1 | PROGRAM driver |
---|
2 | !< $HeadURL$ |
---|
3 | !< $Date$ |
---|
4 | !< $Author$ |
---|
5 | !< $Revision$ |
---|
6 | !- IPSL (2006) |
---|
7 | !- This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | !--------------------------------------------------------------------- |
---|
9 | !- This PROGRAM is the driver of the dim2 version of SECHIBA. It's |
---|
10 | !- main use is for PILPS type experiments. To run it you need to have |
---|
11 | !- the following software : |
---|
12 | !- - SECHIBA |
---|
13 | !- - ioipsl |
---|
14 | !- - netcdf |
---|
15 | !- - F90 compiler |
---|
16 | !- - tk (optional but very useful for configuring the model) |
---|
17 | !- Obviously also the associated Makefiles. |
---|
18 | !- |
---|
19 | !- The forcing data needs to be in netCDF format and should |
---|
20 | !- contain the following variables : |
---|
21 | !- - Incoming SW radiation |
---|
22 | !- - Incoming LW radiation |
---|
23 | !- - Precipitation |
---|
24 | !- - Air temperature at a reference level |
---|
25 | !- - Air humidity at the same level |
---|
26 | !- - wind at the same level |
---|
27 | !- - surface pressure |
---|
28 | !- |
---|
29 | !- Once you have all this and compiled the model you can configure it. |
---|
30 | !- Type make config and set all the values presented in the menu. |
---|
31 | !- This tool will create a run.def which will be used by the model. |
---|
32 | !- The run.def can also be edited by hand but it is more tedious. |
---|
33 | !- Once this run.def is created the model is ready to run. |
---|
34 | !--------------------------------------------------------------------- |
---|
35 | USE netcdf |
---|
36 | USE ioipsl_para |
---|
37 | USE grid |
---|
38 | USE intersurf, ONLY : intersurf_main_2d, intersurf_initialize_2d |
---|
39 | USE constantes |
---|
40 | USE constantes_soil |
---|
41 | USE readdim2 |
---|
42 | USE mod_orchidee_para |
---|
43 | USE timer |
---|
44 | ! USE control |
---|
45 | !- |
---|
46 | IMPLICIT NONE |
---|
47 | !- |
---|
48 | INTEGER :: iim, jjm, llm |
---|
49 | INTEGER :: im, jm, lm, tm, is, force_id, itest, jtest |
---|
50 | REAL :: dt, dt_force, dt_rest, date0, date0_rest |
---|
51 | REAL :: zlflu |
---|
52 | REAL :: alpha |
---|
53 | !- |
---|
54 | REAL, ALLOCATABLE, DIMENSION(:,:) :: & |
---|
55 | & swdown, coszang, precip_rain, precip_snow, tair_obs, u, v, & |
---|
56 | & qair_obs, pb, lwdown, & |
---|
57 | & eair_obs, zlev_vec, zlevuv_vec, relax |
---|
58 | !- Variables which are forcings for SECHIBA |
---|
59 | REAL, ALLOCATABLE, DIMENSION(:,:) :: & |
---|
60 | & petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, & |
---|
61 | & for_u, for_v, for_swnet, for_swdown, for_coszang, for_lwdown, & |
---|
62 | & for_psurf, for_qair, for_tair, for_eair, & |
---|
63 | & for_ccanopy, for_rau |
---|
64 | !!$, tmp_eair, tmp_tair, & |
---|
65 | !!$ & tmp_qair, tmp_pb |
---|
66 | !- |
---|
67 | REAL, ALLOCATABLE, DIMENSION(:,:) :: & |
---|
68 | & for_contfrac, old_zlev, old_qair, old_eair, tsol_rad, vevapp, & |
---|
69 | & temp_sol_NEW, temp_sol_old, qsurf, dtdt, & |
---|
70 | & fluxsens, fluxlat, emis, z0 |
---|
71 | !!$, epot_sol |
---|
72 | !- |
---|
73 | INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: for_neighbours |
---|
74 | REAL, ALLOCATABLE, DIMENSION(:,:,:) :: coastalflow, riverflow |
---|
75 | !- |
---|
76 | REAL, ALLOCATABLE, DIMENSION(:,:,:) :: for_resolution |
---|
77 | ! REAL, ALLOCATABLE, DIMENSION(:,:,:) :: soil_mc |
---|
78 | ! REAL, ALLOCATABLE, DIMENSION(:,:) :: litter_mc |
---|
79 | !- |
---|
80 | REAL, ALLOCATABLE, DIMENSION(:,:,:) :: albedo |
---|
81 | REAL, ALLOCATABLE, DIMENSION(:,:) :: albedo_vis |
---|
82 | REAL, ALLOCATABLE, DIMENSION(:,:) :: albedo_nir |
---|
83 | !- |
---|
84 | INTEGER, ALLOCATABLE, DIMENSION(:) :: kindex |
---|
85 | REAL, ALLOCATABLE, DIMENSION(:,:) :: lon, lat |
---|
86 | REAL, ALLOCATABLE, DIMENSION(:) :: tmplev |
---|
87 | !- |
---|
88 | REAL :: old_tair |
---|
89 | REAL :: atmco2 |
---|
90 | INTEGER :: nbindex |
---|
91 | REAL :: julian, ss |
---|
92 | INTEGER :: yy, mm, dd |
---|
93 | !- |
---|
94 | LOGICAL :: relaxation |
---|
95 | !- |
---|
96 | CHARACTER(LEN=80) :: filename, driv_restname_in, driv_restname_out |
---|
97 | CHARACTER(LEN=30) :: time_str, var_name |
---|
98 | !- |
---|
99 | INTEGER :: it, istp, istp_old, rest_id, it_force |
---|
100 | !- |
---|
101 | INTEGER :: split, split_start, nb_spread, for_offset |
---|
102 | INTEGER :: itau_dep, itau_dep_rest, itau_fin, itau_skip, itau_len |
---|
103 | |
---|
104 | INTEGER,DIMENSION(2) :: ml |
---|
105 | !- |
---|
106 | LOGICAL :: last_CALL, first_CALL |
---|
107 | LOGICAL :: no_inter, inter_lin, netrad_cons |
---|
108 | !- |
---|
109 | ! to check variables passed to intersurf |
---|
110 | INTEGER :: ik |
---|
111 | INTEGER :: i,j |
---|
112 | INTEGER :: printlev_loc !! local write level |
---|
113 | |
---|
114 | REAL, ALLOCATABLE, DIMENSION(:,:) :: & |
---|
115 | & fluxsens_g,vevapp_g,old_zlev_g,old_qair_g,old_eair_g,for_rau_g, & |
---|
116 | & petAcoef_g, petBcoef_g,peqAcoef_g,peqBcoef_g,albedo_g,z0_g |
---|
117 | LOGICAL :: Flag |
---|
118 | LOGICAL :: driver_reset_time |
---|
119 | |
---|
120 | REAL :: fill_init |
---|
121 | |
---|
122 | fill_init=REAL(nf90_fill_real,r_std) |
---|
123 | CALL ioconf_expval(val_exp) |
---|
124 | !- |
---|
125 | ! Init parallelism |
---|
126 | |
---|
127 | CALL Init_orchidee_para |
---|
128 | CALL init_timer |
---|
129 | CALL start_timer(timer_global) |
---|
130 | CALL start_timer(timer_mpi) |
---|
131 | |
---|
132 | ! Set specific write level to dim2_driver using PRINTLEV_dim2_driver=[0-4] |
---|
133 | ! in run.def. The global printlev is used as default value. |
---|
134 | printlev_loc=get_printlev('dim2_driver') |
---|
135 | |
---|
136 | !===================================================================== |
---|
137 | !- 1.0 This section defines the general set-up of the experiment : |
---|
138 | !- - Forcing data to be used with its time step |
---|
139 | !- - Restart file to be used |
---|
140 | !- - The time step that will be used |
---|
141 | !- - The starting date of the simulation |
---|
142 | !- - Length of integration |
---|
143 | !- - Basic flags for SSIPSL |
---|
144 | !===================================================================== |
---|
145 | !- 1.1 Initialize the driving variables. It essentialy gets the mode |
---|
146 | !- used and the size of the driving variables. |
---|
147 | !===================================================================== |
---|
148 | IF (printlev_loc>=3) WRITE(numout,*) 'Reading name of the forcing file' |
