got lost while I tried to follow it','','') |
---|
5895 | ENDIF |
---|
5896 | ! |
---|
5897 | END SUBROUTINE routing_findrout |
---|
5898 | ! |
---|
5899 | !! ================================================================================================================================ |
---|
5900 | !! SUBROUTINE : routing_globalize |
---|
5901 | !! |
---|
5902 | !>\BRIEF This subroutine puts the basins found for grid box in the global map. |
---|
5903 | !! Connection can only be made later when all information is together. |
---|
5904 | !! |
---|
5905 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
5906 | !! |
---|
5907 | !! RECENT CHANGE(S): None |
---|
5908 | !! |
---|
5909 | !! MAIN OUTPUT VARIABLE(S): |
---|
5910 | !! One of the outputs is basin_flowdir. Its convention is 1-8 for the directions from North to North |
---|
5911 | !! West going through South. The negative values will be -3 for return flow, -2 for coastal flow |
---|
5912 | !! |
---|
5913 | !! REFERENCES : None |
---|
5914 | !! |
---|
5915 | !! FLOWCHART : None |
---|
5916 | !! \n |
---|
5917 | !_ ================================================================================================================================ |
---|
5918 | |
---|
5919 | SUBROUTINE routing_globalize(nbpt, ib, neighbours, area_bx, trip_bx, hierarchy_bx, topoind_bx, min_topoind,& |
---|
5920 | & nb_basin, basin_inbxid, basin_sz, basin_pts, basin_bxout, coast_pts, nwbas, basin_count,& |
---|
5921 | & basin_area, basin_hierarchy, basin_topoind, basin_id, basin_flowdir, outflow_grid,& |
---|
5922 | & nbcoastal, coastal_basin) |
---|
5923 | ! |
---|
5924 | IMPLICIT NONE |
---|
5925 | ! |
---|
5926 | !! INPUT VARIABLES |
---|
5927 | INTEGER(i_std), INTENT (in) :: nbpt !! Domain size (unitless) |
---|
5928 | INTEGER(i_std), INTENT (in) :: ib !! Current basin (unitless) |
---|
5929 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
5930 | !! (1=North and then clockwise) |
---|
5931 | !! LOCAL VARIABLES |
---|
5932 | REAL(r_std), DIMENSION(nbvmax,nbvmax) :: area_bx !! Area of each small box in the grid box (m^2) |
---|
5933 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax) :: trip_bx !! The trip field for each of the smaller boxes (unitless) |
---|
5934 | REAL(r_std), DIMENSION(nbvmax,nbvmax) :: hierarchy_bx !! Level in the basin of the point |
---|
5935 | REAL(r_std), DIMENSION(nbvmax,nbvmax) :: topoind_bx !! Topographic index of the residence time for each of the smaller boxes (m) |
---|
5936 | REAL(r_std) :: min_topoind !! The current minimum of topographic index (m) |
---|
5937 | INTEGER(i_std) :: nb_basin !! Number of sub-basins (unitless) |
---|
5938 | INTEGER(i_std), DIMENSION(nbvmax) :: basin_inbxid, basin_sz !! ID of basin, number of points in the basin |
---|
5939 | INTEGER(i_std), DIMENSION(nbvmax,nbvmax,2) :: basin_pts !! Points in each basin |
---|
5940 | INTEGER(i_std), DIMENSION(nbvmax) :: basin_bxout !! outflow direction |
---|
5941 | INTEGER(i_std) :: coast_pts(nbvmax) !! The coastal flow points (unitless) |
---|
5942 | ! global maps |
---|
5943 | INTEGER(i_std) :: nwbas !! |
---|
5944 | INTEGER(i_std), DIMENSION(nbpt) :: basin_count !! |
---|
5945 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_id !! |
---|
5946 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_flowdir !! Water flow directions in the basin (unitless) |
---|
5947 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_area !! |
---|
5948 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_hierarchy !! |
---|
5949 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_topoind !! Topographic index of the residence time for a basin (m) |
---|
5950 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
5951 | INTEGER(i_std), DIMENSION(nbpt) :: nbcoastal !! |
---|
5952 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: coastal_basin !! |
---|
5953 | ! |
---|
5954 | INTEGER(i_std) :: ij, iz !! Indices (unitless) |
---|
5955 | CHARACTER(LEN=4) :: hierar_method = 'OUTP' !! |
---|
5956 | |
---|
5957 | !_ ================================================================================================================================ |
---|
5958 | ! |
---|
5959 | ! |
---|
5960 | DO ij=1, nb_basin |
---|
5961 | ! |
---|
5962 | ! Count the basins and keep their ID |
---|
5963 | ! |
---|
5964 | basin_count(ib) = basin_count(ib)+1 |
---|
5965 | if (basin_count(ib) > nwbas) then |
---|
5966 | WRITE(numout,*) 'ib=',ib |
---|
5967 | call ipslerr_p(3,'routing_globalize', & |
---|
5968 | & 'Problem with basin_count : ', & |
---|
5969 | & 'It is greater than number of allocated basin nwbas.', & |
---|
5970 | & '(stop to count basins)') |
---|
5971 | endif |
---|
5972 | basin_id(ib,basin_count(ib)) = basin_inbxid(ij) |
---|
5973 | ! |
---|
5974 | ! Transfer the list of basins which flow into the ocean as coastal flow. |
---|
5975 | ! |
---|
5976 | IF ( basin_id(ib,basin_count(ib)) .LT. 0) THEN |
---|
5977 | nbcoastal(ib) = basin_sz(ij) |
---|
5978 | coastal_basin(ib,1:nbcoastal(ib)) = coast_pts(1:nbcoastal(ib)) |
---|
5979 | ENDIF |
---|
5980 | ! |
---|
5981 | ! |
---|
5982 | ! Compute the area of the basin |
---|
5983 | ! |
---|
5984 | basin_area(ib,ij) = zero |
---|
5985 | basin_hierarchy(ib,ij) = zero |
---|
5986 | ! |
---|
5987 | SELECT CASE (hierar_method) |
---|
5988 | ! |
---|
5989 | CASE("MINI") |
---|
5990 | basin_hierarchy(ib,ij) = undef_sechiba |
---|
5991 | ! |
---|
5992 | END SELECT |
---|
5993 | basin_topoind(ib,ij) = zero |
---|
5994 | ! |
---|
5995 | DO iz=1,basin_sz(ij) |
---|
5996 | ! |
---|
5997 | basin_area(ib,ij) = basin_area(ib,ij) + area_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) |
---|
5998 | basin_topoind(ib,ij) = basin_topoind(ib,ij) + topoind_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) |
---|
5999 | ! |
---|
6000 | ! There are a number of ways to determine the hierarchy of the entire basin. |
---|
6001 | ! We allow for three here : |
---|
6002 | ! - Take the mean value |
---|
6003 | ! - Take the minimum value within the basin |
---|
6004 | ! - Take the value at the outflow point |
---|
6005 | ! Probably taking the value of the outflow point is the best solution. |
---|
6006 | ! |
---|
6007 | SELECT CASE (hierar_method) |
---|
6008 | ! |
---|
6009 | CASE("MEAN") |
---|
6010 | ! Mean hierarchy of the basin |
---|
6011 | basin_hierarchy(ib,ij) = basin_hierarchy(ib,ij) + & |
---|
6012 | & hierarchy_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) |
---|
6013 | CASE("MINI") |
---|
6014 | ! The smallest value of the basin |
---|
6015 | IF ( hierarchy_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) .LT. basin_hierarchy(ib,ij)) THEN |
---|
6016 | basin_hierarchy(ib,ij) = hierarchy_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) |
---|
6017 | ENDIF |
---|
6018 | CASE("OUTP") |
---|
6019 | ! Value at the outflow point |
---|
6020 | IF ( trip_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) .GT. 100 ) THEN |
---|
6021 | basin_hierarchy(ib,ij) = hierarchy_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) |
---|
6022 | ENDIF |
---|
6023 | CASE DEFAULT |
---|
6024 | WRITE(numout,*) 'Unknown method for computing the hierarchy of the basin' |
---|
6025 | CALL ipslerr_p(3,'routing_globalize','Unknown method for computing the hierarchy of the basin','','') |
---|
6026 | END SELECT |
---|
6027 | ! |
---|
6028 | ENDDO |
---|
6029 | ! |
---|
6030 | basin_topoind(ib,ij) = basin_topoind(ib,ij)/REAL(basin_sz(ij),r_std) |
---|
6031 | ! |
---|
6032 | SELECT CASE (hierar_method) |
---|
6033 | ! |
---|
6034 | CASE("MEAN") |
---|
6035 | basin_hierarchy(ib,ij) = basin_hierarchy(ib,ij)/REAL(basin_sz(ij),r_std) |
---|
6036 | ! |
---|
6037 | END SELECT |
---|
6038 | ! |
---|
6039 | ! To make sure that it has the lowest number if this is an outflow point we reset basin_hierarchy |
---|
6040 | ! |
---|
6041 | IF (basin_bxout(ij) .LT. 0) THEN |
---|
6042 | basin_hierarchy(ib,ij) = min_topoind |
---|
6043 | basin_topoind(ib,ij) = min_topoind |
---|
6044 | ENDIF |
---|
6045 | ! |
---|
6046 | ! |
---|
6047 | ! Keep the outflow boxes and basin |
---|
6048 | ! |
---|
6049 | basin_flowdir(ib,ij) = basin_bxout(ij) |
---|
6050 | IF (basin_bxout(ij) .GT. 0) THEN |
---|
6051 | outflow_grid(ib,ij) = neighbours(ib,basin_bxout(ij)) |
---|
6052 | ELSE |
---|
6053 | outflow_grid(ib,ij) = basin_bxout(ij) |
---|
6054 | ENDIF |
---|
6055 | ! |
---|
6056 | ! |
---|
6057 | ENDDO |
---|
6058 | ! |
---|
6059 | |
---|
6060 | ! |
---|
6061 | END SUBROUTINE routing_globalize |
---|
6062 | ! |
---|
6063 | !! ================================================================================================================================ |
---|
6064 | !! SUBROUTINE : routing_linkup |
---|
6065 | !! |
---|
6066 | !>\BRIEF This subroutine makes the connections between the basins and ensure global coherence. |
---|
6067 | !! |
---|
6068 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
6069 | !! The convention for outflow_grid is : |
---|
6070 | !! outflow_grid = -1 : River flow |
---|
6071 | !! outflow_grid = -2 : Coastal flow |
---|
6072 | !! outflow_grid = -3 : Return flow\n |
---|
6073 | !! |
---|
6074 | !! RECENT CHANGE(S): None |
---|
6075 | !! |
---|
6076 | !! MAIN OUTPUT VARIABLE(S): |
---|
6077 | !! |
---|
6078 | !! REFERENCES : None |
---|
6079 | !! |
---|
6080 | !! FLOWCHART : None |
---|
6081 | !! \n |
---|
6082 | !_ ================================================================================================================================ |
---|
6083 | |
---|
6084 | SUBROUTINE routing_linkup(nbpt, contfrac, neighbours, nwbas, basin_count, basin_area, basin_id, basin_flowdir, & |
---|
6085 | & basin_hierarchy, outflow_grid, outflow_basin, inflow_number, inflow_grid, inflow_basin, nbcoastal,& |
---|
6086 | & coastal_basin, invented_basins) |
---|
6087 | ! |
---|
6088 | IMPLICIT NONE |
---|
6089 | ! |
---|
6090 | !! INPUT VARIABLES |
---|
6091 | INTEGER(i_std), INTENT (in) :: nbpt !! Domain size (unitless) |
---|
6092 | REAL(r_std), DIMENSION(nbpt) :: contfrac |
---|
6093 | INTEGER(i_std), DIMENSION(nbpt,NbNeighb), INTENT (in) :: neighbours !! |
---|
6094 | REAL(r_std), INTENT(in) :: invented_basins !! |
---|
6095 | ! |
---|
6096 | INTEGER(i_std) :: nwbas !! |
---|
6097 | INTEGER(i_std), DIMENSION(nbpt) :: basin_count !! |
---|
6098 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_id !! |
---|
6099 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_flowdir !! Water flow directions in the basin (unitless) |
---|
6100 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_area !! |
---|
6101 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_hierarchy !! |
---|
6102 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
6103 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_basin !! |
---|
6104 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: inflow_number !! |
---|
6105 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nbvmax) :: inflow_basin !! |
---|
6106 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nbvmax) :: inflow_grid !! |
---|
6107 | INTEGER(i_std), DIMENSION(nbpt) :: nbcoastal !! |
---|
6108 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: coastal_basin !! |
---|
6109 | ! |
---|
6110 | !! LOCAL VARIABLES |
---|
6111 | INTEGER(i_std) :: sp, sb, sbl, inp, bid, outdm1, outdp1 !! Indices (unitless) |
---|
6112 | INTEGER(i_std) :: dp1, dm1, dm1i, dp1i, bp1, bm1 !! Indices (unitless) |
---|
6113 | INTEGER(i_std) :: dop, bop !! |
---|
6114 | INTEGER(i_std) :: fbas(nwbas), nbfbas !! |
---|
6115 | REAL(r_std) :: fbas_hierarchy(nwbas) !! |
---|
6116 | REAL(r_std) :: angle |
---|
6117 | INTEGER(i_std) :: ff(1) !! |
---|
6118 | ! |
---|
6119 | ! ERRORS |
---|
6120 | LOGICAL :: error1, error2, error3, error4, error5 !! (true/false) |
---|
6121 | ! |
---|
6122 | !! PARAMETERS |
---|
6123 | LOGICAL, PARAMETER :: check = .TRUE. !! (true/false) |
---|
6124 | |
---|
6125 | !_ ================================================================================================================================ |
---|
6126 | error1=.FALSE. |
---|
6127 | error2=.FALSE. |
---|
6128 | error3=.FALSE. |
---|
6129 | error4=.FALSE. |
---|
6130 | error5=.FALSE. |
---|
6131 | |
---|
6132 | outflow_basin(:,:) = undef_int |
---|
6133 | inflow_number(:,:) = 0 |
---|
6134 | ! |
---|
6135 | DO sp=1,nbpt |
---|
6136 | DO sb=1,basin_count(sp) |
---|
6137 | ! |
---|
6138 | inp = outflow_grid(sp,sb) |
---|
6139 | bid = basin_id(sp,sb) |
---|
6140 | ! |
---|
6141 | ! We only work on this point if it does not flow into the ocean |
---|
6142 | ! At this point any of the outflows is designated by a negative values in |
---|
6143 | ! outflow_grid |
---|
6144 | ! |
---|
6145 | IF ( inp .GT. 0 ) THEN |
---|
6146 | ! |
---|
6147 | ! Now find the basin in the onflow point (inp) |
---|
6148 | ! |
---|
6149 | nbfbas = 0 |
---|
6150 | ! |
---|
6151 | ! |
---|
6152 | DO sbl=1,basin_count(inp) |
---|
6153 | ! |
---|
6154 | ! Either it is a standard basin or one aggregated from ocean flow points. |
---|
6155 | ! If we flow into a another grid box we have to make sure that its hierarchy in the |
---|
6156 | ! basin is lower. |
---|
6157 | ! |
---|
6158 | ! |
---|
6159 | IF ( basin_id(inp,sbl) .GT. 0 ) THEN |
---|
6160 | IF ( basin_id(inp,sbl) .EQ. bid .OR. basin_id(inp,sbl) .GT. invented_basins) THEN |
---|
6161 | nbfbas =nbfbas + 1 |
---|
6162 | fbas(nbfbas) = sbl |
---|
6163 | fbas_hierarchy(nbfbas) = basin_hierarchy(inp,sbl) |
---|
6164 | ENDIF |
---|
6165 | ELSE |
---|
6166 | IF ( COUNT(coastal_basin(inp,1:nbcoastal(inp)) .EQ. bid) .GT. 0 ) THEN |
---|
6167 | nbfbas =nbfbas + 1 |
---|
6168 | fbas(nbfbas) = sbl |
---|
6169 | fbas_hierarchy(nbfbas) = basin_hierarchy(inp,sbl) |
---|
6170 | ENDIF |
---|
6171 | ENDIF |
---|
6172 | ! |
---|
6173 | ENDDO |
---|
6174 | ! |
---|
6175 | ! If we have more than one basin we will take the one which is lowest |
---|
6176 | ! in the hierarchy. |
---|
6177 | ! |
---|