---|
149 | !- |
---|
150 | !Config Key = FORCING_FILE |
---|
151 | !Config Desc = Name of file containing the forcing data |
---|
152 | !Config If = [-] |
---|
153 | !Config Def = forcing_file.nc |
---|
154 | !Config Help = This is the name of the file which should be opened |
---|
155 | !Config for reading the forcing data of the dim0 model. |
---|
156 | !Config The format of the file has to be netCDF and COADS |
---|
157 | !Config compliant. |
---|
158 | !Config Units = [FILE] |
---|
159 | !- |
---|
160 | filename='forcing_file.nc' |
---|
161 | CALL getin_p('FORCING_FILE',filename) |
---|
162 | !- |
---|
163 | IF (printlev_loc>=3) WRITE(numout,*) 'Opening forcing file' |
---|
164 | !- |
---|
165 | ! We call flininfo to obtain the dimensions |
---|
166 | ! of iim, jjm and others. |
---|
167 | ! This information will allow us to allocate all the space needed. |
---|
168 | !- |
---|
169 | CALL forcing_info & |
---|
170 | & (filename, iim, jjm, llm, tm, date0, dt_force, force_id) |
---|
171 | !- |
---|
172 | WRITE(numout,*) 'Out of flininfo : date0 ', date0, & |
---|
173 | 'iim, jjm, llm, tm',iim,jjm,llm,tm,' dt_force ',dt_force |
---|
174 | !- |
---|
175 | CALL init_ioipsl_para |
---|
176 | !- |
---|
177 | IF (printlev_loc>=3) THEN |
---|
178 | WRITE(numout,*) 'Allocate memory for the driver :', iim, jjm, llm |
---|
179 | ENDIF |
---|
180 | !- |
---|
181 | ALLOCATE (tmplev(llm)) |
---|
182 | tmplev(:)=0. |
---|
183 | |
---|
184 | ALLOCATE & |
---|
185 | & (swdown(iim,jjm), coszang(iim,jjm), precip_rain(iim,jjm), precip_snow(iim,jjm), & |
---|
186 | & tair_obs(iim,jjm), u(iim,jjm), v(iim,jjm), qair_obs(iim,jjm), & |
---|
187 | & pb(iim,jjm), lwdown(iim,jjm), & |
---|
188 | & eair_obs(iim,jjm), zlev_vec(iim,jjm), zlevuv_vec(iim,jjm), relax(iim,jjm)) |
---|
189 | !- |
---|
190 | ALLOCATE & |
---|
191 | & (petAcoef(iim,jjm), peqAcoef(iim,jjm), & |
---|
192 | & petBcoef(iim,jjm), peqBcoef(iim,jjm), & |
---|
193 | & cdrag(iim,jjm), for_u(iim,jjm), for_v(iim,jjm), & |
---|
194 | & for_swnet(iim,jjm), for_swdown(iim,jjm), for_coszang(iim,jjm), for_lwdown(iim,jjm), & |
---|
195 | & for_psurf(iim,jjm), for_qair(iim,jjm), for_tair(iim,jjm), & |
---|
196 | & for_eair(iim,jjm), for_ccanopy(iim,jjm), for_rau(iim,jjm)) |
---|
197 | !!$, & |
---|
198 | !!$ & tmp_eair(iim,jjm), tmp_tair(iim,jjm), & |
---|
199 | !!$ & tmp_qair(iim,jjm), tmp_pb(iim,jjm)) |
---|
200 | !- |
---|
201 | ALLOCATE & |
---|
202 | & (for_contfrac(iim,jjm), for_neighbours(iim,jjm,8), for_resolution(iim,jjm,2), & |
---|
203 | & old_zlev(iim,jjm), old_qair(iim,jjm), old_eair(iim,jjm), & |
---|
204 | & tsol_rad(iim,jjm), vevapp(iim,jjm), & |
---|
205 | & temp_sol_NEW(iim,jjm), temp_sol_old(iim,jjm), & |
---|
206 | & dtdt(iim,jjm), coastalflow(iim,jjm,nflow), riverflow(iim,jjm,nflow), & |
---|
207 | & fluxsens(iim,jjm), fluxlat(iim,jjm), emis(iim,jjm), & |
---|
208 | & z0(iim,jjm), qsurf(iim,jjm)) |
---|
209 | ! & z0(iim,jjm),qsurf(iim,jjm),soil_mc(iim*jjm,nbdl,nstm),litter_mc(iim*jjm,nstm)) |
---|
210 | !!$, epot_sol(iim,jjm) |
---|
211 | !- |
---|
212 | ALLOCATE(albedo(iim,jjm,2)) |
---|
213 | ALLOCATE(albedo_vis(iim,jjm),albedo_nir(iim,jjm)) |
---|
214 | !- |
---|
215 | ALLOCATE(kindex(iim*jjm)) |
---|
216 | ALLOCATE(lon(iim,jjm), lat(iim,jjm)) |
---|
217 | !-- |
---|
218 | swdown(:,:) = fill_init |
---|
219 | precip_rain(:,:) = 0.0 |
---|
220 | precip_snow(:,:) = 0.0 |
---|
221 | tair_obs(:,:) = 0.0 |
---|
222 | u(:,:) = fill_init |
---|
223 | v(:,:) = fill_init |
---|
224 | qair_obs(:,:) = fill_init |
---|
225 | pb(:,:) = fill_init |
---|
226 | lwdown(:,:) = fill_init |
---|
227 | eair_obs(:,:) = fill_init |
---|
228 | zlev_vec(:,:) = 0.0 |
---|
229 | zlevuv_vec(:,:) = 0.0 |
---|
230 | relax(:,:) = 0.0 |
---|
231 | petAcoef(:,:) = 0.0 |
---|
232 | peqAcoef(:,:) = 0.0 |
---|
233 | petBcoef(:,:) = 0.0 |
---|
234 | peqBcoef(:,:) = 0.0 |
---|
235 | cdrag(:,:) = 0.0 |
---|
236 | for_u(:,:) = fill_init |
---|
237 | for_v(:,:) = fill_init |
---|
238 | for_swnet(:,:) = fill_init |
---|
239 | for_swdown(:,:) = fill_init |
---|
240 | for_lwdown(:,:) = fill_init |
---|
241 | for_psurf(:,:) = fill_init |
---|
242 | for_qair(:,:) = fill_init |
---|
243 | for_tair(:,:) = fill_init |
---|
244 | for_eair(:,:) = fill_init |
---|
245 | for_ccanopy(:,:) = 0.0 |
---|
246 | for_rau(:,:) = fill_init |
---|
247 | for_contfrac(:,:) = 0.0 |
---|
248 | for_neighbours(:,:,:) = 0 |
---|
249 | for_resolution(:,:,:) = 0.0 |
---|
250 | ! soil_mc(:,:,:) = 0.0 |
---|
251 | ! litter_mc(:,:) = 0.0 |
---|
252 | old_zlev(:,:) = 0.0 |
---|
253 | old_qair(:,:) = 0.0 |
---|
254 | old_eair(:,:) = 0.0 |
---|
255 | tsol_rad(:,:) = 0.0 |
---|
256 | vevapp(:,:) = 0.0 |
---|
257 | temp_sol_NEW(:,:) = fill_init |
---|
258 | temp_sol_old(:,:) = fill_init |
---|
259 | dtdt(:,:) = 0.0 |
---|
260 | coastalflow(:,:,:) = 0.0 |
---|
261 | riverflow(:,:,:) = 0.0 |
---|
262 | fluxsens(:,:) = fill_init |
---|
263 | fluxlat(:,:) = fill_init |
---|
264 | emis(:,:) = 0.0 |
---|
265 | z0(:,:) = fill_init |
---|
266 | qsurf(:,:) = 0.0 |
---|
267 | albedo(:,:,:) = fill_init |
---|
268 | albedo_vis(:,:) = fill_init |
---|
269 | albedo_nir(:,:) = fill_init |
---|
270 | kindex(:) = 0 |
---|
271 | lon(:,:) = 0.0 |
---|
272 | lat(:,:) = 0.0 |
---|
273 | !- |
---|
274 | ! We need to know the grid. |
---|
275 | ! Then we can initialize the restart files, and then we |
---|
276 | ! can give read the restart files in the forcing subroutine. |
---|
277 | !- |
---|
278 | CALL forcing_grid (iim,jjm,llm,lon,lat,init_f=.FALSE.) |
---|
279 | !===================================================================== |
---|
280 | !- 1.2 Time step to be used. |
---|
281 | !- This is relative to the time step of the forcing data |
---|
282 | !===================================================================== |
---|
283 | IF ( .NOT. weathergen ) THEN |
---|
284 | !Config Key = DT_SECHIBA |
---|
285 | !Config Desc = Time-step of the SECHIBA component |
---|
286 | !Config If = NOT(WEATHERGEN) |
---|
287 | !Config Def = 1800. |
---|
288 | !Config Help = Determines the time resolution at which |
---|
289 | !Config the calculations in the SECHIBA component |
---|
290 | !Config are done |
---|
291 | !Config Units = [seconds] |
---|
292 | dt = 1800 |
---|
293 | CALL getin_p('DT_SECHIBA', dt) |
---|
294 | split = INT(dt_force/dt) |
---|
295 | WRITE(numout,*) 'Time step in forcing file: dt_force=',dt_force |
---|
296 | WRITE(numout,*) 'Time step in sechiba component: dt_sechiba=',dt |
---|
297 | WRITE(numout,*) 'Splitting of each forcing time step: split=',split |
---|
298 | |
---|
299 | IF ( split .LT. 1. ) THEN |
---|
300 | CALL ipslerr_p ( 3, 'dim2_driver',& |
---|
301 | 'Time step of the forcing file is higher than the time step in sechiba',& |
---|
302 | 'Please, modify DT_SECHIBA parameter value !','') |
---|
303 | END IF |
---|
304 | ELSE |
---|
305 | ! Case weathergen: |
---|
306 | ! The model time step in sechiba is always the same as the forcing time step |
---|
307 | dt = dt_force |
---|
308 | split = 1 |
---|
309 | ENDIF |
---|
310 | |
---|
311 | !===================================================================== |
---|
312 | !- 1.3 Initialize the restart file for the driver |
---|
313 | !===================================================================== |
---|
314 | !Config Key = RESTART_FILEIN |
---|
315 | !Config Desc = Name of restart to READ for initial conditions |
---|
316 | !Config If = [-] |
---|
317 | !Config Def = NONE |
---|
318 | !Config Help = This is the name of the file which will be opened |
---|
319 | !Config to extract the initial values of all prognostic |
---|
320 | !Config values of the model. This has to be a netCDF file. |
---|
321 | !Config Not truly COADS compliant. NONE will mean that |
---|
322 | !Config no restart file is to be expected. |
---|
323 | !Config Units = [FILE] |
---|
324 | !- |
---|
325 | driv_restname_in = 'NONE' |
---|
326 | CALL getin_p('RESTART_FILEIN',driv_restname_in) |
---|
327 | if (printlev_loc>=3) WRITE(numout,*) 'INPUT RESTART_FILE : ',TRIM(driv_restname_in) |
---|
328 | !- |
---|
329 | !Config Key = RESTART_FILEOUT |
---|
330 | !Config Desc = Name of restart files to be created by the driver |
---|
331 | !Config If = [-] |
---|
332 | !Config Def = driver_rest_out.nc |
---|
333 | !Config Help = This variable give the name for |
---|
334 | !Config the restart files. The restart software within |
---|
335 | !Config IOIPSL will add .nc if needed |
---|
336 | !Config Units = [FILE] |
---|
337 | !- |
---|
338 | driv_restname_out = 'driver_rest_out.nc' |
---|
339 | CALL getin_p('RESTART_FILEOUT', driv_restname_out) |
---|
340 | if (printlev_loc>=3) WRITE(numout,*) 'OUTPUT RESTART_FILE : ',TRIM(driv_restname_out) |
---|
341 | !- |
---|
342 | ! Set default values for the start and end of the simulation |
---|
343 | ! in the forcing chronology. |
---|
344 | |
---|
345 | CALL gather2D_mpi(lon,lon_g) |
---|
346 | CALL gather2D_mpi(lat,lat_g) |
---|
347 | |
---|
348 | |
---|
349 | !Config Key = DRIVER_reset_time |
---|
350 | !Config Desc = Overwrite time values from the driver restart file |
---|
351 | !Config If = [-] |
---|
352 | !Config Def = n |
---|
353 | !Config Units = [FLAG] |
---|
354 | |
---|
355 | driver_reset_time=.FALSE. |
---|
356 | CALL getin_p('DRIVER_reset_time', driver_reset_time) |
---|
357 | IF (printlev_loc>=3) WRITE(numout,*) 'driver_reset_time=',driver_reset_time |
---|
358 | |
---|
359 | IF (is_root_prc) THEN |
---|
360 | ! Set default values for the time variables |
---|
361 | itau_dep_rest = 0 |
---|
362 | date0_rest = date0 |
---|
363 | dt_rest = dt |
---|
364 | |
---|
365 | IF (printlev_loc>=3) WRITE(numout,*) & |
---|
366 | 'Before driver restart file initialization : itau_dep_rest, date0_rest, dt_rest = ', & |
---|
367 | itau_dep_rest, date0_rest, dt_rest |
---|
368 | |
---|
369 | CALL restini & |
---|
370 | (driv_restname_in, iim_g, jjm_g, lon_g, lat_g, llm, tmplev, & |
---|
371 | driv_restname_out, itau_dep_rest, date0_rest, dt_rest, rest_id, driver_reset_time) |
---|
372 | |
---|
373 | IF (printlev_loc>=3) WRITE(numout,*) & |
---|
374 | 'After driver restart file initialization : itau_dep_rest, date0_rest, dt_rest = ', & |
---|
375 | itau_dep_rest, date0_rest, dt_rest |
---|
376 | |
---|
377 | IF (itau_dep_rest == 0 .OR. driver_reset_time) THEN |
---|
378 | ! Restart file did not exist or we decide to overwrite time values in it. |
---|
379 | ! Set time values to read the begining of the forcing file. |
---|
380 | itau_dep=0 |
---|
381 | itau_fin=tm |
---|
382 | date0_rest = date0 |
---|
383 | ELSE |
---|
384 | ! Take time values from restart file |
---|
385 | itau_dep = itau_dep_rest |
---|
386 | itau_fin = itau_dep+tm |
---|
387 | ENDIF |
---|
388 | |
---|
389 | WRITE(numout,*) & |
---|
390 | 'Restart file initialized : itau_dep, itau_fin, date0_rest, dt_rest = ', & |
---|
391 | itau_dep, itau_fin, date0_rest, dt_rest |
---|
392 | ENDIF |
---|
393 | |
---|
394 | ! Communicate values from root_prc to all the others |
---|
395 | CALL bcast (itau_dep_rest) |
---|
396 | CALL bcast (itau_dep) |
---|
397 | CALL bcast (itau_fin) |
---|
398 | CALL bcast (date0_rest) |
---|
399 | CALL bcast (dt_rest) |
---|
400 | |
---|
401 | |
---|
402 | !===================================================================== |
---|
403 | !- 1.4 Here we do the first real reading of the driving. It only |
---|
404 | !- gets a few variables. |
---|
405 | !===================================================================== |
---|
406 | |
---|
407 | ! prepares kindex table from the information obtained |
---|
408 | ! from the forcing data and reads some initial values for |
---|
409 | ! temperature, etc. |
---|
410 | !- |
---|
411 | kindex(1) = 1 |
---|
412 | !- |
---|
413 | CALL forcing_READ & |
---|
414 | & (filename, rest_id, .TRUE., .FALSE., & |
---|
415 | & 0, itau_dep, 0, split, nb_spread, netrad_cons, & |
---|
416 | & date0, dt_force, iim, jjm, lon, lat, zlev_vec, zlevuv_vec, tm, & |
---|
417 | & swdown, coszang, precip_rain, precip_snow, tair_obs, & |
---|
418 | & u, v, qair_obs, pb, lwdown, for_contfrac, for_neighbours, for_resolution, & |
---|
419 | & for_swnet, eair_obs, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, for_ccanopy, & |
---|
420 | & kindex, nbindex, force_id) |
---|
421 | !- |
---|
422 | WRITE (numout,*) ">> Number of land points =",nbindex |
---|
423 | IF (nbindex == 0) THEN |
---|
424 | WRITE(numout,*) "Limits : (W,E / N,S)", limit_west, limit_east, & |
---|
425 | & limit_north, limit_south |
---|
426 | CALL ipslerr_p ( 3, 'dim2_driver','number of land points error.', & |
---|
427 | & ' is zero !','stop driver') |
---|
428 | ENDIF |
---|
429 | |
---|
430 | jlandindex = (((kindex(1:nbindex)-1)/iim) + 1) |
---|
431 | ilandindex = (kindex(1:nbindex) - (jlandindex(1:nbindex)-1)*iim) |
---|
432 | IF (printlev_loc>=4) THEN |
---|
433 | WRITE(numout,*) "kindex of land points : ", kindex(1:nbindex) |
---|
434 | WRITE(numout,*) "index i of land points : ", ilandindex |
---|
435 | WRITE(numout,*) "index j of land points : ", jlandindex |
---|
436 | ENDIF |
---|
437 | |
---|
438 | im = iim; jm = jjm; lm = llm; |