6178 | IF (nbfbas .GE. 1) THEN |
---|
6179 | ff = MINLOC(fbas_hierarchy(1:nbfbas)) |
---|
6180 | sbl = fbas(ff(1)) |
---|
6181 | ! |
---|
6182 | bop = undef_int |
---|
6183 | IF ( basin_hierarchy(inp,sbl) .LE. basin_hierarchy(sp,sb) ) THEN |
---|
6184 | IF ( basin_hierarchy(inp,sbl) .LT. basin_hierarchy(sp,sb) ) THEN |
---|
6185 | bop = sbl |
---|
6186 | ELSE |
---|
6187 | ! The same hierarchy is allowed if both grids flow in about |
---|
6188 | ! the same direction : |
---|
6189 | IF ( ( MOD(basin_flowdir(inp,sbl)+1-1, 8)+1 .EQ. basin_flowdir(sp,sb)).OR. & |
---|
6190 | & ( basin_flowdir(inp,sbl) .EQ. basin_flowdir(sp,sb)).OR. & |
---|
6191 | & ( MOD(basin_flowdir(inp,sbl)+7-1, 8)+1 .EQ. basin_flowdir(sp,sb)) ) THEN |
---|
6192 | bop = sbl |
---|
6193 | ENDIF |
---|
6194 | ENDIF |
---|
6195 | ENDIF |
---|
6196 | ! |
---|
6197 | ! If the basin is suitable (bop < undef_int) then take it |
---|
6198 | ! |
---|
6199 | IF ( bop .LT. undef_int ) THEN |
---|
6200 | outflow_basin(sp,sb) = bop |
---|
6201 | inflow_number(inp,bop) = inflow_number(inp,bop) + 1 |
---|
6202 | IF ( inflow_number(inp,bop) .LE. nbvmax ) THEN |
---|
6203 | inflow_grid(inp, bop, inflow_number(inp,bop)) = sp |
---|
6204 | inflow_basin(inp, bop, inflow_number(inp,bop)) = sb |
---|
6205 | ELSE |
---|
6206 | error1=.TRUE. |
---|
6207 | EXIT |
---|
6208 | ENDIF |
---|
6209 | ENDIF |
---|
6210 | ENDIF |
---|
6211 | ! |
---|
6212 | ! |
---|
6213 | ENDIF |
---|
6214 | ! |
---|
6215 | ! |
---|
6216 | ! |
---|
6217 | ! Did we find it ? |
---|
6218 | ! |
---|
6219 | ! In case the outflow point was ocean or we did not find the correct basin we start to look |
---|
6220 | ! around. We find two options for the outflow direction (dp1 & dm1) and the corresponding |
---|
6221 | ! basin index (bp1 & bm1). |
---|
6222 | ! |
---|
6223 | ! |
---|
6224 | IF ( outflow_basin(sp,sb) .EQ. undef_int & |
---|
6225 | & .AND. basin_flowdir(sp,sb) .GT. 0) THEN |
---|
6226 | ! |
---|
6227 | dp1i = MOD(basin_flowdir(sp,sb)+1-1, NbNeighb)+1 |
---|
6228 | dp1 = neighbours(sp,dp1i) |
---|
6229 | dm1i = MOD(basin_flowdir(sp,sb)+7-1, NbNeighb)+1 |
---|
6230 | IF ( dm1i .LT. 1 ) dm1i = 8 |
---|
6231 | dm1 = neighbours(sp,dm1i) |
---|
6232 | ! |
---|
6233 | ! |
---|
6234 | bp1 = -1 |
---|
6235 | IF ( dp1 .GT. 0 ) THEN |
---|
6236 | DO sbl=1,basin_count(dp1) |
---|
6237 | IF (basin_id(dp1,sbl) .EQ. bid .AND.& |
---|
6238 | & basin_hierarchy(sp,sb) .GE. basin_hierarchy(dp1,sbl) .AND. & |
---|
6239 | & bp1 .LT. 0) THEN |
---|
6240 | IF ( basin_hierarchy(sp,sb) .GT. basin_hierarchy(dp1,sbl) ) THEN |
---|
6241 | bp1 = sbl |
---|
6242 | ELSE |
---|
6243 | ! The same hierarchy is allowed if both grids flow in about |
---|
6244 | ! the same direction : |
---|
6245 | angle=MODULO(basin_flowdir(dp1,sbl)-basin_flowdir(sp,sb)+8,8) |
---|
6246 | IF ( angle >= 4 ) angle = angle-8 |
---|
6247 | ! |
---|
6248 | IF ( ABS(angle) <= 1 ) THEN |
---|
6249 | bp1 = sbl |
---|
6250 | ENDIF |
---|
6251 | ENDIF |
---|
6252 | ENDIF |
---|
6253 | ENDDO |
---|
6254 | ENDIF |
---|
6255 | ! |
---|
6256 | bm1 = -1 |
---|
6257 | IF ( dm1 .GT. 0 ) THEN |
---|
6258 | DO sbl=1,basin_count(dm1) |
---|
6259 | IF (basin_id(dm1,sbl) .EQ. bid .AND.& |
---|
6260 | & basin_hierarchy(sp,sb) .GE. basin_hierarchy(dm1,sbl) .AND. & |
---|
6261 | & bm1 .LT. 0) THEN |
---|
6262 | IF ( basin_hierarchy(sp,sb) .GT. basin_hierarchy(dm1,sbl) ) THEN |
---|
6263 | bm1 = sbl |
---|
6264 | ELSE |
---|
6265 | ! The same hierarchy is allowed if both grids flow in about |
---|
6266 | ! the same direction : |
---|
6267 | angle=MODULO(basin_flowdir(dm1,sbl)-basin_flowdir(sp,sb)+8,8) |
---|
6268 | IF ( angle >= 4 ) angle = angle-8 |
---|
6269 | ! |
---|
6270 | IF ( ABS(angle) <= 1 ) THEN |
---|
6271 | bm1 = sbl |
---|
6272 | ENDIF |
---|
6273 | ENDIF |
---|
6274 | ENDIF |
---|
6275 | ENDDO |
---|
6276 | ENDIF |
---|
6277 | ! |
---|
6278 | ! |
---|
6279 | ! First deal with the case on land. |
---|
6280 | ! |
---|
6281 | ! For that we need to check if the water will be able to flow out of the grid dp1 or dm1 |
---|
6282 | ! and not return to our current grid. If it is the current grid |
---|
6283 | ! then we can not do anything with that neighbour. Thus we set the |
---|
6284 | ! value of outdm1 and outdp1 back to -1 |
---|
6285 | ! |
---|
6286 | outdp1 = undef_int |
---|
6287 | IF ( dp1 .GT. 0 .AND. bp1 .GT. 0 ) THEN |
---|
6288 | ! if the outflow is into the ocean then we put something less than undef_int in outdp1! |
---|
6289 | IF (basin_flowdir(dp1,bp1) .GT. 0) THEN |
---|
6290 | outdp1 = neighbours(dp1,basin_flowdir(dp1,bp1)) |
---|
6291 | IF ( outdp1 .EQ. sp ) outdp1 = undef_int |
---|
6292 | ELSE |
---|
6293 | outdp1 = nbpt + 1 |
---|
6294 | ENDIF |
---|
6295 | ENDIF |
---|
6296 | outdm1 = undef_int |
---|
6297 | IF ( dm1 .GT. 0 .AND. bm1 .GT. 0 ) THEN |
---|
6298 | IF (basin_flowdir(dm1,bm1) .GT. 0) THEN |
---|
6299 | outdm1 = neighbours(dm1,basin_flowdir(dm1,bm1)) |
---|
6300 | IF ( outdm1 .EQ. sp ) outdm1 = undef_int |
---|
6301 | ELSE |
---|
6302 | outdm1 = nbpt + 1 |
---|
6303 | ENDIF |
---|
6304 | ENDIF |
---|
6305 | ! |
---|
6306 | ! Now that we know our options we need go through them. |
---|
6307 | ! |
---|
6308 | dop = undef_int |
---|
6309 | bop = undef_int |
---|
6310 | IF ( outdp1 .LT. undef_int .AND. outdm1 .LT. undef_int) THEN |
---|
6311 | ! |
---|
6312 | ! In this case we let the current basin flow into the smaller one |
---|
6313 | ! |
---|
6314 | IF ( basin_area(dp1,bp1) .LT. basin_area(dm1,bm1) ) THEN |
---|
6315 | dop = dp1 |
---|
6316 | bop = bp1 |
---|
6317 | ELSE |
---|
6318 | dop = dm1 |
---|
6319 | bop = bm1 |
---|
6320 | ENDIF |
---|
6321 | ! |
---|
6322 | ! |
---|
6323 | ELSE IF ( outdp1 .LT. undef_int ) THEN |
---|
6324 | ! If only the first one is possible |
---|
6325 | dop = dp1 |
---|
6326 | bop = bp1 |
---|
6327 | ELSE IF ( outdm1 .LT. undef_int ) THEN |
---|
6328 | ! If only the second one is possible |
---|
6329 | dop = dm1 |
---|
6330 | bop = bm1 |
---|
6331 | ELSE |
---|
6332 | ! |
---|
6333 | ! Now we are at the point where none of the neighboring points is suitable |
---|
6334 | ! or we have a coastal point. |
---|
6335 | ! |
---|
6336 | ! If there is an option to put the water into the ocean go for it. |
---|
6337 | ! |
---|
6338 | IF ( outflow_grid(sp,sb) .LT. 0 .OR. dm1 .LT. 0 .OR. dp1 .LT. 0 ) THEN |
---|
6339 | dop = -1 |
---|
6340 | ELSE |
---|
6341 | ! |
---|
6342 | ! If we are on a land point with only land neighbors but no one suitable to let the |
---|
6343 | ! water flow into we have to look for a solution in the current grid box. |
---|
6344 | ! |
---|
6345 | ! |
---|
6346 | IF ( bp1 .LT. 0 .AND. bm1 .LT. 0 ) THEN |
---|
6347 | ! |
---|
6348 | ! Do we have more than one basin with the same ID ? |
---|
6349 | ! |
---|
6350 | IF ( COUNT(basin_id(sp,1:basin_count(sp)) .EQ. bid) .GE. 2) THEN |
---|
6351 | ! |
---|
6352 | ! Now we can try the option of flowing into the basin of the same grid box. |
---|
6353 | ! |
---|
6354 | DO sbl=1,basin_count(sp) |
---|
6355 | IF (sbl .NE. sb .AND. basin_id(sp,sbl) .EQ. bid) THEN |
---|
6356 | ! In case this basin has a lower hierarchy or flows into a totaly |
---|
6357 | ! different direction we go for it. |
---|
6358 | IF ( (basin_hierarchy(sp,sb) .GE. basin_hierarchy(sp,sbl)) .OR. & |
---|
6359 | & (basin_flowdir(sp,sbl) .LT. dm1i .AND.& |
---|
6360 | & basin_flowdir(sp,sbl) .GT. dp1i) ) THEN |
---|
6361 | dop = sp |
---|
6362 | bop = sbl |
---|
6363 | IF (check) THEN |
---|
6364 | IF (basin_hierarchy(sp,sb) .LT. basin_hierarchy(sp,sbl)) THEN |
---|
6365 | WRITE(numout,*) '>>>>>>> POINT CORRECTED against hierarchy :',& |
---|
6366 | & sp, sb, 'into', sbl |
---|
6367 | ENDIF |
---|
6368 | ENDIF |
---|
6369 | ENDIF |
---|
6370 | ! |
---|
6371 | ENDIF |
---|
6372 | ENDDO |
---|
6373 | ! |
---|
6374 | ENDIF |
---|
6375 | ENDIF |
---|
6376 | ENDIF |
---|
6377 | ! |
---|
6378 | IF ( dop .EQ. undef_int .AND. bop .EQ. undef_int ) THEN |
---|
6379 | IF (check) THEN |
---|
6380 | WRITE(numout,*) 'Why are we here with point ', sp, sb |
---|
6381 | WRITE(numout,*) 'Coordinates : (lon,lat) = ', lalo_g(sp,2), lalo_g(sp,1) |
---|
6382 | WRITE(numout,*) 'neighbours :', neighbours_g(sp,:) |
---|
6383 | WRITE(numout,*) 'Contfrac : = ', contfrac(sp) |
---|
6384 | WRITE(numout,*) 'Local Basin ID :', basin_id(sp,1:basin_count(sp)) |
---|
6385 | WRITE(numout,*) 'Local hierarchies :', basin_hierarchy(sp,1:basin_count(sp)) |
---|
6386 | WRITE(numout,*) 'Local basin_flowdir :', basin_flowdir(sp,1:basin_count(sp)) |
---|
6387 | WRITE(numout,*) 'Local outflowgrid :', outflow_grid(sp,1:basin_count(sp)) |
---|
6388 | WRITE(numout,*) 'outflow_grid :', inp |
---|
6389 | WRITE(numout,*) 'Coodinates outflow : (lon,lat) = ', lalo_g(inp,2), lalo_g(inp,1) |
---|
6390 | WRITE(numout,*) 'Contfrac : = ', contfrac(inp) |
---|
6391 | WRITE(numout,*) 'Outflow Basin ID :', basin_id(inp,1:basin_count(inp)) |
---|
6392 | WRITE(numout,*) 'Outflow hierarchies :', basin_hierarchy(inp,1:basin_count(inp)) |
---|
6393 | WRITE(numout,*) 'Outflow basin_flowdir :', basin_flowdir(inp,1:basin_count(inp)) |
---|
6394 | WRITE(numout,*) 'Explored options +1 :', dp1, bp1, outdp1 |
---|
6395 | WRITE(numout,*) 'Explored +1 Basin ID :', basin_id(dp1,1:basin_count(dp1)) |
---|
6396 | WRITE(numout,*) 'Explored +1 hierarchies :', basin_hierarchy(dp1,1:basin_count(dp1)) |
---|
6397 | WRITE(numout,*) 'Explored +1 basin_flowdir :', basin_flowdir(dp1,1:basin_count(dp1)) |
---|
6398 | WRITE(numout,*) 'Explored options -1 :', dm1, bm1, outdm1 |
---|
6399 | WRITE(numout,*) 'Explored -1 Basin ID :', basin_id(dm1,1:basin_count(dm1)) |
---|
6400 | WRITE(numout,*) 'Explored -1 hierarchies :', basin_hierarchy(dm1,1:basin_count(dm1)) |
---|
6401 | WRITE(numout,*) 'Explored -1 basin_flowdir :', basin_flowdir(dm1,1:basin_count(dm1)) |
---|
6402 | WRITE(numout,*) '****************************' |
---|
6403 | CALL FLUSH(numout) |
---|
6404 | ENDIF |
---|
6405 | IF ( contfrac(sp) > 0.01 ) THEN |
---|
6406 | error2=.TRUE. |
---|
6407 | EXIT |
---|
6408 | ENDIF |
---|
6409 | ENDIF |
---|
6410 | ! |
---|
6411 | ENDIF |
---|
6412 | ! |
---|
6413 | ! Now that we know where we want the water to flow to we write the |
---|
6414 | ! the information in the right fields. |
---|
6415 | ! |
---|
6416 | IF ( dop .GT. 0 .AND. dop .NE. undef_int ) THEN |
---|
6417 | outflow_grid(sp,sb) = dop |
---|
6418 | outflow_basin(sp,sb) = bop |
---|
6419 | inflow_number(dop,bop) = inflow_number(dop,bop) + 1 |
---|
6420 | IF ( inflow_number(dop,bop) .LE. nbvmax ) THEN |
---|
6421 | inflow_grid(dop, bop, inflow_number(dop,bop)) = sp |
---|
6422 | inflow_basin(dop, bop, inflow_number(dop,bop)) = sb |
---|
6423 | ELSE |
---|
6424 | error3=.TRUE. |
---|
6425 | EXIT |
---|
6426 | ENDIF |
---|
6427 | ! |
---|
6428 | ELSE |
---|
6429 | outflow_grid(sp,sb) = -2 |
---|
6430 | outflow_basin(sp,sb) = undef_int |
---|
6431 | ENDIF |
---|
6432 | ! |
---|
6433 | ENDIF |
---|
6434 | ! |
---|
6435 | ! |
---|
6436 | ! If we still have not found anything then we have to check that there is not a basin |
---|
6437 | ! within the same grid box which has a lower hierarchy. |
---|
6438 | ! |
---|
6439 | ! |
---|
6440 | IF ( outflow_grid(sp,sb) .GT. 0 .AND. outflow_basin(sp,sb) .EQ. undef_int & |
---|
6441 | & .AND. basin_flowdir(sp,sb) .GT. 0) THEN |
---|
6442 | ! |
---|
6443 | |
---|
6444 | IF (check) & |
---|
6445 | WRITE(numout,*) 'There is no reason to here, this part of the code should be dead :', sp,sb |
---|
6446 | ! |
---|
6447 | DO sbl=1,basin_count(sp) |
---|
6448 | ! |
---|
6449 | ! Three conditions are needed to let the water flow into another basin of the |
---|
6450 | ! same grid : |
---|
6451 | ! - another basin than the current one |
---|
6452 | ! - same ID |
---|
6453 | ! - of lower hierarchy. |
---|
6454 | ! |
---|
6455 | IF ( (sbl .NE. sb) .AND. (basin_id(sp,sbl) .EQ. bid)& |
---|
6456 | & .AND. (basin_hierarchy(sp,sb) .GT. basin_hierarchy(sp,sbl)) ) THEN |
---|
6457 | outflow_basin(sp,sb) = sbl |
---|
6458 | inflow_number(sp,sbl) = inflow_number(sp,sbl) + 1 |
---|
6459 | IF ( inflow_number(sp,sbl) .LE. nbvmax ) THEN |
---|
6460 | IF ( sp .EQ. 42 .AND. sbl .EQ. 1) THEN |
---|
6461 | IF (check) & |
---|
6462 | WRITE(numout,*) 'ADD INFLOW (3):', sp, sb |
---|
6463 | ENDIF |
---|
6464 | inflow_grid(sp, sbl, inflow_number(sp,sbl)) = sp |
---|
6465 | inflow_basin(sp, sbl, inflow_number(sp,sbl)) = sb |
---|
6466 | ELSE |
---|
6467 | error4=.TRUE. |
---|
6468 | EXIT |
---|
6469 | ENDIF |
---|
6470 | ENDIF |
---|
6471 | ENDDO |
---|
6472 | ENDIF |
---|
6473 | ! |
---|
6474 | ! Ok that is it, we give up :-) |
---|
6475 | ! |
---|
6476 | IF ( outflow_grid(sp,sb) .GT. 0 .AND. outflow_basin(sp,sb) .EQ. undef_int & |
---|
6477 | & .AND. basin_flowdir(sp,sb) .GT. 0) THEN |
---|
6478 | ! |
---|
6479 | error5=.TRUE. |
---|
6480 | EXIT |
---|
6481 | ENDIF |
---|
6482 | ENDDO |
---|
6483 | ! |
---|
6484 | ENDDO |
---|
6485 | IF (error1) THEN |
---|
6486 | WRITE(numout,*) " routing_linkup : bop .LT. undef_int",bop |
---|
6487 | CALL ipslerr_p(3,'routing_linkup', & |
---|
6488 | "bop .LT. undef_int",'Increase nbvmax','stop routing_linkup') |
---|
6489 | ENDIF |
---|
6490 | IF (error2) THEN |
---|
6491 | CALL ipslerr_p(3,'routing_linkup', & |
---|
6492 | & 'In the routine which make connections between the basins and ensure global coherence,', & |
---|
6493 | & 'there is a problem with outflow linkup without any valid direction. Try with check=.TRUE.', & |
---|
6494 | & '(Perhaps there is a problem with the grid.)') |
---|
6495 | ENDIF |
---|
6496 | IF (error3) THEN |
---|
6497 | WRITE(numout,*) " routing_linkup : dop .GT. 0 .AND. dop .NE. undef_int",dop |
---|
6498 | CALL ipslerr_p(3,'routing_linkup', & |
---|
6499 | "dop .GT. 0 .AND. dop .NE. undef_int",'Increase nbvmax. Try with check=.TRUE.','stop routing_linkup') |
---|
6500 | ENDIF |
---|
6501 | IF (error4) THEN |
---|
6502 | WRITE(numout,*) " routing_linkup : (sbl .NE. sb) .AND. (basin_id(sp,sbl) .EQ. bid) ", & |