---|
439 | IF ( (iim > 1).AND.(jjm > 1) ) THEN |
---|
440 | jtest = INT((kindex(INT(nbindex/2))-1)/iim)+1 |
---|
441 | itest = MAX( 1, kindex(INT(nbindex/2))-(jtest-1)*iim ) |
---|
442 | ELSE |
---|
443 | jtest = 1 |
---|
444 | itest = 1 |
---|
445 | ENDIF |
---|
446 | IF (printlev_loc>=3) WRITE(numout,*) "test point in dim2_driver : ",itest,jtest |
---|
447 | !- |
---|
448 | IF ((im /= iim) .AND. (jm /= jjm) .AND. (lm /= llm)) THEN |
---|
449 | WRITE(numout,*) ' dimensions are not good. Verify FILE :' |
---|
450 | WRITE(numout,*) ' filename = ',filename |
---|
451 | WRITE(numout,*) ' im, jm, lm lus = ', im, jm, lm |
---|
452 | WRITE(numout,*) ' iim, jjm, llm demandes = ', iim, jjm, llm |
---|
453 | CALL ipslerr_p(3,'dim2_driver','Pb in dimensions','','') |
---|
454 | ENDIF |
---|
455 | !===================================================================== |
---|
456 | !- 1.5 Configures the time-steps and other parameters |
---|
457 | !- of the run. |
---|
458 | !===================================================================== |
---|
459 | !- |
---|
460 | ! If the time steping of the restart is different from the one |
---|
461 | ! of the forcing we need to convert the itau_dep into the |
---|
462 | ! chronology of the forcing. This ensures that the forcing will |
---|
463 | ! start at the date of the restart file. Obviously the itau_fin |
---|
464 | ! needs to be shifted as well ! |
---|
465 | !- |
---|
466 | IF ( (dt_rest /= dt_force).AND.(itau_dep > 1) ) THEN |
---|
467 | itau_dep = NINT((itau_dep*dt_rest )/dt_force) |
---|
468 | itau_fin = itau_dep+tm |
---|
469 | if (printlev_loc>=3) WRITE(numout,*) & |
---|
470 | & 'The time steping of the restart is different from the one ',& |
---|
471 | & 'of the forcing we need to convert the itau_dep into the ',& |
---|
472 | & 'chronology of the forcing. This ensures that the forcing will ',& |
---|
473 | & 'start at the date of the restart file. Obviously the itau_fin ',& |
---|
474 | & 'needs to be shifted as well : itau_dep, itau_fin ', & |
---|
475 | & itau_dep, itau_fin |
---|
476 | ENDIF |
---|
477 | !- |
---|
478 | ! Same things if the starting dates are not the same. |
---|
479 | ! Everything should look as if we had only one forcing file ! |
---|
480 | !- |
---|
481 | IF (date0 /= date0_rest) THEN |
---|
482 | WRITE(numout,*) 'date0_rest , date0 : ',date0_rest , date0 |
---|
483 | for_offset = NINT((date0_rest-date0)*one_day/dt_force) |
---|
484 | ELSE |
---|
485 | for_offset = 0 |
---|
486 | ENDIF |
---|
487 | WRITE(numout,*) 'OFFSET FOR THE data read :', for_offset |
---|
488 | |
---|
489 | CALL ioconf_startdate(date0_rest) |
---|
490 | !- |
---|
491 | !Config Key = TIME_SKIP |
---|
492 | !Config Desc = Time in the forcing file at which the model is started. |
---|
493 | !Config If = [-] |
---|
494 | !Config Def = 0 |
---|
495 | !Config Help = This time give the point in time at which the model |
---|
496 | !Config should be started. If exists, the date of the restart file is use. |
---|
497 | !Config The FORMAT of this date can be either of the following : |
---|
498 | !Config n : time step n within the forcing file |
---|
499 | !Config nS : n seconds after the first time-step in the file |
---|
500 | !Config nD : n days after the first time-step |
---|
501 | !Config nM : n month after the first time-step (year of 365 days) |
---|
502 | !Config nY : n years after the first time-step (year of 365 days) |
---|
503 | !Config Or combinations : |
---|
504 | !Config nYmM: n years and m month |
---|
505 | !Config Units = [seconds, days, months, years] |
---|
506 | !- |
---|
507 | itau_skip = 0 |
---|
508 | WRITE(time_str,'(I10)') itau_skip |
---|
509 | CALL getin_p('TIME_SKIP', time_str) |
---|
510 | !- |
---|
511 | ! Transform into itau |
---|
512 | !- |
---|
513 | CALL tlen2itau (time_str, dt_force, date0, itau_skip) |
---|
514 | !- |
---|
515 | itau_dep = itau_dep+itau_skip |
---|
516 | !- |
---|
517 | ! We need to select the right position of the splited time steps. |
---|
518 | !- |
---|
519 | istp = itau_dep*split+1 |
---|
520 | IF (MOD(istp-1,split) /= 0) THEN |
---|
521 | split_start = MOD(istp-1,split)+1 |
---|
522 | ELSE |
---|
523 | split_start = 1 |
---|
524 | ENDIF |
---|
525 | istp_old = itau_dep_rest |
---|
526 | !!$ it_force = MAX(MOD(itau_dep,INT(one_day*one_year/dt_force)),1)+itau_skip |
---|
527 | !!$ WRITE(numout,*) 'itau_dep, it_force :', itau_dep, it_force |
---|
528 | !- |
---|
529 | itau_len = itau_fin-itau_dep |
---|
530 | !- |
---|
531 | !Config Key = TIME_LENGTH |
---|
532 | !Config Desc = Length of the integration in time. |
---|
533 | !Config If = [-] |
---|
534 | !Config Def = Full length of the forcing file |
---|
535 | !Config Help = Length of integration. By default the entire length |
---|
536 | !Config of the forcing is used. The FORMAT of this date can |
---|
537 | !Config be either of the following : |
---|
538 | !Config n : time step n within the forcing file |
---|
539 | !Config nS : n seconds after the first time-step in the file |
---|
540 | !Config nD : n days after the first time-step |
---|
541 | !Config nM : n month after the first time-step (year of 365 days) |
---|
542 | !Config nY : n years after the first time-step (year of 365 days) |
---|
543 | !Config Or combinations : |
---|
544 | !Config nYmM: n years and m month |
---|
545 | !Config Units = [seconds, days, months, years] |
---|
546 | !- |
---|
547 | WRITE(time_str,'(I10)') itau_len |
---|
548 | CALL getin_p('TIME_LENGTH', time_str) |
---|
549 | !- |
---|
550 | ! Transform into itau |
---|
551 | !- |
---|
552 | CALL tlen2itau (time_str, dt_force, date0, itau_len) |
---|
553 | !- |
---|
554 | itau_fin = itau_dep+itau_len |
---|
555 | !- |
---|
556 | WRITE(numout,*) '>> Time origine in the forcing file :', date0 |
---|
557 | WRITE(numout,*) '>> Time origine in the restart file :', date0_rest |
---|
558 | WRITE(numout,*) '>> Simulate starts at forcing time-step : ', itau_dep |
---|
559 | WRITE(numout,*) '>> The splited time-steps start at (Sets the ' |
---|
560 | WRITE(numout,*) '>> chronology for the history and restart files):',istp |
---|
561 | WRITE(numout,*) '>> The time spliting starts at :', split_start |
---|
562 | WRITE(numout,*) '>> Simulation ends at forcing time-step: ', itau_fin |
---|
563 | WRITE(numout,*) '>> Length of the simulation is thus :', itau_len |
---|
564 | WRITE(numout,*) '>> Length of the forcing data is in time-steps : ', tm |
---|
565 | IF (tm < itau_len) THEN |
---|
566 | CALL ipslerr_p ( 2, 'dim2_driver','Length of the simulation is greater than.', & |
---|
567 | & ' Length of the forcing data is in time-steps','verify TIME_LENGTH parameter.') |
---|
568 | ENDIF |
---|
569 | WRITE(numout,*) '>> Time steps : true, forcing and restart : ', dt,dt_force,dt_rest |
---|
570 | |
---|
571 | !===================================================================== |
---|
572 | !- 2.0 This section is going to define the details by which |
---|
573 | !- the input data is going to be used to force the |
---|
574 | !- land-surface scheme. The tasks are the following : |
---|
575 | !- - Is the coupling going to be explicit or implicit |
---|
576 | !- - Type of interpolation to be used. |
---|
577 | !- - At which height are the atmospheric forcings going to be used ? |
---|
578 | !- - Is a relaxation method going to be used on the forcing |
---|
579 | !- - Does net radiation in the interpolated data need to be conserved |
---|
580 | !- - How do we distribute precipitation. |
---|
581 | !===================================================================== |
---|
582 | !Config Key = RELAXATION |
---|
583 | !Config Desc = method of forcing |
---|
584 | !Config If = [-] |
---|
585 | !Config Def = n |
---|
586 | !Config Help = A method is proposed by which the first atmospheric |
---|
587 | !Config level is not directly forced by observations but |
---|
588 | !Config relaxed with a time constant towards observations. |
---|
589 | !Config For the moment the methods tends to smooth too much |
---|
590 | !Config the diurnal cycle and introduces a time shift. |
---|
591 | !Config A more sophisticated method is needed. |
---|
592 | !Config Units = [FLAG] |
---|
593 | !- |
---|
594 | relaxation = .FALSE. |
---|
595 | CALL getin_p('RELAXATION', relaxation) |
---|
596 | IF ( relaxation ) THEN |
---|
597 | WRITE(numout,*) 'dim2_driver : The relaxation option is temporarily disabled as it does not' |
---|
598 | WRITE(numout,*) ' produce energy conservation in ORCHIDEE. If you intend to use it' |
---|
599 | WRITE(numout,*) ' you should validate it.' |
---|
600 | CALL ipslerr_p(3,'dim2_driver','relaxation option is not activated.','This option needs to be validated.','') |
---|
601 | |
---|
602 | !Config Key = RELAX_A |
---|
603 | !Config Desc = Time constant of the relaxation layer |
---|
604 | !Config If = RELAXATION |
---|
605 | !Config Def = 1.0 |
---|
606 | !Config Help = The time constant associated to the atmospheric |
---|
607 | !Config conditions which are going to be computed |
---|
608 | !Config in the relaxed layer. To avoid too much |
---|
609 | !Config damping the value should be larger than 1000. |
---|
610 | !Config Units = [days?] |
---|
611 | !- |
---|
612 | alpha = 1000.0 |
---|
613 | CALL getin_p('RELAX_A', alpha) |
---|
614 | ENDIF |
---|
615 | !- |
---|
616 | no_inter = .TRUE. |
---|
617 | inter_lin = .FALSE. |
---|
618 | |
---|
619 | !Config Key = NO_INTER |
---|
620 | !Config Desc = No interpolation IF split is larger than 1 |
---|
621 | !Config If = [-] |
---|
622 | !Config Def = y |
---|
623 | !Config Help = Choose IF you do not wish to interpolate linearly. |
---|
624 | !Config Units = [FLAG] |
---|
625 | CALL getin_p('NO_INTER', no_inter) |
---|
626 | |
---|
627 | !Config Key = INTER_LIN |
---|
628 | !Config Desc = Interpolation IF split is larger than 1 |
---|
629 | !Config If = [-] |
---|
630 | !Config Def = n |
---|
631 | !Config Help = Choose IF you wish to interpolate linearly. |
---|
632 | !Config Units = [FLAG] |
---|
633 | CALL getin_p('INTER_LIN', inter_lin) |
---|
634 | !- |
---|
635 | IF (inter_lin) THEN |
---|
636 | no_inter = .FALSE. |
---|
637 | ELSE |
---|
638 | no_inter = .TRUE. |
---|
639 | ENDIF |
---|
640 | !- |
---|
641 | IF (split == 1) THEN |
---|
642 | no_inter = .TRUE. |
---|
643 | inter_lin = .FALSE. |
---|
644 | ENDIF |
---|
645 | !- |
---|
646 | !Config Key = SPRED_PREC |
---|
647 | !Config Desc = Spread the precipitation. |
---|
648 | !Config If = [-] |
---|
649 | !Config Def = Half of the forcing time step or uniform, depending on dt_force and dt_sechiba |
---|
650 | !Config Help = Spread the precipitation over SPRED_PREC steps of the splited forcing |
---|
651 | !Config time step. This ONLY applied if the forcing time step has been splited. |
---|
652 | !Config If the value indicated is greater than SPLIT_DT, SPLIT_DT is used for it. |
---|
653 | !Config Units = [-] |
---|
654 | !- |
---|
655 | IF ( dt_force >= 3*one_hour) THEN |
---|
656 | ! Distribut the precipitations over the half of the forcing time step |
---|
657 | nb_spread = INT(0.5 * (dt_force/dt)) |
---|
658 | ELSE |
---|
659 | ! Distribut the precipitations uniformly over the forcing time step |
---|
660 | nb_spread = dt_force/dt |
---|
661 | END IF |
---|
662 | |
---|
663 | CALL getin_p('SPRED_PREC', nb_spread) |
---|
664 | IF (nb_spread > split) THEN |
---|
665 | WRITE(numout,*) 'WARNING : nb_spread is too large it will be ' |
---|
666 | WRITE(numout,*) ' set to the value of split' |
---|
667 | nb_spread = split |
---|
668 | ELSE IF (split == 1) THEN |
---|
669 | nb_spread = 1 |
---|
670 | ENDIF |
---|
671 | |
---|
672 | IF (inter_lin) THEN |
---|
673 | !Config Key = NETRAD_CONS |
---|
674 | !Config Desc = Conserve net radiation in the forcing |
---|
675 | !Config Def = y |
---|
676 | !Config If = INTER_LIN |
---|
677 | !Config Help = When the interpolation is used the net radiation |
---|
678 | !Config provided by the forcing is not conserved anymore. |
---|
679 | !Config This should be avoided and thus this option should |
---|
680 | !Config be TRUE (y). |
---|
681 | !Config This option is not used for short-wave if the |
---|
682 | !Config time-step of the forcing is longer than an hour. |
---|
683 | !Config It does not make sense to try and reconstruct |
---|
684 | !Config a diurnal cycle and at the same time conserve the |
---|
685 | !Config incoming solar radiation. |
---|
686 | !Config Units = [FLAG] |
---|
687 | !- |
---|
688 | netrad_cons = .TRUE. |
---|
689 | CALL getin_p('NETRAD_CONS', netrad_cons) |
---|
690 | ELSE |
---|
691 | netrad_cons = .FALSE. |
---|
692 | ENDIF |
---|
693 | !===================================================================== |
---|
694 | !- 3.0 Finaly we can prepare all the variables before launching |
---|
695 | !- the simulation ! |
---|
696 | !===================================================================== |
---|
697 | ! Initialize LOGICAL and the length of the integration |
---|
698 | !- |
---|
699 | last_CALL = .FALSE. |
---|
700 | first_CALL = .TRUE. |
---|
701 | !- |
---|
702 | temp_sol_NEW(:,:) = tp_00 |
---|
703 | !- |
---|
704 | !Config Key = ATM_CO2 |
---|