---|
6503 | & " .AND. (basin_hierarchy(sp,sb) .GT. basin_hierarchy(sp,sbl))",sbl,sb,basin_id(sp,sbl),bid, & |
---|
6504 | & basin_hierarchy(sp,sb),basin_hierarchy(sp,sbl) |
---|
6505 | CALL ipslerr_p(3,'routing_linkup', & |
---|
6506 | "(sbl .NE. sb) .AND. (basin_id(sp,sbl) .EQ. bid) .AND. (basin_hierarchy(sp,sb) .GT. basin_hierarchy(sp,sbl))" & |
---|
6507 | ,'Increase nbvmax. Try with check=.TRUE.','stop routing_linkup') |
---|
6508 | ENDIF |
---|
6509 | IF (error5) THEN |
---|
6510 | WRITE(numout,*) 'We could not find the basin into which we need to flow' |
---|
6511 | WRITE(numout,*) 'Grid point ', sp, ' and basin ', sb |
---|
6512 | WRITE(numout,*) 'Explored neighbours :', dm1, dp1 |
---|
6513 | WRITE(numout,*) 'Outflow direction :', basin_flowdir(sp,sb) |
---|
6514 | WRITE(numout,*) 'Outlfow grid :', outflow_grid(sp,sb) |
---|
6515 | WRITE(numout,*) 'Outlfow basin :',outflow_basin(sp,sb) |
---|
6516 | WRITE(numout,*) 'basin ID:',basin_id(sp,sb) |
---|
6517 | WRITE(numout,*) 'Hierarchy :', basin_hierarchy(sp,sb) |
---|
6518 | CALL ipslerr_p(3,'routing_linkup', & |
---|
6519 | "We could not find the basin into which we need to flow",'Try with check=.TRUE.','stop routing_linkup') |
---|
6520 | ENDIF |
---|
6521 | ! |
---|
6522 | ! Check for each outflow basin that it exists |
---|
6523 | ! |
---|
6524 | DO sp=1,nbpt |
---|
6525 | DO sb=1,basin_count(sp) |
---|
6526 | ! |
---|
6527 | inp = outflow_grid(sp,sb) |
---|
6528 | sbl = outflow_basin(sp,sb) |
---|
6529 | IF ( inp .GE. 0 ) THEN |
---|
6530 | IF ( basin_count(inp) .LT. sbl ) THEN |
---|
6531 | WRITE(numout,*) 'point :', sp, ' basin :', sb |
---|
6532 | WRITE(numout,*) 'Flows into point :', inp, ' basin :', sbl |
---|
6533 | WRITE(numout,*) 'But it flows into now here as basin count = ', basin_count(inp) |
---|
6534 | CALL ipslerr_p(3,'routing_linkup','Problem with outflow','','') |
---|
6535 | ENDIF |
---|
6536 | ENDIF |
---|
6537 | ENDDO |
---|
6538 | ENDDO |
---|
6539 | ! |
---|
6540 | END SUBROUTINE routing_linkup |
---|
6541 | ! |
---|
6542 | !! ================================================================================================================================ |
---|
6543 | !! SUBROUTINE : routing_fetch |
---|
6544 | !! |
---|
6545 | !>\BRIEF This subroutine computes the fetch of each basin. This means that for each basin we |
---|
6546 | !! will know how much area is upstream. It will help decide how to procede with the |
---|
6547 | !! the truncation later and allow to set correctly in outflow_grid the distinction |
---|
6548 | !! between coastal and river flow. |
---|
6549 | !! |
---|
6550 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
6551 | !! |
---|
6552 | !! RECENT CHANGE(S): None |
---|
6553 | !! |
---|
6554 | !! MAIN OUTPUT VARIABLE(S): |
---|
6555 | !! |
---|
6556 | !! REFERENCES : None |
---|
6557 | !! |
---|
6558 | !! FLOWCHART : None |
---|
6559 | !! \n |
---|
6560 | !_ ================================================================================================================================ |
---|
6561 | |
---|
6562 | SUBROUTINE routing_fetch(nbpt, resolution, contfrac, nwbas, basin_count, basin_area, basin_id,& |
---|
6563 | & outflow_grid, outflow_basin, fetch_basin) |
---|
6564 | ! |
---|
6565 | IMPLICIT NONE |
---|
6566 | ! |
---|
6567 | !! INPUT VARIABLES |
---|
6568 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
6569 | ! |
---|
6570 | REAL(r_std), DIMENSION(nbpt,2), INTENT(in) :: resolution !! The size of each grid box in X and Y (m) |
---|
6571 | REAL(r_std), DIMENSION(nbpt), INTENT(in) :: contfrac !! Fraction of land in each grid box (unitless;0-1) |
---|
6572 | ! |
---|
6573 | INTEGER(i_std) :: nwbas !! |
---|
6574 | INTEGER(i_std), DIMENSION(nbpt), INTENT(in) :: basin_count !! |
---|
6575 | REAL(r_std), DIMENSION(nbpt,nwbas), INTENT(inout) :: basin_area !! |
---|
6576 | INTEGER(i_std), DIMENSION(nbpt,nwbas), INTENT(in) :: basin_id !! |
---|
6577 | INTEGER(i_std), DIMENSION(nbpt,nwbas), INTENT(inout) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
6578 | INTEGER(i_std), DIMENSION(nbpt,nwbas), INTENT(in) :: outflow_basin !! |
---|
6579 | ! |
---|
6580 | !! OUTPUT VARIABLES |
---|
6581 | REAL(r_std), DIMENSION(nbpt,nwbas), INTENT(out) :: fetch_basin !! |
---|
6582 | ! |
---|
6583 | !! LOCAL VARIABLES |
---|
6584 | INTEGER(i_std) :: ib, ij, ff(1), it, itt, igrif, ibasf, nboutflow !! Indices (unitless) |
---|
6585 | REAL(r_std) :: contarea !! |
---|
6586 | REAL(r_std) :: totbasins !! |
---|
6587 | REAL(r_std), DIMENSION(nbpt*nbvmax) :: tmp_area !! |
---|
6588 | INTEGER(i_std), DIMENSION(nbpt*nbvmax,2) :: tmpindex !! |
---|
6589 | |
---|
6590 | !_ ================================================================================================================================ |
---|
6591 | ! |
---|
6592 | ! |
---|
6593 | ! Normalize the area of all basins |
---|
6594 | ! |
---|
6595 | DO ib=1,nbpt |
---|
6596 | ! |
---|
6597 | totbasins = SUM(basin_area(ib,1:basin_count(ib))) |
---|
6598 | contarea = resolution(ib,1)*resolution(ib,2)*contfrac(ib) |
---|
6599 | ! |
---|
6600 | DO ij=1,basin_count(ib) |
---|
6601 | basin_area(ib,ij) = basin_area(ib,ij)/totbasins*contarea |
---|
6602 | ENDDO |
---|
6603 | ! |
---|
6604 | ENDDO |
---|
6605 | WRITE(numout,*) 'Normalization done' |
---|
6606 | ! |
---|
6607 | ! Compute the area upstream of each basin |
---|
6608 | ! |
---|
6609 | fetch_basin(:,:) = zero |
---|
6610 | ! |
---|
6611 | ! |
---|
6612 | DO ib=1,nbpt |
---|
6613 | ! |
---|
6614 | DO ij=1,basin_count(ib) |
---|
6615 | ! |
---|
6616 | fetch_basin(ib, ij) = fetch_basin(ib, ij) + basin_area(ib,ij) |
---|
6617 | ! |
---|
6618 | igrif = outflow_grid(ib,ij) |
---|
6619 | ibasf = outflow_basin(ib,ij) |
---|
6620 | ! |
---|
6621 | itt = 0 |
---|
6622 | DO WHILE (igrif .GT. 0) |
---|
6623 | fetch_basin(igrif,ibasf) = fetch_basin(igrif,ibasf) + basin_area(ib, ij) |
---|
6624 | it = outflow_grid(igrif, ibasf) |
---|
6625 | ibasf = outflow_basin(igrif, ibasf) |
---|
6626 | igrif = it |
---|
6627 | itt = itt + 1 |
---|
6628 | IF ( itt .GT. 500) THEN |
---|
6629 | WRITE(numout,& |
---|
6630 | "('Grid ',I5, ' and basin ',I5, 'did not converge after iteration ',I5)") ib, ij, itt |
---|
6631 | WRITE(numout,*) 'Basin ID :', basin_id(igrif,ibasf) |
---|
6632 | WRITE(numout,& |
---|
6633 | "('We are stuck with the flow into grid ',I5,' and basin ',I5)") igrif, ibasf |
---|
6634 | WRITE(numout,*) "Coordinates : ", lalo_g(igrif,2), lalo_g(igrif,1) |
---|
6635 | IF ( itt .GT. 510) THEN |
---|
6636 | CALL ipslerr_p(3,'routing_fetch','Problem...','','') |
---|
6637 | ENDIF |
---|
6638 | ENDIF |
---|
6639 | ENDDO |
---|
6640 | ! |
---|
6641 | ENDDO |
---|
6642 | ! |
---|
6643 | ENDDO |
---|
6644 | ! |
---|
6645 | WRITE(numout,*) 'The smallest FETCH :', MINVAL(fetch_basin) |
---|
6646 | WRITE(numout,*) 'The largest FETCH :', MAXVAL(fetch_basin) |
---|
6647 | ! |
---|
6648 | ! Now we set for the 'num_largest' largest basins the outflow condition as stream flow |
---|
6649 | ! (i.e. outflow_grid = -1) and all other outflow basins are set to coastal flow |
---|
6650 | ! (i.e. outflow_grid = -2). The return flow is not touched. |
---|
6651 | ! |
---|
6652 | nboutflow = 0 |
---|
6653 | ! |
---|
6654 | DO ib=1,nbpt |
---|
6655 | ! |
---|
6656 | DO ij=1,basin_count(ib) |
---|
6657 | ! |
---|
6658 | ! We do not need any more the river flow flag as we are going to reset it. |
---|
6659 | ! |
---|
6660 | IF ( outflow_grid(ib,ij) .EQ. -1) THEN |
---|
6661 | outflow_grid(ib,ij) = -2 |
---|
6662 | ENDIF |
---|
6663 | ! |
---|
6664 | IF ( outflow_grid(ib,ij) .EQ. -2) THEN |
---|
6665 | ! |
---|
6666 | nboutflow = nboutflow + 1 |
---|
6667 | tmp_area(nboutflow) = fetch_basin(ib,ij) |
---|
6668 | tmpindex(nboutflow,1) = ib |
---|
6669 | tmpindex(nboutflow,2) = ij |
---|
6670 | ! |
---|
6671 | ENDIF |
---|
6672 | ! |
---|
6673 | ENDDO |
---|
6674 | ENDDO |
---|
6675 | ! |
---|
6676 | DO ib=1, num_largest |
---|
6677 | ff = MAXLOC(tmp_area(1:nboutflow)) |
---|
6678 | outflow_grid(tmpindex(ff(1),1), tmpindex(ff(1),2)) = -1 |
---|
6679 | tmp_area(ff(1)) = zero |
---|
6680 | ENDDO |
---|
6681 | ! |
---|
6682 | END SUBROUTINE routing_fetch |
---|
6683 | ! |
---|
6684 | !! ================================================================================================================================ |
---|
6685 | !! SUBROUTINE : routing_truncate |
---|
6686 | !! |
---|
6687 | !>\BRIEF This subroutine reduces the number of basins per grid to the value chosen by the user. |
---|
6688 | !! It also computes the final field which will be used to route the water at the |
---|
6689 | !! requested truncation. |
---|
6690 | !! |
---|
6691 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
6692 | !! Truncate if needed and find the path closest to the high resolution data. |
---|
6693 | !! |
---|
6694 | !! The algorithm : |
---|
6695 | !! |
---|
6696 | !! We only go through this procedure only as many times as there are basins to take out at most. |
---|
6697 | !! This is important as it allows the simplifications to spread from one grid to the other. |
---|
6698 | !! The for each step of the iteration and at each grid point we check the following options for |
---|
6699 | !! simplifying the pathways of water : |
---|
6700 | !! 1) If the basin of a grid flows into another basin of the same grid. Kill the one which only |
---|
6701 | !! served as a transition |
---|
6702 | !! 2) If in one grid box we have a number of basins which flow into the ocean as coastal flow. |
---|
6703 | !! We kill the smallest one and put into the largest basin. There is no need to manage many |
---|
6704 | !! basins going into the ocean as coastal flows. |
---|
6705 | !! 3) If we have streams run in parallel from one gird box to the others (that is these are |
---|
6706 | !! different basins) we will put the smaller one in the larger one. This may hapen at any |
---|
6707 | !! level of the flow but in theory it should propagate downstream. |
---|
6708 | !! 4) If we have two basins with the same ID but flow into different grid boxes we sacrifice |
---|
6709 | !! the smallest one and route it through the largest. |
---|
6710 | !! |
---|
6711 | !! Obviously if any of the options find something then we skip the rest and take out the basin.:\n |
---|
6712 | !! |
---|
6713 | !! RECENT CHANGE(S): None |
---|
6714 | !! |
---|
6715 | !! MAIN OUTPUT VARIABLE(S): |
---|
6716 | !! |
---|
6717 | !! REFERENCES : None |
---|
6718 | !! |
---|
6719 | !! FLOWCHART : None |
---|
6720 | !! \n |
---|
6721 | !_ ================================================================================================================================ |
---|
6722 | |
---|
6723 | SUBROUTINE routing_truncate(nbpt, resolution, contfrac, nwbas, basin_count, basin_area, basin_topoind,& |
---|
6724 | & fetch_basin, basin_id, basin_flowdir, outflow_grid, outflow_basin, inflow_number,& |
---|
6725 | & inflow_grid, inflow_basin) |
---|
6726 | ! |
---|
6727 | IMPLICIT NONE |
---|
6728 | ! |
---|
6729 | !! PARAMETERS |
---|
6730 | INTEGER(i_std), PARAMETER :: pickmax = 200 !! |
---|
6731 | |
---|
6732 | !! INPUT VARIABLES |
---|
6733 | INTEGER(i_std) :: nbpt !! Domain size (unitless) |
---|
6734 | ! |
---|
6735 | REAL(r_std), DIMENSION(nbpt,2) :: resolution !! The size of each grid box in X and Y (m) |
---|
6736 | REAL(r_std), DIMENSION(nbpt), INTENT(in) :: contfrac !! Fraction of land in each grid box (unitless;0-1) |
---|
6737 | ! |
---|
6738 | INTEGER(i_std) :: nwbas !! |
---|
6739 | INTEGER(i_std), DIMENSION(nbpt) :: basin_count !! |
---|
6740 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_id !! |
---|
6741 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_flowdir !! Water flow directions in the basin (unitless) |
---|
6742 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_area !! |
---|
6743 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_topoind !! Topographic index of the residence time for a basin (m) |
---|
6744 | REAL(r_std), DIMENSION(nbpt,nwbas) :: fetch_basin !! |
---|
6745 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
6746 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_basin !! |
---|
6747 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: inflow_number !! |
---|
6748 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nwbas) :: inflow_basin !! |
---|
6749 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nwbas) :: inflow_grid !! |
---|
6750 | ! |
---|
6751 | !! LOCAL VARIABLES |
---|
6752 | INTEGER(i_std) :: ib, ij, ibf, ijf, igrif, ibasf, cnt, pold, bold, ff(2) !! Indices (unitless) |
---|
6753 | INTEGER(i_std) :: ii, kbas, sbas, ik, iter, ibt, obj !! Indices (unitless) |
---|
6754 | REAL(r_std), DIMENSION(nbpt,nbasmax) :: floflo !! |
---|
6755 | REAL(r_std), DIMENSION(nbpt) :: gridarea !! |
---|
6756 | REAL(r_std), DIMENSION(nbpt) :: gridbasinarea !! |
---|
6757 | REAL(r_std) :: ratio !! |
---|
6758 | INTEGER(i_std), DIMENSION(pickmax,2) :: largest_basins !! |
---|
6759 | INTEGER(i_std), DIMENSION(pickmax) :: tmp_ids !! |
---|
6760 | INTEGER(i_std) :: multbas !! |
---|
6761 | INTEGER(i_std) :: iml(1) !! X resolution of the high resolution grid |
---|
6762 | INTEGER(i_std), DIMENSION(pickmax) :: multbas_sz !! |
---|
6763 | REAL(r_std), DIMENSION(pickmax) :: tmp_area !! |
---|
6764 | INTEGER(i_std), DIMENSION(pickmax,pickmax) :: multbas_list !! |
---|
6765 | ! |
---|
6766 | INTEGER(i_std) :: nbtruncate !! |
---|
6767 | INTEGER(i_std), SAVE, ALLOCATABLE, DIMENSION(:) :: indextrunc !! |
---|
6768 | !$OMP THREADPRIVATE(indextrunc) |
---|
6769 | |
---|
6770 | !_ ================================================================================================================================ |
---|
6771 | ! |
---|
6772 | ! |
---|
6773 | IF ( .NOT. ALLOCATED(indextrunc)) THEN |
---|
6774 | ALLOCATE(indextrunc(nbpt)) |
---|
6775 | ENDIF |
---|
6776 | ! |
---|
6777 | ! We have to go through the grid as least as often as we have to reduce the number of basins |
---|
6778 | ! For good measure we add 3 more passages. |
---|
6779 | ! |
---|
6780 | ! |
---|
6781 | DO iter = 1, MAXVAL(basin_count) - nbasmax +3 |
---|
6782 | ! |
---|
6783 | ! Get the points over which we wish to truncate |
---|
6784 | ! |
---|
6785 | nbtruncate = 0 |
---|
6786 | DO ib = 1, nbpt |
---|
6787 | IF ( basin_count(ib) .GT. nbasmax ) THEN |
---|
6788 | nbtruncate = nbtruncate + 1 |
---|
6789 | indextrunc(nbtruncate) = ib |
---|
6790 | ENDIF |
---|
6791 | ENDDO |
---|
6792 | ! |
---|
6793 | ! Go through the basins which need to be truncated. |
---|
6794 | ! |
---|
6795 | DO ibt=1,nbtruncate |
---|
6796 | ! |
---|
6797 | ib = indextrunc(ibt) |
---|
6798 | ! |
---|
6799 | ! Check if we have basin which flows into a basin in the same grid |
---|
6800 | ! kbas = basin we will have to kill |
---|
6801 | ! sbas = basin which takes over kbas |
---|
6802 | ! |
---|
6803 | kbas = 0 |
---|
6804 | sbas = 0 |
---|
6805 | ! |
---|
6806 | ! 1) Can we find a basin which flows into a basin of the same grid ? |
---|
6807 | ! |
---|
6808 | DO ij=1,basin_count(ib) |
---|
6809 | DO ii=1,basin_count(ib) |
---|
6810 | IF ( outflow_grid(ib,ii) .EQ. ib .AND. outflow_basin(ib, ii) .EQ. ij .AND. kbas*sbas .NE. 0) THEN |
---|
6811 | kbas = ii |
---|
6812 | sbas = ij |
---|
6813 | ENDIF |
---|
6814 | ENDDO |
---|
6815 | ENDDO |
---|
6816 | ! |
---|
6817 | ! 2) Merge two basins which flow into the ocean as coastal or return flow |
---|
6818 | ! (outflow_grid = -2 or -3). Well obviously only if we have more than 1 and |
---|
6819 | ! have not found anything yet! |
---|
6820 | ! |
---|
6821 | IF ( (COUNT(outflow_grid(ib,1:basin_count(ib)) .EQ. -2) .GT. 1 .OR.& |
---|
6822 | & COUNT(outflow_grid(ib,1:basin_count(ib)) .EQ. -3) .GT. 1) .AND.& |
---|
6823 | & kbas*sbas .EQ. 0) THEN |
---|
6824 | ! |
---|
6825 | multbas = 0 |
---|
6826 | multbas_sz(:) = 0 |
---|
6827 | ! |
---|
6828 | IF ( COUNT(outflow_grid(ib,1:basin_count(ib)) .EQ. -2) .GT. 1 ) THEN |
---|
6829 | obj = -2 |
---|
6830 | ELSE |
---|
6831 | obj = -3 |
---|
6832 | ENDIF |
---|
6833 | ! |
---|
6834 | ! First we get the list of all basins which go out as coastal or return flow (obj) |
---|
6835 | ! |
---|
6836 | DO ij=1,basin_count(ib) |
---|
6837 | IF ( outflow_grid(ib,ij) .EQ. obj ) THEN |
---|
6838 | multbas = multbas + 1 |
---|
6839 | multbas_sz(multbas) = ij |
---|
6840 | tmp_area(multbas) = fetch_basin(ib,ij) |
---|
6841 | ENDIF |
---|
6842 | ENDDO |
---|
6843 | ! |
---|
6844 | ! Now the take the smallest to be transfered to the largest |
---|
6845 | ! |
---|
6846 | iml = MAXLOC(tmp_area(1:multbas), MASK = tmp_area(1:multbas) .GT. zero) |
---|
6847 | sbas = multbas_sz(iml(1)) |
---|
6848 | iml = MINLOC(tmp_area(1:multbas), MASK = tmp_area(1:multbas) .GT. zero) |
---|
6849 | kbas = multbas_sz(iml(1)) |
---|
6850 | ! |
---|
6851 | ENDIF |
---|
6852 | ! |
---|
6853 | ! 3) If we have basins flowing into the same grid but different basins then we put them |
---|
6854 | ! together. Obviously we first work with the grid which has most streams running into it |
---|
6855 | ! and putting the smallest in the largests catchments. |
---|
6856 | ! |
---|
6857 | IF ( kbas*sbas .EQ. 0) THEN |
---|
6858 | ! |
---|
6859 | tmp_ids(1:basin_count(ib)) = outflow_grid(ib,1:basin_count(ib)) |
---|
6860 | multbas = 0 |
---|
6861 | multbas_sz(:) = 0 |
---|
6862 | ! |
---|
6863 | ! First obtain the list of basins which flow into the same basin |
---|
6864 | ! |
---|
6865 | DO ij=1,basin_count(ib) |
---|
6866 | IF ( outflow_grid(ib,ij) .GT. 0 .AND.& |
---|
6867 | & COUNT(tmp_ids(1:basin_count(ib)) .EQ. outflow_grid(ib,ij)) .GT. 1) THEN |
---|
6868 | multbas = multbas + 1 |
---|
6869 | DO ii=1,basin_count(ib) |
---|
6870 | IF ( tmp_ids(ii) .EQ. outflow_grid(ib,ij)) THEN |
---|
6871 | multbas_sz(multbas) = multbas_sz(multbas) + 1 |
---|
6872 | multbas_list(multbas,multbas_sz(multbas)) = ii |
---|
6873 | tmp_ids(ii) = -99 |
---|
6874 | ENDIF |
---|
6875 | ENDDO |
---|
6876 | ELSE |
---|
6877 | tmp_ids(ij) = -99 |
---|
6878 | ENDIF |
---|
6879 | ENDDO |
---|
6880 | ! |
---|
6881 | ! Did we come up with any basins to deal with this way ? |
---|
6882 | ! |
---|
6883 | IF ( multbas .GT. 0 ) THEN |
---|
6884 | ! |
---|
6885 | iml = MAXLOC(multbas_sz(1:multbas)) |
---|
6886 | ik = iml(1) |
---|
6887 | ! |
---|
6888 | ! Take the smallest and largest of these basins ! |
---|
6889 | ! |
---|
6890 | DO ii=1,multbas_sz(ik) |
---|
6891 | tmp_area(ii) = fetch_basin(ib, multbas_list(ik,ii)) |
---|
6892 | ENDDO |
---|
6893 | ! |
---|
6894 | iml = MAXLOC(tmp_area(1:multbas_sz(ik)), MASK = tmp_area(1:multbas_sz(ik)) .GT. zero) |
---|
6895 | sbas = multbas_list(ik,iml(1)) |
---|
6896 | iml = MINLOC(tmp_area(1:multbas_sz(ik)), MASK = tmp_area(1:multbas_sz(ik)) .GT. zero) |
---|
6897 | kbas = multbas_list(ik,iml(1)) |
---|
6898 | ! |
---|
6899 | ENDIF |
---|
6900 | ! |
---|
6901 | ENDIF |
---|
6902 | ! |
---|
6903 | ! 4) If we have twice the same basin we put them together even if they flow into different |
---|
6904 | ! directions. If one of them goes to the ocean it takes the advantage. |
---|
6905 | ! |
---|
6906 | IF ( kbas*sbas .EQ. 0) THEN |
---|
6907 | ! |
---|
6908 | tmp_ids(1:basin_count(ib)) = basin_id(ib,1:basin_count(ib)) |
---|
6909 | multbas = 0 |
---|
6910 | multbas_sz(:) = 0 |
---|
6911 | ! |
---|
6912 | ! First obtain the list of basins which have sub-basins in this grid box. |
---|
6913 | ! (these are identified by their IDs) |
---|
6914 | ! |
---|
6915 | DO ij=1,basin_count(ib) |
---|
6916 | IF ( COUNT(tmp_ids(1:basin_count(ib)) .EQ. basin_id(ib,ij)) .GT. 1) THEN |
---|
6917 | multbas = multbas + 1 |
---|
6918 | DO ii=1,basin_count(ib) |
---|
6919 | IF ( tmp_ids(ii) .EQ. basin_id(ib,ij)) THEN |
---|
6920 | multbas_sz(multbas) = multbas_sz(multbas) + 1 |
---|
6921 | multbas_list(multbas,multbas_sz(multbas)) = ii |
---|
6922 | tmp_ids(ii) = -99 |
---|
6923 | ENDIF |
---|
6924 | ENDDO |
---|
6925 | ELSE |
---|
6926 | tmp_ids(ij) = -99 |
---|
6927 | ENDIF |
---|
6928 | ENDDO |
---|
6929 | ! |
---|
6930 | ! We are going to work on the basin with the largest number of sub-basins. |
---|
6931 | ! (IF we have a basin which has subbasins !) |
---|
6932 | ! |
---|
6933 | IF ( multbas .GT. 0 ) THEN |
---|
6934 | ! |
---|
6935 | iml = MAXLOC(multbas_sz(1:multbas)) |
---|
6936 | ik = iml(1) |
---|
6937 | ! |
---|
6938 | ! If one of the basins goes to the ocean then it is going to have the priority |
---|
6939 | ! |
---|
6940 | tmp_area(:) = zero |
---|
6941 | IF ( COUNT(outflow_grid(ib,multbas_list(ik,1:multbas_sz(ik))) .LT. 0) .GT. 0) THEN |
---|
6942 | DO ii=1,multbas_sz(ik) |
---|
6943 | IF ( outflow_grid(ib,multbas_list(ik,ii)) .LT. 0 .AND. sbas .EQ. 0 ) THEN |
---|
6944 | sbas = multbas_list(ik,ii) |
---|
6945 | ELSE |
---|
6946 | tmp_area(ii) = fetch_basin(ib, multbas_list(ik,ii)) |
---|
6947 | ENDIF |
---|
6948 | ENDDO |
---|
6949 | ! take the smallest of the subbasins |
---|
6950 | iml = MINLOC(tmp_area(1:multbas_sz(ik)), MASK = tmp_area(1:multbas_sz(ik)) .GT. zero) |
---|
6951 | kbas = multbas_list(ik,iml(1)) |
---|
6952 | ELSE |
---|
6953 | ! |
---|
6954 | ! Else we take simply the largest and smallest |
---|
6955 | ! |
---|
6956 | DO ii=1,multbas_sz(ik) |
---|
6957 | tmp_area(ii) = fetch_basin(ib, multbas_list(ik,ii)) |
---|
6958 | ENDDO |
---|
6959 | iml = MAXLOC(tmp_area(1:multbas_sz(ik)), MASK = tmp_area(1:multbas_sz(ik)) .GT. zero) |
---|
6960 | sbas = multbas_list(ik,iml(1)) |
---|
6961 | iml = MINLOC(tmp_area(1:multbas_sz(ik)), MASK = tmp_area(1:multbas_sz(ik)) .GT. zero) |
---|
6962 | kbas = multbas_list(ik,iml(1)) |
---|
6963 | ! |
---|
6964 | ENDIF |
---|
6965 | ! |
---|
6966 | ! |
---|
6967 | ENDIF |
---|
6968 | ENDIF |
---|
6969 | ! |
---|
6970 | ! |
---|
6971 | ! |
---|
6972 | ! Then we call routing_killbas to clean up the basins in this grid |
---|
6973 | ! |
---|
6974 | IF ( kbas .GT. 0 .AND. sbas .GT. 0 ) THEN |
---|
6975 | CALL routing_killbas(nbpt, ib, kbas, sbas, nwbas, basin_count, basin_area, basin_topoind,& |
---|
6976 | & fetch_basin, basin_id, basin_flowdir, outflow_grid, outflow_basin, inflow_number,& |
---|
6977 | & inflow_grid, inflow_basin) |
---|
6978 | ENDIF |
---|
6979 | ! |
---|
6980 | ENDDO |
---|
6981 | ! |
---|
6982 | ! |
---|
6983 | ENDDO |
---|
6984 | ! |
---|
6985 | ! If there are any grids left with too many basins we need to take out the big hammer ! |
---|
6986 | ! We will only do it if this represents less than 5% of all points. |
---|
6987 | ! |
---|
6988 | IF ( COUNT(basin_count .GT. nbasmax) .GT. 0 ) THEN |
---|
6989 | ! |
---|
6990 | ! |
---|
6991 | IF ( COUNT(basin_count .GT. nbasmax)/nbpt*100 .GT. 5 ) THEN |
---|
6992 | WRITE(numout,*) 'We have ', COUNT(basin_count .GT. nbasmax)/nbpt*100, '% of all points which do not yet' |
---|
6993 | WRITE(numout,*) 'have the right trunctaction. That is too much to apply a brutal method' |
---|
6994 | DO ib = 1, nbpt |
---|
6995 | IF ( basin_count(ib) .GT. nbasmax ) THEN |
---|
6996 | ! |
---|
6997 | WRITE(numout,*) 'We did not find a basin which could be supressed. We will' |
---|
6998 | WRITE(numout,*) 'not be able to reduce the truncation in grid ', ib |
---|
6999 | DO ij=1,basin_count(ib) |
---|
7000 | WRITE(numout,*) 'grid, basin nb and id :', ib, ij, basin_id(ib,ij) |
---|
7001 | WRITE(numout,*) 'Outflow grid and basin ->', outflow_grid(ib,ij), outflow_basin(ib, ij) |
---|
7002 | ENDDO |
---|
7003 | ENDIF |
---|
7004 | ENDDO |
---|
7005 | CALL ipslerr_p(3,'routing_truncate','No basin found which could be supressed.','','') |
---|
7006 | ELSE |
---|
7007 | ! |
---|
7008 | ! |
---|
7009 | DO ib = 1,nbpt |
---|
7010 | DO WHILE ( basin_count(ib) .GT. nbasmax ) |
---|
7011 | ! |
---|
7012 | WRITE(numout,*) 'HAMMER, ib, basin_count :', ib, basin_count(ib) |
---|
7013 | ! |
---|
7014 | ! Here we simply put the smallest basins into the largest ones. It is really a brute force |
---|
7015 | ! method but it will only be applied if everything has failed. |
---|
7016 | ! |
---|
7017 | DO ii = 1,basin_count(ib) |
---|
7018 | tmp_area(ii) = fetch_basin(ib, ii) |
---|
7019 | ENDDO |
---|
7020 | ! |
---|
7021 | iml = MAXLOC(tmp_area(1:basin_count(ib)), MASK = tmp_area(1:basin_count(ib)) .GT. 0.) |
---|
7022 | sbas =iml(1) |
---|
7023 | iml = MINLOC(tmp_area(1:basin_count(ib)), MASK = tmp_area(1:basin_count(ib)) .GT. 0.) |
---|
7024 | kbas = iml(1) |
---|
7025 | ! |
---|
7026 | IF ( kbas .GT. 0 .AND. sbas .GT. 0 ) THEN |
---|
7027 | CALL routing_killbas(nbpt, ib, kbas, sbas, nwbas, basin_count, basin_area, basin_topoind,& |
---|
7028 | & fetch_basin, basin_id, basin_flowdir, outflow_grid, outflow_basin, inflow_number,& |
---|
7029 | & inflow_grid, inflow_basin) |
---|
7030 | ENDIF |
---|
7031 | ENDDO |
---|
7032 | ENDDO |
---|
7033 | ! |
---|
7034 | ENDIF |
---|
7035 | ! |
---|
7036 | ! |
---|
7037 | ENDIF |
---|
7038 | ! |
---|
7039 | ! Now that we have reached the right truncation (resolution) we will start |
---|
7040 | ! to produce the variables we will use to route the water. |
---|
7041 | ! |
---|
7042 | DO ib=1,nbpt |
---|
7043 | ! |
---|
7044 | ! For non existing basins the route_tobasin variable is put to zero. This will allow us |
---|
7045 | ! to pick up the number of basin afterwards. |
---|
7046 | ! |
---|
7047 | route_togrid(ib,:) = ib |
---|
7048 | route_tobasin(ib,:) = 0 |
---|
7049 | routing_area(ib,:) = zero |
---|
7050 | ! |
---|
7051 | ENDDO |
---|
7052 | ! |
---|
7053 | ! Transfer the info into the definitive variables |
---|
7054 | ! |
---|
7055 | DO ib=1,nbpt |
---|
7056 | DO ij=1,basin_count(ib) |
---|
7057 | routing_area(ib,ij) = basin_area(ib,ij) |
---|
7058 | topo_resid(ib,ij) = basin_topoind(ib,ij) |
---|
7059 | global_basinid(ib,ij) = basin_id(ib,ij) |
---|
7060 | route_togrid(ib,ij) = outflow_grid(ib,ij) |
---|
7061 | route_tobasin(ib,ij) = outflow_basin(ib,ij) |
---|
7062 | ENDDO |
---|
7063 | ENDDO |
---|
7064 | ! |
---|
7065 | ! |
---|
7066 | ! Set the new convention for the outflow conditions |
---|
7067 | ! Now it is based in the outflow basin and the outflow grid will |
---|
7068 | ! be the same as the current. |
---|
7069 | ! returnflow to the grid : nbasmax + 1 |
---|
7070 | ! coastal flow : nbasmax + 2 |
---|
7071 | ! river outflow : nbasmax + 3 |
---|
7072 | ! |
---|
7073 | ! Here we put everything here in coastal flow. It is later where we will |
---|
7074 | ! put the largest basins into river outflow. |
---|
7075 | ! |
---|
7076 | DO ib=1,nbpt |
---|
7077 | DO ij=1,basin_count(ib) |
---|
7078 | ! River flows |
---|
7079 | IF ( route_togrid(ib,ij) .EQ. -1 ) THEN |
---|
7080 | route_tobasin(ib,ij) = nbasmax + 2 |
---|
7081 | route_togrid(ib,ij) = ib |
---|
7082 | ! Coastal flows |
---|
7083 | ELSE IF ( route_togrid(ib,ij) .EQ. -2 ) THEN |
---|
7084 | route_tobasin(ib,ij) = nbasmax + 2 |
---|
7085 | route_togrid(ib,ij) = ib |
---|
7086 | ! Return flow |
---|
7087 | ELSE IF ( route_togrid(ib,ij) .EQ. -3 ) THEN |
---|
7088 | route_tobasin(ib,ij) = nbasmax + 1 |
---|
7089 | route_togrid(ib,ij) = ib |
---|
7090 | ENDIF |
---|
7091 | ENDDO |
---|
7092 | ENDDO |
---|
7093 | ! |
---|
7094 | ! A second check on the data. Just make sure that each basin flows somewhere. |
---|
7095 | ! |
---|
7096 | DO ib=1,nbpt |
---|
7097 | DO ij=1,basin_count(ib) |
---|
7098 | ibf = route_togrid(ib,ij) |
---|
7099 | ijf = route_tobasin(ib,ij) |
---|
7100 | IF ( ijf .GT. basin_count(ibf) .AND. ijf .LE. nbasmax) THEN |
---|
7101 | WRITE(numout,*) 'Second check' |
---|
7102 | WRITE(numout,*) 'point :', ib, ' basin :', ij |
---|
7103 | WRITE(numout,*) 'Flows into point :', ibf, ' basin :', ijf |
---|
7104 | WRITE(numout,*) 'But it flows into now here as basin count = ', basin_count(ibf) |
---|
7105 | CALL ipslerr_p(3,'routing_truncate','Problem with routing..','','') |
---|
7106 | ENDIF |
---|
7107 | ENDDO |
---|
7108 | ENDDO |
---|
7109 | ! |
---|