705 | !Config Desc = Value for atm CO2 |
---|
706 | !Config If = [-] |
---|
707 | !Config Def = 350. |
---|
708 | !Config Help = Value to prescribe the atm CO2. |
---|
709 | !Config For pre-industrial simulations, the value is 286.2 . |
---|
710 | !Config 348. for 1990 year. |
---|
711 | !Config Units = [ppm] |
---|
712 | !- |
---|
713 | atmco2=350. |
---|
714 | CALL getin_p('ATM_CO2',atmco2) |
---|
715 | for_ccanopy(:,:)=atmco2 |
---|
716 | !- |
---|
717 | ! Preparing for the implicit scheme. |
---|
718 | ! This means loading the prognostic variables from the restart file. |
---|
719 | !- |
---|
720 | Flag=.FALSE. |
---|
721 | IF (is_root_prc) THEN |
---|
722 | ALLOCATE(fluxsens_g(iim_g,jjm_g)) |
---|
723 | var_name= 'fluxsens' |
---|
724 | CALL restget & |
---|
725 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., fluxsens_g) |
---|
726 | IF (ALL(fluxsens_g(:,:) == val_exp)) THEN |
---|
727 | Flag=.TRUE. |
---|
728 | ELSE |
---|
729 | Flag=.FALSE. |
---|
730 | ENDIF |
---|
731 | ELSE |
---|
732 | ALLOCATE(fluxsens_g(0,1)) |
---|
733 | ENDIF |
---|
734 | CALL bcast(Flag) |
---|
735 | IF (.NOT. Flag) THEN |
---|
736 | CALL scatter2D_mpi(fluxsens_g,fluxsens) |
---|
737 | ELSE |
---|
738 | fluxsens(:,:) = zero |
---|
739 | ENDIF |
---|
740 | DEALLOCATE(fluxsens_g) |
---|
741 | !- |
---|
742 | IF (is_root_prc) THEN |
---|
743 | ALLOCATE(vevapp_g(iim_g,jjm_g)) |
---|
744 | var_name= 'vevapp' |
---|
745 | CALL restget & |
---|
746 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., vevapp_g) |
---|
747 | IF (ALL(vevapp_g(:,:) == val_exp)) THEN |
---|
748 | Flag=.TRUE. |
---|
749 | ELSE |
---|
750 | Flag=.FALSE. |
---|
751 | ENDIF |
---|
752 | ELSE |
---|
753 | ALLOCATE(vevapp_g(0,1)) |
---|
754 | ENDIF |
---|
755 | CALL bcast(Flag) |
---|
756 | IF (.NOT. Flag) THEN |
---|
757 | CALL scatter2D_mpi(vevapp_g,vevapp) |
---|
758 | ELSE |
---|
759 | vevapp(:,:) = zero |
---|
760 | ENDIF |
---|
761 | DEALLOCATE(vevapp_g) |
---|
762 | !- |
---|
763 | IF (is_root_prc) THEN |
---|
764 | ALLOCATE(old_zlev_g(iim_g,jjm_g)) |
---|
765 | var_name= 'zlev_old' |
---|
766 | CALL restget & |
---|
767 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., old_zlev_g) |
---|
768 | IF (ALL(old_zlev_g(:,:) == val_exp)) THEN |
---|
769 | Flag=.TRUE. |
---|
770 | ELSE |
---|
771 | Flag=.FALSE. |
---|
772 | ENDIF |
---|
773 | ELSE |
---|
774 | ALLOCATE(old_zlev_g(0,1)) |
---|
775 | ENDIF |
---|
776 | CALL bcast(Flag) |
---|
777 | IF ( .NOT. Flag ) THEN |
---|
778 | CALL scatter2D_mpi(old_zlev_g,old_zlev) |
---|
779 | ELSE |
---|
780 | old_zlev(:,:)=zlev_vec(:,:) |
---|
781 | ENDIF |
---|
782 | DEALLOCATE(old_zlev_g) |
---|
783 | !- |
---|
784 | IF (is_root_prc) THEN |
---|
785 | ALLOCATE(old_qair_g(iim_g,jjm_g)) |
---|
786 | var_name= 'qair_old' |
---|
787 | CALL restget & |
---|
788 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., old_qair_g) |
---|
789 | IF (ALL(old_qair_g(:,:) == val_exp)) THEN |
---|
790 | Flag=.TRUE. |
---|
791 | ELSE |
---|
792 | Flag=.FALSE. |
---|
793 | ENDIF |
---|
794 | ELSE |
---|
795 | ALLOCATE(old_qair_g(0,1)) |
---|
796 | ENDIF |
---|
797 | CALL bcast(Flag) |
---|
798 | IF ( .NOT. Flag ) THEN |
---|
799 | CALL scatter2D_mpi(old_qair_g,old_qair) |
---|
800 | ELSE |
---|
801 | old_qair(:,:) = qair_obs(:,:) |
---|
802 | ENDIF |
---|
803 | DEALLOCATE(old_qair_g) |
---|
804 | !- |
---|
805 | IF (is_root_prc) THEN |
---|
806 | ALLOCATE(old_eair_g(iim_g,jjm_g)) |
---|
807 | var_name= 'eair_old' |
---|
808 | CALL restget & |
---|
809 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., old_eair_g) |
---|
810 | IF (ALL(old_eair_g(:,:) == val_exp)) THEN |
---|
811 | Flag=.TRUE. |
---|
812 | ELSE |
---|
813 | Flag=.FALSE. |
---|
814 | ENDIF |
---|
815 | ELSE |
---|
816 | ALLOCATE(old_eair_g(0,1)) |
---|
817 | ENDIF |
---|
818 | CALL bcast(Flag) |
---|
819 | IF ( .NOT. Flag ) THEN |
---|
820 | CALL scatter2D_mpi(old_eair_g,old_eair) |
---|
821 | ELSE |
---|
822 | DO ik=1,nbindex |
---|
823 | i=ilandindex(ik) |
---|
824 | j=jlandindex(ik) |
---|
825 | old_eair(i,j) = cp_air * tair_obs(i,j) + cte_grav*zlev_vec(i,j) |
---|
826 | ENDDO |
---|
827 | ENDIF |
---|
828 | DEALLOCATE(old_eair_g) |
---|
829 | !- |
---|
830 | ! old density is also needed because we do not yet have the right pb |
---|
831 | !- |
---|
832 | !=> obsolète ??!! (tjrs calculé après forcing_read) |
---|
833 | IF (is_root_prc) THEN |
---|
834 | ALLOCATE(for_rau_g(iim_g,jjm_g)) |
---|
835 | var_name= 'rau_old' |
---|
836 | CALL restget & |
---|
837 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., for_rau_g) |
---|
838 | IF (ALL(for_rau_g(:,:) == val_exp)) THEN |
---|
839 | Flag=.TRUE. |
---|
840 | ELSE |
---|
841 | Flag=.FALSE. |
---|
842 | ENDIF |
---|
843 | ELSE |
---|
844 | ALLOCATE(for_rau_g(0,1)) |
---|
845 | ENDIF |
---|
846 | CALL bcast(Flag) |
---|
847 | IF ( .NOT. Flag ) THEN |
---|
848 | CALL scatter2D_mpi(for_rau_g,for_rau) |
---|
849 | ELSE |
---|
850 | DO ik=1,nbindex |
---|
851 | i=ilandindex(ik) |
---|
852 | j=jlandindex(ik) |
---|
853 | for_rau(i,j) = pb(i,j)/(cte_molr*(tair_obs(i,j))) |
---|
854 | ENDDO |
---|
855 | ENDIF |
---|
856 | DEALLOCATE(for_rau_g) |
---|
857 | !- |
---|
858 | ! For this variable the restart is extracted by SECHIBA |
---|
859 | !- |
---|
860 | temp_sol_NEW(:,:) = tair_obs(:,:) |
---|
861 | !- |
---|
862 | if (.NOT. is_watchout) THEN |
---|
863 | !- |
---|
864 | ! This does not yield a correct restart in the case of relaxation |
---|
865 | !- |
---|
866 | IF (is_root_prc) THEN |
---|
867 | ALLOCATE(petAcoef_g(iim_g,jjm_g)) |
---|
868 | var_name= 'petAcoef' |
---|
869 | CALL restget & |
---|
870 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., petAcoef_g) |
---|
871 | IF (ALL(petAcoef_g(:,:) == val_exp)) THEN |
---|
872 | Flag=.TRUE. |
---|
873 | ELSE |
---|
874 | Flag=.FALSE. |
---|
875 | ENDIF |
---|
876 | ELSE |
---|
877 | ALLOCATE(petAcoef_g(0,1)) |
---|
878 | ENDIF |
---|
879 | CALL bcast(Flag) |
---|
880 | IF ( .NOT. Flag ) THEN |
---|
881 | CALL scatter2D_mpi(petAcoef_g,petAcoef) |
---|
882 | ELSE |
---|
883 | petAcoef(:,:) = zero |
---|
884 | ENDIF |
---|
885 | DEALLOCATE(petAcoef_g) |
---|
886 | !-- |
---|
887 | IF (is_root_prc) THEN |
---|
888 | ALLOCATE(petBcoef_g(iim_g,jjm_g)) |
---|
889 | var_name= 'petBcoef' |
---|
890 | CALL restget & |
---|
891 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., petBcoef_g) |
---|
892 | IF (ALL(petBcoef_g(:,:) == val_exp)) THEN |
---|
893 | Flag=.TRUE. |
---|
894 | ELSE |
---|
895 | Flag=.FALSE. |
---|
896 | ENDIF |
---|
897 | ELSE |
---|
898 | ALLOCATE(petBcoef_g(0,1)) |