7110 | ! Verify areas of the continents |
---|
7111 | ! |
---|
7112 | floflo(:,:) = zero |
---|
7113 | gridarea(:) = contfrac(:)*resolution(:,1)*resolution(:,2) |
---|
7114 | DO ib=1,nbpt |
---|
7115 | gridbasinarea(ib) = SUM(routing_area(ib,:)) |
---|
7116 | ENDDO |
---|
7117 | ! |
---|
7118 | DO ib=1,nbpt |
---|
7119 | DO ij=1,basin_count(ib) |
---|
7120 | cnt = 0 |
---|
7121 | igrif = ib |
---|
7122 | ibasf = ij |
---|
7123 | DO WHILE (ibasf .LE. nbasmax .AND. cnt .LT. nbasmax*nbpt) |
---|
7124 | cnt = cnt + 1 |
---|
7125 | pold = igrif |
---|
7126 | bold = ibasf |
---|
7127 | igrif = route_togrid(pold, bold) |
---|
7128 | ibasf = route_tobasin(pold, bold) |
---|
7129 | IF ( ibasf .GT. basin_count(igrif) .AND. ibasf .LE. nbasmax) THEN |
---|
7130 | WRITE(numout,*) 'We should not be here as the basin flows into the pampa' |
---|
7131 | WRITE(numout,*) 'Last correct point :', pold, bold |
---|
7132 | WRITE(numout,*) 'It pointed to in the new variables :', route_togrid(pold, bold),route_tobasin(pold, bold) |
---|
7133 | WRITE(numout,*) 'The old variables gave :', outflow_grid(pold, bold), outflow_basin(pold, bold) |
---|
7134 | WRITE(numout,*) 'Where we ended up :', igrif,ibasf |
---|
7135 | CALL ipslerr_p(3,'routing_truncate','Problem with routing..','','') |
---|
7136 | ENDIF |
---|
7137 | ENDDO |
---|
7138 | ! |
---|
7139 | IF ( ibasf .GT. nbasmax ) THEN |
---|
7140 | floflo(igrif,bold) = floflo(igrif,bold) + routing_area(ib,ij) |
---|
7141 | ELSE |
---|
7142 | WRITE(numout,*) 'The flow did not end up in the ocean or in the grid cell.' |
---|
7143 | WRITE(numout,*) 'For grid ', ib, ' and basin ', ij |
---|
7144 | WRITE(numout,*) 'The last grid was ', igrif, ' and basin ', ibasf |
---|
7145 | CALL ipslerr_p(3,'routing_truncate','Problem with routing..','','') |
---|
7146 | ENDIF |
---|
7147 | ENDDO |
---|
7148 | ENDDO |
---|
7149 | ! |
---|
7150 | DO ib=1,nbpt |
---|
7151 | IF ( gridbasinarea(ib) > zero ) THEN |
---|
7152 | ratio = gridarea(ib)/gridbasinarea(ib) |
---|
7153 | routing_area(ib,:) = routing_area(ib,:)*ratio |
---|
7154 | ELSE |
---|
7155 | WRITE(numout,*) 'gridbasinarea(ib) <= zero. We should stop here :', ib |
---|
7156 | ENDIF |
---|
7157 | ENDDO |
---|
7158 | ! |
---|
7159 | WRITE(numout,*) 'Sum of area of all outflow areas :',SUM(routing_area) |
---|
7160 | WRITE(numout,*) 'Surface of all continents :', SUM(gridarea) |
---|
7161 | ! |
---|
7162 | ! Redo the the distinction between river outflow and coastal flow. We can not |
---|
7163 | ! take into account the return flow points. |
---|
7164 | ! |
---|
7165 | ibf = 0 |
---|
7166 | DO ib=1, pickmax |
---|
7167 | ff = MAXLOC(floflo) |
---|
7168 | ! tdo - To take into account rivers that do not flow to the oceans |
---|
7169 | IF ( route_tobasin(ff(1), ff(2)) .GT. nbasmax ) THEN |
---|
7170 | ! IF ( route_tobasin(ff(1), ff(2)) .EQ. nbasmax + 2) THEN |
---|
7171 | ibf = ibf + 1 |
---|
7172 | largest_basins(ibf,:) = ff(:) |
---|
7173 | ENDIF |
---|
7174 | floflo(ff(1), ff(2)) = zero |
---|
7175 | ENDDO |
---|
7176 | ! |
---|
7177 | ! Put the largest basins into river flows. |
---|
7178 | ! |
---|
7179 | IF ( ibf .LT. num_largest) THEN |
---|
7180 | WRITE(numout,*) 'Not enough basins to choose the ', num_largest, 'largest' |
---|
7181 | CALL ipslerr_p(3,'routing_truncate','Not enough basins','','') |
---|
7182 | ENDIF |
---|
7183 | ! |
---|
7184 | ! |
---|
7185 | ! |
---|
7186 | DO ib=1, num_largest |
---|
7187 | route_tobasin(largest_basins(ib,1),largest_basins(ib,2)) = nbasmax + 3 |
---|
7188 | ENDDO |
---|
7189 | ! |
---|
7190 | WRITE(numout,*) 'NUMBER OF RIVERS :', COUNT(route_tobasin .GE. nbasmax + 3) |
---|
7191 | ! |
---|
7192 | END SUBROUTINE routing_truncate |
---|
7193 | ! |
---|
7194 | !! ================================================================================================================================ |
---|
7195 | !! SUBROUTINE : routing_killbas |
---|
7196 | !! |
---|
7197 | !>\BRIEF The aim of this subroutine is to kill a basin (that is put into another larger one). |
---|
7198 | !! When we do this we need to be careful and change all associated variables. |
---|
7199 | !! |
---|
7200 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
7201 | !! |
---|
7202 | !! RECENT CHANGE(S): None |
---|
7203 | !! |
---|
7204 | !! MAIN OUTPUT VARIABLE(S): |
---|
7205 | !! |
---|
7206 | !! REFERENCES : None |
---|
7207 | !! |
---|
7208 | !! FLOWCHART : None |
---|
7209 | !! \n |
---|
7210 | !_ ================================================================================================================================ |
---|
7211 | |
---|
7212 | SUBROUTINE routing_killbas(nbpt, ib, tokill, totakeover, nwbas, basin_count, basin_area, basin_topoind,& |
---|
7213 | & fetch_basin, basin_id, basin_flowdir, outflow_grid, outflow_basin, inflow_number,& |
---|
7214 | & inflow_grid, inflow_basin) |
---|
7215 | ! |
---|
7216 | ! |
---|
7217 | IMPLICIT NONE |
---|
7218 | ! |
---|
7219 | INTEGER(i_std) :: tokill !! |
---|
7220 | INTEGER(i_std) :: totakeover !! |
---|
7221 | INTEGER(i_std) :: nbpt !! Domain size (unitless) |
---|
7222 | INTEGER(i_std) :: ib !! Current basin (unitless) |
---|
7223 | ! |
---|
7224 | INTEGER(i_std) :: nwbas !! |
---|
7225 | INTEGER(i_std), DIMENSION(nbpt) :: basin_count !! |
---|
7226 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_id !! |
---|
7227 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: basin_flowdir !! Water flow directions in the basin (unitless) |
---|
7228 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_area !! |
---|
7229 | REAL(r_std), DIMENSION(nbpt,nwbas) :: basin_topoind !! Topographic index of the residence time for a basin (m) |
---|
7230 | REAL(r_std), DIMENSION(nbpt,nwbas) :: fetch_basin !! |
---|
7231 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_grid !! Type of outflow on the grid box (unitless) |
---|
7232 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: outflow_basin !! |
---|
7233 | INTEGER(i_std), DIMENSION(nbpt,nwbas) :: inflow_number !! |
---|
7234 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nwbas) :: inflow_basin !! |
---|
7235 | INTEGER(i_std), DIMENSION(nbpt,nwbas,nwbas) :: inflow_grid !! |
---|
7236 | ! |
---|
7237 | !! LOCAL VARIABLES |
---|
7238 | INTEGER(i_std) :: inf, ibs, ing, inb, ibasf, igrif, it !! Indices (unitless) |
---|
7239 | LOGICAL :: doshift !! (true/false) |
---|
7240 | |
---|
7241 | !_ ================================================================================================================================ |
---|
7242 | ! |
---|
7243 | ! Update the information needed in the basin "totakeover" |
---|
7244 | ! For the moment only area |
---|
7245 | ! |
---|
7246 | WRITE(numout,*) 'KILL BASIN :', ib, tokill, totakeover, basin_id(ib,tokill), basin_id(ib,totakeover) |
---|
7247 | ! |
---|
7248 | ! |
---|
7249 | basin_area(ib, totakeover) = basin_area(ib, totakeover) + basin_area(ib, tokill) |
---|
7250 | basin_topoind(ib, totakeover) = (basin_topoind(ib, totakeover) + basin_topoind(ib, tokill))/2.0 |
---|
7251 | ! |
---|
7252 | ! Add the fetch of the basin will kill to the one which gets the water |
---|
7253 | ! |
---|
7254 | fetch_basin(ib, totakeover) = fetch_basin(ib, totakeover) + fetch_basin(ib, tokill) |
---|
7255 | igrif = outflow_grid(ib,totakeover) |
---|
7256 | ibasf = outflow_basin(ib,totakeover) |
---|
7257 | ! |
---|
7258 | inf = 0 |
---|
7259 | DO WHILE (igrif .GT. 0) |
---|
7260 | fetch_basin(igrif,ibasf) = fetch_basin(igrif,ibasf) + fetch_basin(ib, tokill) |
---|
7261 | it = outflow_grid(igrif, ibasf) |
---|
7262 | ibasf = outflow_basin(igrif, ibasf) |
---|
7263 | igrif = it |
---|
7264 | inf = inf + 1 |
---|
7265 | ENDDO |
---|
7266 | ! |
---|
7267 | ! Take out the basin we have just rerouted from the fetch of the basins in which it used to flow. |
---|
7268 | ! |
---|
7269 | igrif = outflow_grid(ib,tokill) |
---|
7270 | ibasf = outflow_basin(ib,tokill) |
---|
7271 | ! |
---|
7272 | DO WHILE (igrif .GT. 0) |
---|
7273 | fetch_basin(igrif,ibasf) = fetch_basin(igrif,ibasf) - fetch_basin(ib, tokill) |
---|
7274 | it = outflow_grid(igrif, ibasf) |
---|
7275 | ibasf = outflow_basin(igrif, ibasf) |
---|
7276 | igrif = it |
---|
7277 | ENDDO |
---|
7278 | ! |
---|
7279 | ! Redirect the flows which went into the basin to be killed before we change everything |
---|
7280 | ! |
---|
7281 | DO inf = 1, inflow_number(ib, tokill) |
---|
7282 | outflow_basin(inflow_grid(ib, tokill, inf), inflow_basin(ib, tokill, inf)) = totakeover |
---|
7283 | inflow_number(ib, totakeover) = inflow_number(ib, totakeover) + 1 |
---|
7284 | inflow_grid(ib, totakeover, inflow_number(ib, totakeover)) = inflow_grid(ib, tokill, inf) |
---|
7285 | inflow_basin(ib, totakeover, inflow_number(ib, totakeover)) = inflow_basin(ib, tokill, inf) |
---|
7286 | ENDDO |
---|
7287 | ! |
---|
7288 | ! Take out the basin to be killed from the list of inflow basins of the downstream basin |
---|
7289 | ! (In case the basin does not flow into an ocean or lake) |
---|
7290 | ! |
---|
7291 | IF ( outflow_grid(ib,tokill) .GT. 0) THEN |
---|
7292 | ! |
---|
7293 | ing = outflow_grid(ib, tokill) |
---|
7294 | inb = outflow_basin(ib, tokill) |
---|
7295 | doshift = .FALSE. |
---|
7296 | ! |
---|
7297 | DO inf = 1, inflow_number(ing, inb) |
---|
7298 | IF ( doshift ) THEN |
---|
7299 | inflow_grid(ing, inb, inf-1) = inflow_grid(ing, inb, inf) |
---|
7300 | inflow_basin(ing, inb, inf-1) = inflow_basin(ing, inb, inf) |
---|
7301 | ENDIF |
---|
7302 | IF ( inflow_grid(ing, inb, inf) .EQ. ib .AND. inflow_basin(ing, inb, inf) .EQ. tokill) THEN |
---|
7303 | doshift = .TRUE. |
---|
7304 | ENDIF |
---|
7305 | ENDDO |
---|
7306 | ! |
---|
7307 | ! This is only to allow for the last check |
---|
7308 | ! |
---|
7309 | inf = inflow_number(ing, inb) |
---|
7310 | IF ( inflow_grid(ing, inb, inf) .EQ. ib .AND. inflow_basin(ing, inb, inf) .EQ. tokill) THEN |
---|
7311 | doshift = .TRUE. |
---|
7312 | ENDIF |
---|
7313 | ! |
---|
7314 | IF ( .NOT. doshift ) THEN |
---|
7315 | WRITE(numout,*) 'Strange we did not find the basin to kill in the downstream basin' |
---|
7316 | CALL ipslerr_p(3,'routing_killbas','Basin not found','','') |
---|
7317 | ENDIF |
---|
7318 | inflow_number(ing, inb) = inflow_number(ing, inb) - 1 |
---|
7319 | |
---|
7320 | ENDIF |
---|
7321 | ! |
---|
7322 | ! Now remove from the arrays the information of basin "tokill" |
---|
7323 | ! |
---|
7324 | basin_id(ib, tokill:basin_count(ib)-1) = basin_id(ib, tokill+1:basin_count(ib)) |
---|
7325 | basin_flowdir(ib, tokill:basin_count(ib)-1) = basin_flowdir(ib, tokill+1:basin_count(ib)) |
---|
7326 | basin_area(ib, tokill:basin_count(ib)-1) = basin_area(ib, tokill+1:basin_count(ib)) |
---|
7327 | basin_area(ib, basin_count(ib):nwbas) = zero |
---|
7328 | basin_topoind(ib, tokill:basin_count(ib)-1) = basin_topoind(ib, tokill+1:basin_count(ib)) |
---|
7329 | basin_topoind(ib, basin_count(ib):nwbas) = zero |
---|
7330 | fetch_basin(ib, tokill:basin_count(ib)-1) = fetch_basin(ib, tokill+1:basin_count(ib)) |
---|
7331 | fetch_basin(ib, basin_count(ib):nwbas) = zero |
---|
7332 | ! |
---|
7333 | ! Before we remove the information from the outflow fields we have to correct the corresponding inflow fields |
---|
7334 | ! of the grids into which the flow goes |
---|
7335 | ! |
---|
7336 | DO ibs = tokill+1,basin_count(ib) |
---|
7337 | ing = outflow_grid(ib, ibs) |
---|
7338 | inb = outflow_basin(ib, ibs) |
---|
7339 | IF ( ing .GT. 0 ) THEN |
---|
7340 | DO inf = 1, inflow_number(ing, inb) |
---|
7341 | IF ( inflow_grid(ing,inb,inf) .EQ. ib .AND. inflow_basin(ing,inb,inf) .EQ. ibs) THEN |
---|
7342 | inflow_basin(ing,inb,inf) = ibs - 1 |
---|
7343 | ENDIF |
---|
7344 | ENDDO |
---|
7345 | ENDIF |
---|
7346 | ENDDO |
---|
7347 | outflow_grid(ib, tokill:basin_count(ib)-1) = outflow_grid(ib, tokill+1:basin_count(ib)) |
---|
7348 | outflow_basin(ib, tokill:basin_count(ib)-1) = outflow_basin(ib, tokill+1:basin_count(ib)) |
---|
7349 | ! |
---|
7350 | ! Basins which moved down also need to redirect their incoming flows. |
---|
7351 | ! |
---|
7352 | DO ibs=tokill+1, basin_count(ib) |
---|
7353 | DO inf = 1, inflow_number(ib, ibs) |
---|
7354 | outflow_basin(inflow_grid(ib, ibs, inf), inflow_basin(ib, ibs, inf)) = ibs-1 |
---|
7355 | ENDDO |
---|
7356 | ENDDO |
---|
7357 | ! |
---|
7358 | ! Shift the inflow basins |
---|
7359 | ! |
---|
7360 | DO it = tokill+1,basin_count(ib) |
---|
7361 | inflow_grid(ib, it-1, 1:inflow_number(ib,it)) = inflow_grid(ib, it, 1:inflow_number(ib,it)) |
---|
7362 | inflow_basin(ib, it-1, 1:inflow_number(ib,it)) = inflow_basin(ib, it, 1:inflow_number(ib,it)) |
---|
7363 | inflow_number(ib,it-1) = inflow_number(ib,it) |
---|
7364 | ENDDO |
---|
7365 | ! |
---|
7366 | basin_count(ib) = basin_count(ib) - 1 |
---|
7367 | ! |
---|
7368 | END SUBROUTINE routing_killbas |
---|
7369 | ! |
---|
7370 | !! ================================================================================================================================ |
---|
7371 | !! SUBROUTINE : routing_names |
---|
7372 | !! |
---|
7373 | !>\BRIEF This subroutine lists the name of the largest basins which are explicitly listed in the basin |
---|
7374 | !! description file used by ORCHIDEE. |
---|
7375 | !! |
---|
7376 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
7377 | !! |
---|
7378 | !! RECENT CHANGE(S): None |
---|
7379 | !! |
---|
7380 | !! MAIN OUTPUT VARIABLE(S): |
---|
7381 | !! |
---|
7382 | !! REFERENCES : None |
---|
7383 | !! |
---|
7384 | !! FLOWCHART : None |
---|
7385 | !! \n |
---|
7386 | !_ ================================================================================================================================ |
---|
7387 | |
---|
7388 | SUBROUTINE routing_names(numlar, basin_names) |
---|
7389 | ! |
---|
7390 | IMPLICIT NONE |
---|
7391 | ! |
---|
7392 | ! Arguments |
---|
7393 | ! |
---|
7394 | INTEGER(i_std), INTENT(in) :: numlar !! |
---|
7395 | CHARACTER(LEN=*), INTENT(inout) :: basin_names(numlar) !! Name of the basins (unitless) |
---|
7396 | !! PARAMETERS |
---|
7397 | INTEGER(i_std), PARAMETER :: listleng=349 !! |
---|
7398 | ! |
---|
7399 | !! LOCAL VARIABLES |
---|
7400 | INTEGER(i_std) :: lenstr, i !! |
---|
7401 | CHARACTER(LEN=60), DIMENSION(listleng) :: list_names !! |
---|
7402 | CHARACTER(LEN=60) :: tmp_str !! |
---|
7403 | |
---|
7404 | !_ ================================================================================================================================ |
---|
7405 | ! |
---|
7406 | |
---|
7407 | lenstr = LEN(basin_names(1)) |
---|
7408 | ! |
---|
7409 | list_names(1) = "Amazon" |
---|
7410 | list_names(2) = "Nile" |
---|
7411 | list_names(3) = "Zaire" |
---|
7412 | list_names(4) = "Mississippi" |
---|
7413 | list_names(5) = "Amur" |
---|
7414 | list_names(6) = "Parana" |
---|
7415 | list_names(7) = "Yenisei" |
---|
7416 | list_names(8) = "Ob" |
---|
7417 | list_names(9) = "Lena" |
---|
7418 | list_names(10) = "Niger" |
---|
7419 | list_names(11) = "Zambezi" |
---|
7420 | list_names(12) = "Erg Iguidi (Sahara)" |
---|
7421 | list_names(13) = "Chang Jiang (Yangtze)" |
---|
7422 | list_names(14) = "Mackenzie" |
---|
7423 | list_names(15) = "Ganges" |
---|
7424 | list_names(16) = "Chari" |
---|
7425 | list_names(17) = "Volga" |
---|
7426 | list_names(18) = "St. Lawrence" |
---|
7427 | list_names(19) = "Indus" |
---|
7428 | list_names(20) = "Syr-Darya" |
---|
7429 | list_names(21) = "Nelson" |
---|
7430 | list_names(22) = "Orinoco" |
---|
7431 | list_names(23) = "Murray" |
---|
7432 | list_names(24) = "Great Artesian Basin" |
---|
7433 | list_names(25) = "Shatt el Arab" |
---|
7434 | list_names(26) = "Orange" |
---|
7435 | list_names(27) = "Huang He" |
---|
7436 | list_names(28) = "Yukon" |
---|
7437 | list_names(29) = "Senegal" |
---|
7438 | list_names(30) = "Chott Jerid" |
---|
7439 | list_names(31) = "Jubba" |
---|
7440 | list_names(32) = "Colorado (Ari)" |
---|
7441 | list_names(33) = "Rio Grande (US)" |
---|
7442 | list_names(34) = "Danube" |
---|
7443 | list_names(35) = "Mekong" |
---|
7444 | list_names(36) = "Tocantins" |
---|
7445 | list_names(37) = "Wadi al Farigh" |
---|
7446 | list_names(38) = "Tarim" |
---|
7447 | list_names(39) = "Columbia" |
---|
7448 | list_names(40) = "Komadugu Yobe (Tchad)" |
---|
7449 | list_names(41) = "Kolyma" |
---|
7450 | list_names(42) = "Sao Francisco" |
---|
7451 | list_names(43) = "Amu-Darya" |
---|
7452 | list_names(44) = "GHAASBasin51" |
---|
7453 | list_names(45) = "Dnepr" |
---|
7454 | list_names(46) = "GHAASBasin61" |
---|
7455 | list_names(47) = "Don" |
---|
7456 | list_names(48) = "Colorado (Arg)" |
---|
7457 | list_names(49) = "Limpopo" |
---|
7458 | list_names(50) = "GHAASBasin50" |
---|
7459 | list_names(51) = "Zhujiang" |
---|
7460 | list_names(52) = "Irrawaddy" |
---|
7461 | list_names(53) = "Volta" |
---|
7462 | list_names(54) = "GHAASBasin54" |
---|
7463 | list_names(55) = "Farah" |
---|
7464 | list_names(56) = "Khatanga" |
---|
7465 | list_names(57) = "Dvina" |
---|
7466 | list_names(58) = "Urugay" |
---|
7467 | list_names(59) = "Qarqan" |
---|
7468 | list_names(60) = "GHAASBasin75" |
---|
7469 | list_names(61) = "Parnaiba" |
---|
7470 | list_names(62) = "GHAASBasin73" |
---|
7471 | list_names(63) = "Indigirka" |
---|
7472 | list_names(64) = "Churchill (Hud)" |
---|
7473 | list_names(65) = "Godavari" |
---|
7474 | list_names(66) = "Pur - Taz" |
---|
7475 | list_names(67) = "Pechora" |
---|
7476 | list_names(68) = "Baker" |
---|
7477 | list_names(69) = "Ural" |
---|
7478 | list_names(70) = "Neva" |
---|
7479 | list_names(71) = "Liao" |
---|
7480 | list_names(72) = "Salween" |
---|
7481 | list_names(73) = "GHAASBasin73" |
---|
7482 | list_names(74) = "Jordan" |
---|
7483 | list_names(75) = "GHAASBasin78" |
---|
7484 | list_names(76) = "Magdalena" |
---|
7485 | list_names(77) = "Krishna" |
---|
7486 | list_names(78) = "Salado" |
---|
7487 | list_names(79) = "Fraser" |
---|
7488 | list_names(80) = "Hai Ho" |
---|
7489 | list_names(81) = "Huai" |
---|
7490 | list_names(82) = "Yana" |
---|
7491 | list_names(83) = "GHAASBasin95" |
---|
7492 | list_names(84) = "GHAASBasin105" |
---|
7493 | list_names(85) = "Kura" |
---|
7494 | list_names(86) = "Olenek" |
---|
7495 | list_names(87) = "Ogooue" |
---|
7496 | list_names(88) = "Taymyr" |
---|
7497 | list_names(89) = "Negro Arg" |
---|
7498 | list_names(90) = "Chubut" |
---|
7499 | list_names(91) = "GHAASBasin91" |
---|
7500 | list_names(92) = "GHAASBasin122" |
---|
7501 | list_names(93) = "GHAASBasin120" |
---|
7502 | list_names(94) = "Sacramento" |
---|
7503 | list_names(95) = "Fitzroy West" |
---|
7504 | list_names(96) = "Grande de Santiago" |
---|
7505 | list_names(97) = "Rufiji" |
---|
7506 | list_names(98) = "Wisla" |
---|
7507 | list_names(99) = "GHAASBasin47" |
---|
7508 | list_names(100) = "GHAASBasin127" |
---|
7509 | list_names(101) = "Hong" |
---|
7510 | list_names(102) = "GHAASBasin97" |
---|
7511 | list_names(103) = "Swan-Avon" |
---|
7512 | list_names(104) = "Rhine" |
---|
7513 | list_names(105) = "Cuanza" |
---|
7514 | list_names(106) = "GHAASBasin106" |
---|
7515 | list_names(107) = "GHAASBasin142" |
---|
7516 | list_names(108) = "Roviuna" |
---|
7517 | list_names(109) = "Essequibo" |
---|
7518 | list_names(110) = "Elbe" |
---|
7519 | list_names(111) = "Koksoak" |
---|
7520 | list_names(112) = "Chao Phraya" |
---|
7521 | list_names(113) = "Brahmani" |
---|
7522 | list_names(114) = "GHAASBasin165" |
---|
7523 | list_names(115) = "Pyasina" |
---|
7524 | list_names(116) = "Fitzroy East" |
---|
7525 | list_names(117) = "GHAASBasin173" |
---|
7526 | list_names(118) = "Albany" |
---|
7527 | list_names(119) = "Sanaga" |
---|
7528 | list_names(120) = "GHAASBasin120" |
---|
7529 | list_names(121) = "GHAASBasin178" |
---|
7530 | list_names(122) = "GHAASBasin148" |
---|
7531 | list_names(123) = "Brazos (Tex)" |
---|
7532 | list_names(124) = "GHAASBasin124" |
---|
7533 | list_names(125) = "Alabama" |
---|
7534 | list_names(126) = "GHAASBasin174" |
---|
7535 | list_names(127) = "GHAASBasin179" |
---|
7536 | list_names(128) = "Balsas" |
---|
7537 | list_names(129) = "GHAASBasin172" |
---|
7538 | list_names(130) = "Burdekin" |
---|
7539 | list_names(131) = "Colorado (Texas)" |
---|
7540 | list_names(132) = "GHAASBasin150" |
---|
7541 | list_names(133) = "Odra" |
---|
7542 | list_names(134) = "Loire" |
---|
7543 | list_names(135) = "GHAASBasin98" |
---|
7544 | list_names(136) = "Galana" |
---|
7545 | list_names(137) = "Kuskowin" |
---|
7546 | list_names(138) = "Moose" |
---|
7547 | list_names(139) = "Narmada" |
---|
7548 | list_names(140) = "GHAASBasin140" |
---|
7549 | list_names(141) = "GHAASBasin141" |
---|
7550 | list_names(142) = "Flinders" |
---|
7551 | list_names(143) = "Kizil Irmak" |
---|
7552 | list_names(144) = "GHAASBasin144" |
---|
7553 | list_names(145) = "Save" |
---|
7554 | list_names(146) = "Roper" |
---|
7555 | list_names(147) = "Churchill (Atlantic)" |
---|
7556 | list_names(148) = "GHAASBasin148" |
---|
7557 | list_names(149) = "Victoria" |
---|
7558 | list_names(150) = "Back" |
---|
7559 | list_names(151) = "Bandama" |
---|
7560 | list_names(152) = "Severn (Can)" |
---|
7561 | list_names(153) = "Po" |
---|
7562 | list_names(154) = "GHAASBasin154" |
---|
7563 | list_names(155) = "GHAASBasin155" |
---|
7564 | list_names(156) = "GHAASBasin156" |
---|
7565 | list_names(157) = "Rhone" |
---|
7566 | list_names(158) = "Tana (Ken)" |
---|
7567 | list_names(159) = "La Grande" |
---|
7568 | list_names(160) = "GHAASBasin160" |
---|
7569 | list_names(161) = "Cunene" |
---|
7570 | list_names(162) = "Douro" |
---|
7571 | list_names(163) = "GHAASBasin163" |
---|
7572 | list_names(164) = "Nemanus" |
---|
7573 | list_names(165) = "GHAASBasin165" |
---|
7574 | list_names(166) = "Anabar" |
---|
7575 | list_names(167) = "Hayes" |
---|
7576 | list_names(168) = "Mearim" |
---|
7577 | list_names(169) = "GHAASBasin169" |
---|
7578 | list_names(170) = "Panuco" |
---|
7579 | list_names(171) = "GHAASBasin171" |
---|
7580 | list_names(172) = "Doce" |
---|
7581 | list_names(173) = "Gasgoyne" |
---|
7582 | list_names(174) = "GHAASBasin174" |
---|
7583 | list_names(175) = "GHAASBasin175" |
---|
7584 | list_names(176) = "Ashburton" |
---|
7585 | list_names(177) = "GHAASBasin177" |
---|
7586 | list_names(178) = "Peel" |
---|
7587 | list_names(179) = "Daugava" |
---|
7588 | list_names(180) = "GHAASBasin180" |
---|
7589 | list_names(181) = "Ebro" |
---|
7590 | list_names(182) = "Comoe" |
---|
7591 | list_names(183) = "Jacui" |
---|
7592 | list_names(184) = "GHAASBasin184" |
---|
7593 | list_names(185) = "Kapuas" |
---|
7594 | list_names(186) = "GHAASBasin186" |
---|
7595 | list_names(187) = "Penzhina" |
---|
7596 | list_names(188) = "Cauweri" |
---|
7597 | list_names(189) = "GHAASBasin189" |
---|
7598 | list_names(190) = "Mamberamo" |
---|
7599 | list_names(191) = "Sepik" |
---|
7600 | list_names(192) = "GHAASBasin192" |
---|
7601 | list_names(193) = "Sassandra" |
---|
7602 | list_names(194) = "GHAASBasin194" |
---|
7603 | list_names(195) = "GHAASBasin195" |
---|
7604 | list_names(196) = "Nottaway" |
---|
7605 | list_names(197) = "Barito" |
---|
7606 | list_names(198) = "GHAASBasin198" |
---|
7607 | list_names(199) = "Seine" |
---|
7608 | list_names(200) = "Tejo" |
---|
7609 | list_names(201) = "GHAASBasin201" |
---|
7610 | list_names(202) = "Gambia" |
---|
7611 | list_names(203) = "Susquehanna" |
---|
7612 | list_names(204) = "Dnestr" |
---|
7613 | list_names(205) = "Murchinson" |
---|
7614 | list_names(206) = "Deseado" |
---|
7615 | list_names(207) = "Mitchell" |
---|
7616 | list_names(208) = "Mahakam" |
---|
7617 | list_names(209) = "GHAASBasin209" |
---|
7618 | list_names(210) = "Pangani" |
---|
7619 | list_names(211) = "GHAASBasin211" |
---|
7620 | list_names(212) = "GHAASBasin212" |
---|
7621 | list_names(213) = "GHAASBasin213" |
---|
7622 | list_names(214) = "GHAASBasin214" |
---|
7623 | list_names(215) = "GHAASBasin215" |
---|
7624 | list_names(216) = "Bug" |
---|
7625 | list_names(217) = "GHAASBasin217" |
---|
7626 | list_names(218) = "Usumacinta" |
---|
7627 | list_names(219) = "Jequitinhonha" |
---|
7628 | list_names(220) = "GHAASBasin220" |
---|
7629 | list_names(221) = "Corantijn" |
---|
7630 | list_names(222) = "Fuchun Jiang" |
---|
7631 | list_names(223) = "Copper" |
---|
7632 | list_names(224) = "Tapti" |
---|
7633 | list_names(225) = "Menjiang" |
---|
7634 | list_names(226) = "Karun" |
---|
7635 | list_names(227) = "Mezen" |
---|
7636 | list_names(228) = "Guadiana" |
---|
7637 | list_names(229) = "Maroni" |
---|
7638 | list_names(230) = "GHAASBasin230" |
---|
7639 | list_names(231) = "Uda" |
---|
7640 | list_names(232) = "GHAASBasin232" |
---|
7641 | list_names(233) = "Kuban" |
---|
7642 | list_names(234) = "Colville" |
---|
7643 | list_names(235) = "Thaane" |
---|
7644 | list_names(236) = "Alazeya" |
---|
7645 | list_names(237) = "Paraiba do Sul" |
---|
7646 | list_names(238) = "GHAASBasin238" |
---|
7647 | list_names(239) = "Fortesque" |
---|
7648 | list_names(240) = "GHAASBasin240" |
---|
7649 | list_names(241) = "GHAASBasin241" |
---|
7650 | list_names(242) = "Winisk" |
---|
7651 | list_names(243) = "GHAASBasin243" |
---|
7652 | list_names(244) = "GHAASBasin244" |
---|
7653 | list_names(245) = "Ikopa" |
---|
7654 | list_names(246) = "Gilbert" |
---|
7655 | list_names(247) = "Kouilou" |
---|
7656 | list_names(248) = "Fly" |
---|
7657 | list_names(249) = "GHAASBasin249" |
---|
7658 | list_names(250) = "GHAASBasin250" |
---|
7659 | list_names(251) = "GHAASBasin251" |
---|
7660 | list_names(252) = "Mangoky" |
---|
7661 | list_names(253) = "Damodar" |
---|
7662 | list_names(254) = "Onega" |
---|
7663 | list_names(255) = "Moulouya" |
---|
7664 | list_names(256) = "GHAASBasin256" |
---|
7665 | list_names(257) = "Ord" |
---|
7666 | list_names(258) = "GHAASBasin258" |
---|
7667 | list_names(259) = "GHAASBasin259" |
---|
7668 | list_names(260) = "GHAASBasin260" |
---|
7669 | list_names(261) = "GHAASBasin261" |
---|
7670 | list_names(262) = "Narva" |
---|
7671 | list_names(263) = "GHAASBasin263" |
---|
7672 | list_names(264) = "Seal" |
---|
7673 | list_names(265) = "Cheliff" |
---|
7674 | list_names(266) = "Garonne" |
---|
7675 | list_names(267) = "Rupert" |
---|
7676 | list_names(268) = "GHAASBasin268" |
---|
7677 | list_names(269) = "Brahmani" |
---|
7678 | list_names(270) = "Sakarya" |
---|
7679 | list_names(271) = "Gourits" |
---|
7680 | list_names(272) = "Sittang" |
---|
7681 | list_names(273) = "Rajang" |
---|
7682 | list_names(274) = "Evros" |
---|
7683 | list_names(275) = "Appalachicola" |
---|
7684 | list_names(276) = "Attawapiskat" |
---|
7685 | list_names(277) = "Lurio" |
---|
7686 | list_names(278) = "Daly" |
---|
7687 | list_names(279) = "Penner" |
---|
7688 | list_names(280) = "GHAASBasin280" |
---|
7689 | list_names(281) = "GHAASBasin281" |
---|
7690 | list_names(282) = "Guadalquivir" |
---|
7691 | list_names(283) = "Nadym" |
---|
7692 | list_names(284) = "GHAASBasin284" |
---|
7693 | list_names(285) = "Saint John" |
---|
7694 | list_names(286) = "GHAASBasin286" |
---|
7695 | list_names(287) = "Cross" |
---|
7696 | list_names(288) = "Omoloy" |
---|
7697 | list_names(289) = "Oueme" |
---|
7698 | list_names(290) = "GHAASBasin290" |
---|
7699 | list_names(291) = "Gota" |
---|
7700 | list_names(292) = "Nueces" |
---|
7701 | list_names(293) = "Stikine" |
---|
7702 | list_names(294) = "Yalu" |
---|
7703 | list_names(295) = "Arnaud" |
---|
7704 | list_names(296) = "GHAASBasin296" |
---|
7705 | list_names(297) = "Jequitinhonha" |
---|
7706 | list_names(298) = "Kamchatka" |
---|
7707 | list_names(299) = "GHAASBasin299" |
---|
7708 | list_names(300) = "Grijalva" |
---|
7709 | list_names(301) = "GHAASBasin301" |
---|
7710 | list_names(302) = "Kemijoki" |
---|
7711 | list_names(303) = "Olifants" |
---|
7712 | list_names(304) = "GHAASBasin304" |
---|
7713 | list_names(305) = "Tsiribihina" |