---|
899 | ENDIF |
---|
900 | CALL bcast(Flag) |
---|
901 | IF ( .NOT. Flag ) THEN |
---|
902 | CALL scatter2D_mpi(petBcoef_g,petBcoef) |
---|
903 | ELSE |
---|
904 | petBcoef(:,:) = old_eair(:,:) |
---|
905 | ENDIF |
---|
906 | DEALLOCATE(petBcoef_g) |
---|
907 | !-- |
---|
908 | IF (is_root_prc) THEN |
---|
909 | ALLOCATE(peqAcoef_g(iim_g,jjm_g)) |
---|
910 | var_name= 'peqAcoef' |
---|
911 | CALL restget & |
---|
912 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., peqAcoef_g) |
---|
913 | IF (ALL(peqAcoef_g(:,:) == val_exp)) THEN |
---|
914 | Flag=.TRUE. |
---|
915 | ELSE |
---|
916 | Flag=.FALSE. |
---|
917 | ENDIF |
---|
918 | ELSE |
---|
919 | ALLOCATE(peqAcoef_g(0,1)) |
---|
920 | ENDIF |
---|
921 | CALL bcast(Flag) |
---|
922 | IF ( .NOT. Flag ) THEN |
---|
923 | CALL scatter2D_mpi(peqAcoef_g,peqAcoef) |
---|
924 | ELSE |
---|
925 | peqAcoef(:,:) = zero |
---|
926 | ENDIF |
---|
927 | DEALLOCATE(peqAcoef_g) |
---|
928 | !-- |
---|
929 | IF (is_root_prc) THEN |
---|
930 | ALLOCATE(peqBcoef_g(iim_g,jjm_g)) |
---|
931 | var_name= 'peqBcoef' |
---|
932 | CALL restget & |
---|
933 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., peqBcoef_g) |
---|
934 | IF (ALL(peqBcoef_g(:,:) == val_exp)) THEN |
---|
935 | Flag=.TRUE. |
---|
936 | ELSE |
---|
937 | Flag=.FALSE. |
---|
938 | ENDIF |
---|
939 | ELSE |
---|
940 | ALLOCATE(peqBcoef_g(0,1)) |
---|
941 | ENDIF |
---|
942 | CALL bcast(Flag) |
---|
943 | IF ( .NOT. Flag ) THEN |
---|
944 | CALL scatter2D_mpi(peqBcoef_g,peqBcoef) |
---|
945 | ELSE |
---|
946 | peqBcoef(:,:) = old_qair(:,:) |
---|
947 | ENDIF |
---|
948 | DEALLOCATE(peqBcoef_g) |
---|
949 | ENDIF |
---|
950 | !- |
---|
951 | ! And other variables which need initial variables. These variables |
---|
952 | ! will get properly initialized by ORCHIDEE when it is called for |
---|
953 | ! the first time. |
---|
954 | !- |
---|
955 | albedo(:,:,:) = 0.13 |
---|
956 | emis(:,:) = 1.0 |
---|
957 | z0(:,:) = 0.1 |
---|
958 | !-- |
---|
959 | !===================================================================== |
---|
960 | !- 4.0 START THE TIME LOOP |
---|
961 | !===================================================================== |
---|
962 | |
---|
963 | it = itau_dep+1 |
---|
964 | DO WHILE ( it <= itau_fin ) |
---|
965 | !---- |
---|
966 | it_force = it+for_offset |
---|
967 | IF (it_force < 0) THEN |
---|
968 | WRITE(numout,*) 'The day is not in the forcing file :', & |
---|
969 | & it_force, it, for_offset |
---|
970 | CALL ipslerr_p(3,'dim2_driver','Pb in forcing file','','') |
---|
971 | ENDIF |
---|
972 | !!$ IF (it_force > itau_dep+tm) THEN |
---|
973 | !!$ WRITE(numout,*) 'ERROR : more time-steps than data' |
---|
974 | !!$ WRITE(numout,*) 'it_force : ', it_force, ' itau_dep+tm : ', itau_dep+tm |
---|
975 | !!$ STOP 'dim2_driver' |
---|
976 | !!$ ENDIF |
---|
977 | !--- |
---|
978 | is=split_start |
---|
979 | DO WHILE ( is <= split ) |
---|
980 | !----- |
---|
981 | julian = itau2date(istp, date0_rest, dt) |
---|
982 | CALL ju2ymds(julian, yy, mm, dd, ss) |
---|
983 | IF (printlev_loc>=3) THEN |
---|
984 | WRITE(numout,*) "==============================================================" |
---|
985 | WRITE(numout,"('New iteration at date : ',I4,'-',I2.2,'-',I2.2,':',F8.4)") & |
---|
986 | & yy,mm,dd,ss/3600. |
---|
987 | #ifdef CPP_PARA |
---|
988 | IF (is_root_prc) THEN |
---|
989 | WRITE(*,*) "==============================================================" |
---|
990 | WRITE(*,"('New iteration at date : ',I4,'-',I2.2,'-',I2.2,':',F8.4)") & |
---|
991 | & yy,mm,dd,ss/3600. |
---|
992 | ENDIF |
---|
993 | #endif |
---|
994 | ENDIF |
---|
995 | !----- |
---|
996 | IF ( (it == itau_fin).AND.(is == split) ) THEN |
---|
997 | last_CALL = .TRUE. |
---|
998 | ENDIF |
---|
999 | !----- |
---|
1000 | IF (printlev_loc>=3) WRITE(numout,*) 'Into forcing_read' |
---|
1001 | !----- |
---|
1002 | CALL forcing_READ & |
---|
1003 | & (filename, rest_id, .FALSE., last_call, & |
---|
1004 | & it_force, istp, is, split, nb_spread, netrad_cons, & |
---|
1005 | & date0_rest, dt_force, iim, jjm, lon, lat, zlev_vec, zlevuv_vec, tm, & |
---|
1006 | & swdown, coszang, precip_rain, precip_snow, tair_obs, & |
---|
1007 | & u, v, qair_obs, pb, for_lwdown, for_contfrac, for_neighbours, for_resolution, & |
---|
1008 | & for_swnet, eair_obs, petAcoef, peqAcoef, petBcoef, peqBcoef, cdrag, for_ccanopy, & |
---|
1009 | & kindex, nbindex, force_id) |
---|
1010 | |
---|
1011 | !----- |
---|
1012 | !---- SECHIBA expects surface pressure in hPa |
---|
1013 | !----- |
---|
1014 | for_psurf(:,:) = pb(:,:)/100. |
---|
1015 | |
---|
1016 | IF (printlev_loc>=4) THEN |
---|
1017 | WRITE(numout,*) "dim2_driver 0 ",it_force |
---|
1018 | WRITE(numout,*) ">> Index of land points =",kindex(1:nbindex) |
---|
1019 | WRITE(numout,*) "Lowest level wind speed North = ", & |
---|
1020 | & (/ ( u(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1021 | WRITE(numout,*) "Lowest level wind speed East = ", & |
---|
1022 | & (/ ( v(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1023 | WRITE(numout,*) "z0 ; Surface roughness = ", & |
---|
1024 | & (/ ( z0(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1025 | WRITE(numout,*) "Height of first layer = ", & |
---|
1026 | & (/ ( zlev_vec(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1027 | WRITE(numout,*) "Lowest level specific humidity = ", & |
---|
1028 | & (/ ( qair_obs(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1029 | WRITE(numout,*) "Rain precipitation = ", & |
---|
1030 | & (/ ( precip_rain(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1031 | WRITE(numout,*) "Snow precipitation = ", & |
---|
1032 | & (/ ( precip_snow(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1033 | WRITE(numout,*) "Down-welling long-wave flux = ", & |
---|
1034 | & (/ ( for_lwdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1035 | WRITE(numout,*) "Net surface short-wave flux = ", & |
---|
1036 | & (/ ( for_swnet(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1037 | WRITE(numout,*) "Downwelling surface short-wave flux = ", & |
---|
1038 | & (/ ( swdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1039 | WRITE(numout,*) "Air temperature in Kelvin = ", & |
---|
1040 | & (/ ( tair_obs(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1041 | WRITE(numout,*) "Air potential energy = ", & |
---|
1042 | & (/ ( eair_obs(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1043 | WRITE(numout,*) "CO2 concentration in the canopy = ", & |
---|