---|
7714 | list_names(306) = "Coppermine" |
---|
7715 | list_names(307) = "GHAASBasin307" |
---|
7716 | list_names(308) = "GHAASBasin308" |
---|
7717 | list_names(309) = "Kovda" |
---|
7718 | list_names(310) = "Trinity" |
---|
7719 | list_names(311) = "Glama" |
---|
7720 | list_names(312) = "GHAASBasin312" |
---|
7721 | list_names(313) = "Luan" |
---|
7722 | list_names(314) = "Leichhardt" |
---|
7723 | list_names(315) = "GHAASBasin315" |
---|
7724 | list_names(316) = "Gurupi" |
---|
7725 | list_names(317) = "GR Baleine" |
---|
7726 | list_names(318) = "Aux Feuilles" |
---|
7727 | list_names(319) = "GHAASBasin319" |
---|
7728 | list_names(320) = "Weser" |
---|
7729 | list_names(321) = "GHAASBasin321" |
---|
7730 | list_names(322) = "GHAASBasin322" |
---|
7731 | list_names(323) = "Yesil" |
---|
7732 | list_names(324) = "Incomati" |
---|
7733 | list_names(325) = "GHAASBasin325" |
---|
7734 | list_names(326) = "GHAASBasin326" |
---|
7735 | list_names(327) = "Pungoe" |
---|
7736 | list_names(328) = "GHAASBasin328" |
---|
7737 | list_names(329) = "Meuse" |
---|
7738 | list_names(330) = "Eastmain" |
---|
7739 | list_names(331) = "Araguari" |
---|
7740 | list_names(332) = "Hudson" |
---|
7741 | list_names(333) = "GHAASBasin333" |
---|
7742 | list_names(334) = "GHAASBasin334" |
---|
7743 | list_names(335) = "GHAASBasin335" |
---|
7744 | list_names(336) = "GHAASBasin336" |
---|
7745 | list_names(337) = "Kobuk" |
---|
7746 | list_names(338) = "Altamaha" |
---|
7747 | list_names(339) = "GHAASBasin339" |
---|
7748 | list_names(340) = "Mand" |
---|
7749 | list_names(341) = "Santee" |
---|
7750 | list_names(342) = "GHAASBasin342" |
---|
7751 | list_names(343) = "GHAASBasin343" |
---|
7752 | list_names(344) = "GHAASBasin344" |
---|
7753 | list_names(345) = "Hari" |
---|
7754 | list_names(346) = "GHAASBasin346" |
---|
7755 | list_names(347) = "Wami" |
---|
7756 | list_names(348) = "GHAASBasin348" |
---|
7757 | list_names(349) = "GHAASBasin349" |
---|
7758 | ! |
---|
7759 | basin_names(:) = ' ' |
---|
7760 | ! |
---|
7761 | DO i=1,numlar |
---|
7762 | tmp_str = list_names(i) |
---|
7763 | basin_names(i) = tmp_str(1:MIN(lenstr,LEN_TRIM(tmp_str))) |
---|
7764 | ENDDO |
---|
7765 | ! |
---|
7766 | END SUBROUTINE routing_names |
---|
7767 | ! |
---|
7768 | !! ================================================================================================================================ |
---|
7769 | !! SUBROUTINE : routing_irrigmap |
---|
7770 | !! |
---|
7771 | !>\BRIEF This subroutine interpolates the 0.5x0.5 degree based map of irrigated areas to the resolution of the model. |
---|
7772 | !! |
---|
7773 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
7774 | !! |
---|
7775 | !! RECENT CHANGE(S): None |
---|
7776 | !! |
---|
7777 | !! MAIN OUTPUT VARIABLE(S): |
---|
7778 | !! |
---|
7779 | !! REFERENCES : None |
---|
7780 | !! |
---|
7781 | !! FLOWCHART : None |
---|
7782 | !! \n |
---|
7783 | !_ ================================================================================================================================ |
---|
7784 | |
---|
7785 | SUBROUTINE routing_irrigmap (nbpt, index, lalo, neighbours, resolution, contfrac, & |
---|
7786 | & init_irrig, irrigated, init_flood, floodplains, init_swamp, swamp, hist_id, hist2_id) |
---|
7787 | ! |
---|
7788 | IMPLICIT NONE |
---|
7789 | ! |
---|
7790 | !! PARAMETERS |
---|
7791 | INTEGER(i_std), PARAMETER :: ilake = 1 !! Number of type of lakes area (unitless) |
---|
7792 | INTEGER(i_std), PARAMETER :: idam = 2 !! Number of type of dams area (unitless) |
---|
7793 | INTEGER(i_std), PARAMETER :: iflood = 3 !! Number of type of floodplains area (unitless) |
---|
7794 | INTEGER(i_std), PARAMETER :: iswamp = 4 !! Number of type of swamps area (unitless) |
---|
7795 | INTEGER(i_std), PARAMETER :: isal = 5 !! Number of type of salines area (unitless) |
---|
7796 | INTEGER(i_std), PARAMETER :: ipond = 6 !! Number of type of ponds area (unitless) |
---|
7797 | INTEGER(i_std), PARAMETER :: ntype = 6 !! Number of types of flooded surfaces (unitless) |
---|
7798 | |
---|
7799 | !! INPUT VARIABLES |
---|
7800 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
7801 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Index on the global map. |
---|
7802 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
7803 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
7804 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
7805 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
7806 | INTEGER(i_std), INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
7807 | INTEGER(i_std), INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
7808 | LOGICAL, INTENT(in) :: init_irrig !! Logical to initialize the irrigation (true/false) |
---|
7809 | LOGICAL, INTENT(in) :: init_flood !! Logical to initialize the floodplains (true/false) |
---|
7810 | LOGICAL, INTENT(in) :: init_swamp !! Logical to initialize the swamps (true/false) |
---|
7811 | ! |
---|
7812 | !! OUTPUT VARIABLES |
---|
7813 | REAL(r_std), INTENT(out) :: irrigated(:) !! Irrigated surface in each grid box (m^2) |
---|
7814 | REAL(r_std), INTENT(out) :: floodplains(:) !! Surface which can be inundated in each grid box (m^2) |
---|
7815 | REAL(r_std), INTENT(out) :: swamp(:) !! Surface which can be swamp in each grid box (m^2) |
---|
7816 | ! |
---|
7817 | !! LOCAL VARIABLES |
---|
7818 | ! Interpolation variables |
---|
7819 | ! |
---|
7820 | INTEGER(i_std) :: nbpmax, nix, njx, fopt !! |
---|
7821 | CHARACTER(LEN=30) :: callsign !! |
---|
7822 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: resol_lu !! Resolution read on the map |
---|
7823 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: mask !! Mask to exclude some points (unitless) |
---|
7824 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrsub_area !! Area on the fine grid (m^2) |
---|
7825 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: irrsub_index !! Indices of the points we need on the fine grid (unitless) |
---|
7826 | INTEGER :: ALLOC_ERR !! |
---|
7827 | LOGICAL :: ok_interpol = .FALSE. !! Flag for interpolation (true/false) |
---|
7828 | ! |
---|
7829 | CHARACTER(LEN=80) :: filename !! Name of the netcdf file (unitless) |
---|
7830 | INTEGER(i_std) :: iml, jml, lml, tml, fid, ib, ip, jp, itype !! Indices (unitless) |
---|
7831 | REAL(r_std) :: lev(1), date, dt, coslat !! |
---|
7832 | INTEGER(i_std) :: itau(1) !! |
---|
7833 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: latrel !! Latitude |
---|
7834 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lonrel !! Longitude |
---|
7835 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrigated_frac !! Irrigated fraction of the grid box (unitless;0-1) |
---|
7836 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: flood_fracmax !! Maximal flooded fraction of the grid box (unitless;0-1) |
---|
7837 | REAL(r_std) :: area_irrig !! Irrigated surface in the grid box (m^2) |
---|
7838 | REAL(r_std) :: area_flood(ntype) !! Flooded surface in the grid box (m^2) |
---|
7839 | !!$ REAL(r_std) :: irrigmap(nbpt) |
---|
7840 | !!$ REAL(r_std) :: floodmap(nbpt) |
---|
7841 | !!$ REAL(r_std) :: swampmap(nbpt) |
---|
7842 | |
---|
7843 | !_ ================================================================================================================================ |
---|
7844 | |
---|
7845 | nix = 0 |
---|
7846 | njx = 0 |
---|
7847 | ! |
---|
7848 | !Config Key = IRRIGATION_FILE |
---|
7849 | !Config Desc = Name of file which contains the map of irrigated areas |
---|
7850 | !Config Def = floodplains.nc |
---|
7851 | !Config If = DO_IRRIGATION OR DO_FLOODPLAINS |
---|
7852 | !Config Help = The name of the file to be opened to read the field |
---|
7853 | !Config with the area in m^2 of the area irrigated within each |
---|
7854 | !Config 0.5 0.5 deg grid box. The map currently used is the one |
---|
7855 | !Config developed by the Center for Environmental Systems Research |
---|
7856 | !Config in Kassel (1995). |
---|
7857 | !Config Units = [FILE] |
---|
7858 | ! |
---|
7859 | filename = 'floodplains.nc' |
---|
7860 | CALL getin_p('IRRIGATION_FILE',filename) |
---|
7861 | ! |
---|
7862 | IF (is_root_prc) THEN |
---|
7863 | CALL flininfo(filename,iml, jml, lml, tml, fid) |
---|
7864 | CALL flinclo(fid) |
---|
7865 | ELSE |
---|
7866 | iml = 0 |
---|
7867 | jml = 0 |
---|
7868 | lml = 0 |
---|
7869 | tml = 0 |
---|
7870 | ENDIF |
---|
7871 | ! |
---|
7872 | CALL bcast(iml) |
---|
7873 | CALL bcast(jml) |
---|
7874 | CALL bcast(lml) |
---|
7875 | CALL bcast(tml) |
---|
7876 | ! |
---|
7877 | ! |
---|
7878 | ! |
---|
7879 | ALLOCATE (latrel(iml,jml), STAT=ALLOC_ERR) |
---|
7880 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for latrel','','') |
---|
7881 | |
---|
7882 | ALLOCATE (lonrel(iml,jml), STAT=ALLOC_ERR) |
---|
7883 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for lonrel','','') |
---|
7884 | |
---|
7885 | ALLOCATE (irrigated_frac(iml,jml), STAT=ALLOC_ERR) |
---|
7886 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for irrigated_frac','','') |
---|
7887 | |
---|
7888 | ALLOCATE (flood_fracmax(iml,jml,ntype), STAT=ALLOC_ERR) |
---|
7889 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for flood_fracmax','','') |
---|
7890 | |
---|
7891 | IF (is_root_prc) CALL flinopen(filename, .FALSE., iml, jml, lml, lonrel, latrel, lev, tml, itau, date, dt, fid) |
---|
7892 | |
---|
7893 | CALL bcast(lonrel) |
---|
7894 | CALL bcast(latrel) |
---|
7895 | ! |
---|
7896 | IF (is_root_prc) CALL flinget(fid, 'irrig', iml, jml, lml, tml, 1, 1, irrigated_frac) |
---|
7897 | CALL bcast(irrigated_frac) |
---|
7898 | IF (is_root_prc) CALL flinget(fid, 'lake', iml, jml, lml, tml, 1, 1, flood_fracmax(:,:,ilake)) |
---|
7899 | IF (is_root_prc) CALL flinget(fid, 'dam', iml, jml, lml, tml, 1, 1, flood_fracmax(:,:,idam)) |
---|
7900 | IF (is_root_prc) CALL flinget(fid, 'flood', iml, jml, lml, tml, 1, 1, flood_fracmax(:,:,iflood)) |
---|
7901 | IF (is_root_prc) CALL flinget(fid, 'swamp', iml, jml, lml, tml, 1, 1, flood_fracmax(:,:,iswamp)) |
---|
7902 | IF (is_root_prc) CALL flinget(fid, 'saline', iml, jml, lml, tml, 1, 1, flood_fracmax(:,:,isal)) |
---|
7903 | CALL bcast(flood_fracmax) |
---|
7904 | ! |
---|
7905 | IF (is_root_prc) CALL flinclo(fid) |
---|
7906 | ! |
---|
7907 | ! Set to zero all fraction which are less than 0.5% |
---|
7908 | ! |
---|
7909 | DO ip=1,iml |
---|
7910 | DO jp=1,jml |
---|
7911 | ! |
---|
7912 | IF ( irrigated_frac(ip,jp) .LT. undef_sechiba-un) THEN |
---|
7913 | irrigated_frac(ip,jp) = irrigated_frac(ip,jp)/100. |
---|
7914 | IF ( irrigated_frac(ip,jp) < 0.005 ) irrigated_frac(ip,jp) = zero |
---|
7915 | ENDIF |
---|
7916 | ! |
---|
7917 | DO itype=1,ntype |
---|
7918 | IF ( flood_fracmax(ip,jp,itype) .LT. undef_sechiba-1.) THEN |
---|
7919 | flood_fracmax(ip,jp,itype) = flood_fracmax(ip,jp,itype)/100 |
---|
7920 | IF ( flood_fracmax(ip,jp,itype) < 0.005 ) flood_fracmax(ip,jp,itype) = zero |
---|
7921 | ENDIF |
---|
7922 | ENDDO |
---|
7923 | ! |
---|
7924 | ENDDO |
---|
7925 | ENDDO |
---|
7926 | ! |
---|
7927 | WRITE(numout,*) 'lonrel : ', MAXVAL(lonrel), MINVAL(lonrel) |
---|
7928 | WRITE(numout,*) 'latrel : ', MAXVAL(latrel), MINVAL(latrel) |
---|
7929 | WRITE(numout,*) 'irrigated_frac : ', MINVAL(irrigated_frac, MASK=irrigated_frac .GT. 0), & |
---|
7930 | & MAXVAL(irrigated_frac, MASK=irrigated_frac .LT. undef_sechiba) |
---|
7931 | WRITE(numout,*) 'flood_fracmax : ', MINVAL(flood_fracmax, MASK=flood_fracmax .GT. 0), & |
---|
7932 | & MAXVAL(flood_fracmax, MASK=flood_fracmax .LT. undef_sechiba) |
---|
7933 | ! |
---|
7934 | ! Consider all points a priori |
---|
7935 | ! |
---|
7936 | ALLOCATE(resol_lu(iml,jml,2), STAT=ALLOC_ERR) |
---|
7937 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for resol_lu','','') |
---|
7938 | |
---|
7939 | ALLOCATE(mask(iml,jml), STAT=ALLOC_ERR) |
---|
7940 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for mask','','') |
---|
7941 | mask(:,:) = 0 |
---|
7942 | |
---|
7943 | DO ip=1,iml |
---|
7944 | DO jp=1,jml |
---|
7945 | ! |
---|
7946 | ! Exclude the points where we are close to the missing value. |
---|
7947 | ! |
---|
7948 | !MG This condition cannot be applied in floodplains/swamps configuration because |
---|
7949 | ! the same mask would be used for the interpolation of irrigation, floodplains and swamps maps. |
---|
7950 | ! IF ( irrigated_frac(ip,jp) < undef_sechiba ) THEN |
---|
7951 | mask(ip,jp) = 1 |
---|
7952 | ! ENDIF |
---|
7953 | ! |
---|
7954 | ! Resolution in longitude |
---|
7955 | ! |
---|
7956 | coslat = MAX( COS( latrel(ip,jp) * pi/180. ), mincos ) |
---|
7957 | IF ( ip .EQ. 1 ) THEN |
---|
7958 | resol_lu(ip,jp,1) = ABS( lonrel(ip+1,jp) - lonrel(ip,jp) ) * pi/180. * R_Earth * coslat |
---|
7959 | ELSEIF ( ip .EQ. iml ) THEN |
---|
7960 | resol_lu(ip,jp,1) = ABS( lonrel(ip,jp) - lonrel(ip-1,jp) ) * pi/180. * R_Earth * coslat |
---|
7961 | ELSE |
---|
7962 | resol_lu(ip,jp,1) = ABS( lonrel(ip+1,jp) - lonrel(ip-1,jp) )/2. * pi/180. * R_Earth * coslat |
---|
7963 | ENDIF |
---|
7964 | ! |
---|
7965 | ! Resolution in latitude |
---|
7966 | ! |
---|
7967 | IF ( jp .EQ. 1 ) THEN |
---|
7968 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp) - latrel(ip,jp+1) ) * pi/180. * R_Earth |
---|
7969 | ELSEIF ( jp .EQ. jml ) THEN |
---|
7970 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp-1) - latrel(ip,jp) ) * pi/180. * R_Earth |
---|
7971 | ELSE |
---|
7972 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp-1) - latrel(ip,jp+1) )/2. * pi/180. * R_Earth |
---|
7973 | ENDIF |
---|
7974 | ! |
---|
7975 | ENDDO |
---|
7976 | ENDDO |
---|
7977 | ! |
---|
7978 | ! The number of maximum vegetation map points in the GCM grid is estimated. |
---|
7979 | ! Some lmargin is taken. |
---|
7980 | ! |
---|
7981 | callsign = 'Irrigation map' |
---|
7982 | ok_interpol = .FALSE. |
---|
7983 | IF (is_root_prc) THEN |
---|
7984 | nix=INT(MAXVAL(resolution_g(:,1))/MAXVAL(resol_lu(:,:,1)))+2 |
---|
7985 | njx=INT(MAXVAL(resolution_g(:,2))/MAXVAL(resol_lu(:,:,2)))+2 |
---|
7986 | nbpmax = nix*njx*2 |
---|
7987 | WRITE(numout,*) "Projection arrays for ",callsign," : " |
---|
7988 | WRITE(numout,*) "nbpmax = ",nbpmax, nix, njx |
---|
7989 | ENDIF |
---|
7990 | CALL bcast(nbpmax) |
---|
7991 | |
---|
7992 | ALLOCATE(irrsub_index(nbpt, nbpmax, 2), STAT=ALLOC_ERR) |
---|
7993 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for irrsub_index','','') |
---|
7994 | irrsub_index(:,:,:)=0 |
---|
7995 | |
---|
7996 | ALLOCATE(irrsub_area(nbpt, nbpmax), STAT=ALLOC_ERR) |
---|
7997 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_irrigmap','Pb in allocate for irrsub_area','','') |
---|
7998 | irrsub_area(:,:)=zero |
---|
7999 | |
---|
8000 | CALL aggregate_p(nbpt, lalo, neighbours, resolution, contfrac, & |
---|
8001 | & iml, jml, lonrel, latrel, mask, callsign, & |
---|
8002 | & nbpmax, irrsub_index, irrsub_area, ok_interpol) |
---|
8003 | ! |
---|
8004 | ! |
---|
8005 | WHERE (irrsub_area < 0) irrsub_area=zero |
---|
8006 | ! |
---|
8007 | ! Test here if not all sub_area are larger than 0 if so, then we need to increase nbpmax |
---|
8008 | ! |
---|
8009 | DO ib=1,nbpt |
---|
8010 | ! |
---|
8011 | area_irrig = 0.0 |
---|
8012 | area_flood = 0.0 |
---|
8013 | ! |
---|
8014 | DO fopt=1,COUNT(irrsub_area(ib,:) > zero) |
---|
8015 | ! |
---|
8016 | ip = irrsub_index(ib, fopt, 1) |
---|
8017 | jp = irrsub_index(ib, fopt, 2) |
---|
8018 | ! |
---|
8019 | IF (irrigated_frac(ip,jp) .LT. undef_sechiba-1.) THEN |
---|
8020 | area_irrig = area_irrig + irrsub_area(ib,fopt)*irrigated_frac(ip,jp) |
---|
8021 | ENDIF |
---|
8022 | ! |
---|
8023 | DO itype=1,ntype |
---|
8024 | IF (flood_fracmax(ip,jp,itype) .LT. undef_sechiba-1.) THEN |
---|
8025 | area_flood(itype) = area_flood(itype) + irrsub_area(ib,fopt)*flood_fracmax(ip,jp,itype) |
---|
8026 | ENDIF |
---|
8027 | ENDDO |
---|
8028 | ENDDO |
---|
8029 | ! |
---|
8030 | ! Put the total irrigated and flooded areas in the output variables |
---|
8031 | ! |
---|
8032 | IF ( init_irrig ) THEN |
---|
8033 | irrigated(ib) = MIN(area_irrig, resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
8034 | IF ( irrigated(ib) < 0 ) THEN |
---|
8035 | WRITE(numout,*) 'We have a problem here : ', irrigated(ib) |
---|
8036 | WRITE(numout,*) 'resolution :', resolution(ib,1), resolution(ib,2) |
---|
8037 | WRITE(numout,*) area_irrig |
---|
8038 | CALL ipslerr_p(3,'routing_irrigmap','Problem with irrigated...','','') |
---|
8039 | ENDIF |
---|
8040 | !!$ ! Compute a diagnostic of the map. |
---|
8041 | !!$ IF(contfrac(ib).GT.zero) THEN |
---|
8042 | !!$ irrigmap (ib) = irrigated(ib) / ( resolution(ib,1)*resolution(ib,2)*contfrac(ib) ) |
---|
8043 | !!$ ELSE |
---|
8044 | !!$ irrigmap (ib) = zero |
---|
8045 | !!$ ENDIF |
---|
8046 | ! |
---|
8047 | ENDIF |
---|
8048 | ! |
---|
8049 | IF ( init_flood ) THEN |
---|
8050 | floodplains(ib) = MIN(area_flood(iflood)+area_flood(idam)+area_flood(isal), & |
---|
8051 | & resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
8052 | IF ( floodplains(ib) < 0 ) THEN |
---|
8053 | WRITE(numout,*) 'We have a problem here : ', floodplains(ib) |
---|
8054 | WRITE(numout,*) 'resolution :', resolution(ib,1), resolution(ib,2) |
---|
8055 | WRITE(numout,*) area_flood |
---|
8056 | CALL ipslerr_p(3,'routing_irrigmap','Problem with floodplains..','','') |
---|
8057 | ENDIF |
---|
8058 | !!$ ! Compute a diagnostic of the map. |
---|
8059 | !!$ IF(contfrac(ib).GT.zero) THEN |
---|
8060 | !!$ floodmap(ib) = floodplains(ib) / ( resolution(ib,1)*resolution(ib,2)*contfrac(ib) ) |
---|
8061 | !!$ ELSE |
---|
8062 | !!$ floodmap(ib) = 0.0 |
---|
8063 | !!$ ENDIF |
---|
8064 | ENDIF |
---|
8065 | ! |
---|
8066 | IF ( init_swamp ) THEN |
---|
8067 | swamp(ib) = MIN(area_flood(iswamp), resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
8068 | IF ( swamp(ib) < 0 ) THEN |
---|
8069 | WRITE(numout,*) 'We have a problem here : ', swamp(ib) |
---|
8070 | WRITE(numout,*) 'resolution :', resolution(ib,1), resolution(ib,2) |
---|
8071 | WRITE(numout,*) area_flood |
---|
8072 | CALL ipslerr_p(3,'routing_irrigmap','Problem with swamp...','','') |
---|
8073 | ENDIF |
---|
8074 | !!$ ! Compute a diagnostic of the map. |
---|
8075 | !!$ IF(contfrac(ib).GT.zero) THEN |
---|
8076 | !!$ swampmap(ib) = swamp(ib) / ( resolution(ib,1)*resolution(ib,2)*contfrac(ib) ) |
---|
8077 | !!$ ELSE |
---|
8078 | !!$ swampmap(ib) = zero |
---|
8079 | !!$ ENDIF |
---|
8080 | ENDIF |
---|
8081 | ! |
---|
8082 | ! |
---|
8083 | ENDDO |
---|
8084 | ! |
---|
8085 | ! |
---|
8086 | |
---|
8087 | IF ( init_irrig ) WRITE(numout,*) "Diagnostics irrigated :", MINVAL(irrigated), MAXVAL(irrigated) |
---|
8088 | IF ( init_flood ) WRITE(numout,*) "Diagnostics floodplains :", MINVAL(floodplains), MAXVAL(floodplains) |
---|
8089 | IF ( init_swamp ) WRITE(numout,*) "Diagnostics swamp :", MINVAL(swamp), MAXVAL(swamp) |
---|
8090 | ! |
---|
8091 | ! No compensation is done for overlapping floodplains, swamp and irrig. At least overlapping will not |
---|
8092 | ! happen between floodplains and swamp alone |
---|
8093 | ! IF ( init_irrig .AND. init_flood ) THEN |
---|
8094 | ! DO ib = 1, nbpt |
---|
8095 | ! surp = (floodplains(ib)+swamp(ib)+irrigated(ib)) / (resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
8096 | ! IF ( surp .GT. un ) THEN |
---|
8097 | ! floodplains(ib) = floodplains(ib) / surp |
---|
8098 | ! swamp(ib) = swamp(ib) / surp |
---|
8099 | ! irrigated(ib) = irrigated(ib) / surp |
---|
8100 | ! ENDIF |
---|
8101 | ! ENDDO |
---|
8102 | ! ENDIF |
---|
8103 | ! |
---|
8104 | DEALLOCATE (irrsub_area) |
---|
8105 | DEALLOCATE (irrsub_index) |
---|
8106 | ! |
---|
8107 | DEALLOCATE (mask) |
---|
8108 | DEALLOCATE (resol_lu) |
---|
8109 | ! |
---|
8110 | DEALLOCATE (lonrel) |
---|
8111 | DEALLOCATE (latrel) |
---|
8112 | ! |
---|
8113 | END SUBROUTINE routing_irrigmap |
---|
8114 | ! |
---|
8115 | !! ================================================================================================================================ |
---|
8116 | !! SUBROUTINE : routing_waterbal |
---|
8117 | !! |
---|
8118 | !>\BRIEF This subroutine checks the water balance in the routing module. |
---|
8119 | !! |
---|
8120 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
8121 | !! |
---|
8122 | !! RECENT CHANGE(S): None |
---|
8123 | !! |
---|
8124 | !! MAIN OUTPUT VARIABLE(S): |
---|
8125 | !! |
---|
8126 | !! REFERENCES : None |
---|
8127 | !! |
---|
8128 | !! FLOWCHART : None |
---|
8129 | !! \n |
---|
8130 | !_ ================================================================================================================================ |
---|
8131 | |
---|
8132 | SUBROUTINE routing_waterbal(nbpt, reinit, floodout, runoff, drainage, returnflow, & |
---|
8133 | & reinfiltration, irrigation, riverflow, coastalflow) |
---|
8134 | ! |
---|
8135 | IMPLICIT NONE |
---|
8136 | ! |
---|
8137 | !! INPUT VARIABLES |
---|
8138 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
8139 | LOGICAL, INTENT(in) :: reinit !! Controls behaviour (true/false) |
---|
8140 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
8141 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
8142 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
8143 | REAL(r_std), INTENT(in) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
8144 | !! This water will go back into the hydrol or hydrolc module to allow re-evaporation (kg/m^2/dt) |
---|
8145 | REAL(r_std), INTENT(in) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
8146 | REAL(r_std), INTENT(in) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
8147 | REAL(r_std), INTENT(in) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
8148 | REAL(r_std), INTENT(in) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
8149 | ! |
---|
8150 | ! We sum-up all the water we have in the warious reservoirs |
---|
8151 | ! |
---|
8152 | REAL(r_std), SAVE :: totw_flood !! Sum of all the water amount in the floodplains reservoirs (kg) |
---|
8153 | !$OMP THREADPRIVATE(totw_flood) |
---|
8154 | REAL(r_std), SAVE :: totw_stream !! Sum of all the water amount in the stream reservoirs (kg) |
---|
8155 | !$OMP THREADPRIVATE(totw_stream) |
---|
8156 | REAL(r_std), SAVE :: totw_fast !! Sum of all the water amount in the fast reservoirs (kg) |
---|
8157 | !$OMP THREADPRIVATE(totw_fast) |
---|
8158 | REAL(r_std), SAVE :: totw_slow !! Sum of all the water amount in the slow reservoirs (kg) |
---|
8159 | !$OMP THREADPRIVATE(totw_slow) |
---|
8160 | REAL(r_std), SAVE :: totw_lake !! Sum of all the water amount in the lake reservoirs (kg) |
---|
8161 | !$OMP THREADPRIVATE(totw_lake) |
---|
8162 | REAL(r_std), SAVE :: totw_pond !! Sum of all the water amount in the pond reservoirs (kg) |
---|
8163 | !$OMP THREADPRIVATE(totw_pond) |
---|
8164 | REAL(r_std), SAVE :: totw_in !! Sum of the water flow in to the routing scheme |
---|
8165 | !$OMP THREADPRIVATE(totw_in) |
---|
8166 | REAL(r_std), SAVE :: totw_out !! Sum of the water flow out to the routing scheme |
---|
8167 | !$OMP THREADPRIVATE(totw_out) |
---|
8168 | REAL(r_std), SAVE :: totw_return !! |
---|
8169 | !$OMP THREADPRIVATE(totw_return) |
---|
8170 | REAL(r_std), SAVE :: totw_irrig !! |
---|
8171 | !$OMP THREADPRIVATE(totw_irrig) |
---|
8172 | REAL(r_std), SAVE :: totw_river !! |
---|
8173 | !$OMP THREADPRIVATE(totw_river) |
---|
8174 | REAL(r_std), SAVE :: totw_coastal !! |
---|
8175 | !$OMP THREADPRIVATE(totw_coastal) |
---|
8176 | REAL(r_std) :: totarea !! Total area of basin (m^2) |
---|
8177 | REAL(r_std) :: area !! Total area of routing (m^2) |
---|
8178 | INTEGER(i_std) :: ig !! |
---|
8179 | ! |
---|
8180 | ! Just to make sure we do not get too large numbers ! |
---|
8181 | ! |
---|
8182 | !! PARAMETERS |
---|
8183 | REAL(r_std), PARAMETER :: scaling = 1.0E+6 !! |
---|
8184 | REAL(r_std), PARAMETER :: allowed_err = 50. !! |
---|
8185 | |
---|
8186 | !_ ================================================================================================================================ |
---|
8187 | ! |
---|
8188 | IF ( reinit ) THEN |
---|
8189 | ! |
---|
8190 | totw_flood = zero |
---|
8191 | totw_stream = zero |
---|
8192 | totw_fast = zero |
---|
8193 | totw_slow = zero |
---|
8194 | totw_lake = zero |
---|
8195 | totw_pond = zero |
---|
8196 | totw_in = zero |
---|
8197 | ! |
---|
8198 | DO ig=1,nbpt |
---|
8199 | ! |
---|
8200 | totarea = SUM(routing_area(ig,:)) |
---|
8201 | ! |
---|
8202 | totw_flood = totw_flood + SUM(flood_reservoir(ig,:)/scaling) |
---|
8203 | totw_stream = totw_stream + SUM(stream_reservoir(ig,:)/scaling) |
---|
8204 | totw_fast = totw_fast + SUM(fast_reservoir(ig,:)/scaling) |
---|
8205 | totw_slow = totw_slow + SUM(slow_reservoir(ig,:)/scaling) |
---|
8206 | totw_lake = totw_lake + lake_reservoir(ig)/scaling |
---|
8207 | totw_pond = totw_pond + pond_reservoir(ig)/scaling |
---|
8208 | ! |
---|
8209 | totw_in = totw_in + (runoff(ig)*totarea + drainage(ig)*totarea - floodout(ig)*totarea)/scaling |
---|
8210 | ! |
---|
8211 | ENDDO |
---|
8212 | ! |
---|
8213 | ELSE |
---|
8214 | ! |
---|
8215 | totw_out = zero |
---|
8216 | totw_return = zero |
---|
8217 | totw_irrig = zero |
---|
8218 | totw_river = zero |
---|
8219 | totw_coastal = zero |
---|
8220 | area = zero |
---|
8221 | ! |
---|
8222 | DO ig=1,nbpt |
---|
8223 | ! |
---|
8224 | totarea = SUM(routing_area(ig,:)) |
---|
8225 | ! |
---|
8226 | totw_flood = totw_flood - SUM(flood_reservoir(ig,:)/scaling) |
---|
8227 | totw_stream = totw_stream - SUM(stream_reservoir(ig,:)/scaling) |
---|
8228 | totw_fast = totw_fast - SUM(fast_reservoir(ig,:)/scaling) |
---|
8229 | totw_slow = totw_slow - SUM(slow_reservoir(ig,:)/scaling) |
---|
8230 | totw_lake = totw_lake - lake_reservoir(ig)/scaling |
---|
8231 | totw_pond = totw_pond - pond_reservoir(ig)/scaling |
---|
8232 | ! |
---|
8233 | totw_return = totw_return + (reinfiltration(ig)+returnflow(ig))*totarea/scaling |
---|
8234 | totw_irrig = totw_irrig + irrigation(ig)*totarea/scaling |
---|
8235 | totw_river = totw_river + riverflow(ig)/scaling |
---|
8236 | totw_coastal = totw_coastal + coastalflow(ig)/scaling |
---|
8237 | ! |
---|
8238 | area = area + totarea |
---|
8239 | ! |
---|
8240 | ENDDO |
---|
8241 | totw_out = totw_return + totw_irrig + totw_river + totw_coastal |
---|
8242 | ! |
---|
8243 | ! Now we have all the information to balance our water |
---|
8244 | ! |
---|
8245 | IF ( ABS((totw_flood + totw_stream + totw_fast + totw_slow + totw_lake + totw_pond) - & |
---|
8246 | & (totw_out - totw_in)) > allowed_err ) THEN |
---|
8247 | WRITE(numout,*) 'WARNING : Water not conserved in routing. Limit at ', allowed_err, ' 10^6 kg' |
---|
8248 | WRITE(numout,*) '--Water-- change : flood stream fast ', totw_flood, totw_stream, totw_fast |
---|
8249 | WRITE(numout,*) '--Water-- change : slow, lake ', totw_slow, totw_lake |
---|
8250 | WRITE(numout,*) '--Water>>> change in the routing res. : ', totw_flood + totw_stream + totw_fast + totw_slow + totw_lake |
---|
8251 | WRITE(numout,*) '--Water input : ', totw_in |
---|
8252 | WRITE(numout,*) '--Water output : ', totw_out |
---|
8253 | WRITE(numout,*) '--Water output : return, irrig ', totw_return, totw_irrig |
---|
8254 | WRITE(numout,*) '--Water output : river, coastal ',totw_river, totw_coastal |
---|
8255 | WRITE(numout,*) '--Water>>> change by fluxes : ', totw_out - totw_in, ' Diff [mm/dt]: ', & |
---|
8256 | & ((totw_flood + totw_stream + totw_fast + totw_slow + totw_lake) - (totw_out - totw_in))/area |
---|
8257 | |
---|
8258 | ! Stop the model |
---|
8259 | CALL ipslerr_p(3, 'routing_waterbal', 'Water is not conserved in routing.','','') |
---|
8260 | ENDIF |
---|
8261 | ! |
---|
8262 | ENDIF |
---|
8263 | ! |
---|
8264 | END SUBROUTINE routing_waterbal |
---|
8265 | ! |
---|
8266 | ! |
---|
8267 | END MODULE routing |
---|