1044 | & (/ ( for_ccanopy(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1045 | WRITE(numout,*) "Coeficients A from the PBL resolution = ", & |
---|
1046 | & (/ ( petAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1047 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1048 | & (/ ( peqAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1049 | WRITE(numout,*) "Coeficients B from the PBL resolution = ", & |
---|
1050 | & (/ ( petBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1051 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1052 | & (/ ( peqBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1053 | WRITE(numout,*) "Cdrag = ", & |
---|
1054 | & (/ ( cdrag(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1055 | WRITE(numout,*) "CO2 concentration in the canopy = ", & |
---|
1056 | & (/ ( for_ccanopy(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1057 | WRITE(numout,*) "Lowest level pressure = ", & |
---|
1058 | & (/ ( for_psurf(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1059 | WRITE(numout,*) "Geographical coordinates lon = ", & |
---|
1060 | & (/ ( lon(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1061 | WRITE(numout,*) "Geographical coordinates lat = ", & |
---|
1062 | & (/ ( lat(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1063 | WRITE(numout,*) "Fraction of continent in the grid = ", & |
---|
1064 | & (/ ( for_contfrac(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1065 | ENDIF |
---|
1066 | !----- |
---|
1067 | !---- Prepare : tmp_qair, tmp_eair, tmp_tair, tmp_pb |
---|
1068 | !---- and : for_u, for_v, for_lwdown, for_swnet, for_swdown |
---|
1069 | !---- All the work is done in forcing_read |
---|
1070 | !---- We do not need the no_inter options as we will |
---|
1071 | !---- allways interpolate |
---|
1072 | !----- |
---|
1073 | IF (printlev_loc>=3) WRITE(numout,*) 'Prepare the atmospheric forcing' |
---|
1074 | !----- |
---|
1075 | IF (.NOT. is_watchout) THEN |
---|
1076 | DO ik=1,nbindex |
---|
1077 | i=ilandindex(ik) |
---|
1078 | j=jlandindex(ik) |
---|
1079 | eair_obs(i,j) = cp_air*tair_obs(i,j)+cte_grav*zlev_vec(i,j) |
---|
1080 | for_swnet(i,j) = (1.-(albedo(i,j,1)+albedo(i,j,2))/2.)*swdown(i,j) |
---|
1081 | ENDDO |
---|
1082 | ENDIF |
---|
1083 | DO ik=1,nbindex |
---|
1084 | i=ilandindex(ik) |
---|
1085 | j=jlandindex(ik) |
---|
1086 | for_swdown(i,j) = swdown(i,j) |
---|
1087 | for_coszang(i,j) = coszang(i,j) |
---|
1088 | ENDDO |
---|
1089 | !----- |
---|
1090 | !---- Computing the buffer zone ! |
---|
1091 | !----- |
---|
1092 | IF (relaxation) THEN |
---|
1093 | DO ik=1,nbindex |
---|
1094 | i=ilandindex(ik) |
---|
1095 | j=jlandindex(ik) |
---|
1096 | for_qair(i,j) = peqAcoef(i,j)*(-1.) * vevapp(i,j)*dt+peqBcoef(i,j) |
---|
1097 | !------- |
---|
1098 | for_eair(i,j) = petAcoef(i,j)*(-1.) * fluxsens(i,j)+petBcoef(i,j) |
---|
1099 | !------- |
---|
1100 | ENDDO |
---|
1101 | DO ik=1,nbindex |
---|
1102 | i=ilandindex(ik) |
---|
1103 | j=jlandindex(ik) |
---|
1104 | for_tair(i,j) = (for_eair(i,j) - cte_grav*zlev_vec(i,j))/cp_air |
---|
1105 | !------- |
---|
1106 | !!$ if (.NOT. is_watchout) & |
---|
1107 | !!$ epot_sol(:,:) = cp_air*temp_sol_NEW(:,:) |
---|
1108 | !------- |
---|
1109 | ENDDO |
---|
1110 | DO ik=1,nbindex |
---|
1111 | i=ilandindex(ik) |
---|
1112 | j=jlandindex(ik) |
---|
1113 | for_rau(i,j) = pb(i,j) / (cte_molr*for_tair(i,j)) |
---|
1114 | !------- |
---|
1115 | relax(i,j) = for_rau(i,j)*alpha |
---|
1116 | ENDDO |
---|
1117 | |
---|
1118 | DO ik=1,nbindex |
---|
1119 | i=ilandindex(ik) |
---|
1120 | j=jlandindex(ik) |
---|
1121 | zlflu = zlev_vec(i,j)/2.0*dt |
---|
1122 | peqAcoef(i,j) = 1.0/(zlflu+relax(i,j)) |
---|
1123 | peqBcoef(i,j) = (relax(i,j) * qair_obs(i,j)/(zlflu+relax(i,j))) + & |
---|
1124 | & for_qair(i,j)/(1.0+relax(i,j)/zlflu) |
---|
1125 | ENDDO |
---|
1126 | !------- |
---|
1127 | ! relax(:,:) = for_rau(:,:)*alpha |
---|
1128 | DO ik=1,nbindex |
---|
1129 | i=ilandindex(ik) |
---|
1130 | j=jlandindex(ik) |
---|
1131 | petAcoef(i,j) = 1.0/(zlflu+relax(i,j)) |
---|
1132 | petBcoef(i,j) = ( relax(i,j) * eair_obs(i,j) / (zlflu+relax(i,j)) ) & |
---|
1133 | & + for_eair(i,j)/(1.0+relax(i,j)/zlflu) |
---|
1134 | ENDDO |
---|
1135 | ELSE |
---|
1136 | for_qair(:,:) = fill_init |
---|
1137 | for_eair(:,:) = fill_init |
---|
1138 | for_tair(:,:) = fill_init |
---|
1139 | DO ik=1,nbindex |
---|
1140 | i=ilandindex(ik) |
---|
1141 | j=jlandindex(ik) |
---|
1142 | for_qair(i,j) = qair_obs(i,j) |
---|
1143 | for_eair(i,j) = eair_obs(i,j) |
---|
1144 | for_tair(i,j) = tair_obs(i,j) |
---|
1145 | ENDDO |
---|
1146 | !------- |
---|
1147 | !!$ if (.NOT. is_watchout) & |
---|
1148 | !!$ epot_sol(:,:) = cp_air*temp_sol_NEW(:,:) |
---|
1149 | !------- |
---|
1150 | DO ik=1,nbindex |
---|
1151 | i=ilandindex(ik) |
---|
1152 | j=jlandindex(ik) |
---|
1153 | for_rau(i,j) = pb(i,j) / (cte_molr*for_tair(i,j)) |
---|
1154 | ENDDO |
---|
1155 | !------- |
---|
1156 | IF (.NOT. is_watchout) THEN |
---|
1157 | petAcoef(:,:) = 0.0 |
---|
1158 | peqAcoef(:,:) = 0.0 |
---|
1159 | DO ik=1,nbindex |
---|
1160 | i=ilandindex(ik) |
---|
1161 | j=jlandindex(ik) |
---|
1162 | petBcoef(i,j) = eair_obs(i,j) |
---|
1163 | peqBcoef(i,j) = qair_obs(i,j) |
---|
1164 | ENDDO |
---|
1165 | ENDIF |
---|
1166 | ENDIF |
---|
1167 | !----- |
---|
1168 | IF (.NOT. is_watchout) & |
---|
1169 | cdrag(:,:) = 0.0 |
---|
1170 | for_ccanopy(:,:)=atmco2 |
---|
1171 | !----- |
---|
1172 | !---- SECHIBA expects wind, temperature and humidity at the same height. |
---|
1173 | !---- If this is not the case then we need to correct for that. |
---|
1174 | !----- |
---|
1175 | DO ik=1,nbindex |
---|
1176 | i=ilandindex(ik) |
---|
1177 | j=jlandindex(ik) |
---|
1178 | for_u(i,j) = u(i,j)*LOG(zlev_vec(i,j)/z0(i,j)) / & |
---|
1179 | LOG(zlevuv_vec(i,j)/z0(i,j)) |
---|
1180 | for_v(i,j) = v(i,j)*LOG(zlev_vec(i,j)/z0(i,j)) / & |
---|
1181 | LOG(zlevuv_vec(i,j)/z0(i,j)) |
---|
1182 | END DO |
---|
1183 | |
---|
1184 | !----- |
---|
1185 | !---- Prepare the other variables WITH the special CASE |
---|
1186 | !---- of splited time steps |
---|
1187 | !---- |
---|
1188 | !---- PRINT input value for printlev_loc>=3 |
---|
1189 | !----- |
---|
1190 | IF (printlev_loc>=3) THEN |
---|
1191 | WRITE(numout,*) ' >>>>>> time step it_force = ',it_force |
---|
1192 | WRITE(numout,*) & |
---|
1193 | & ' tair, qair, eair = ', & |
---|
1194 | & for_tair(itest,jtest),for_qair(itest,jtest), & |
---|
1195 | & for_eair(itest,jtest) |
---|
1196 | WRITE(numout,*) & |
---|
1197 | & ' OBS : tair, qair, eair = ', & |
---|
1198 | & tair_obs(itest,jtest),qair_obs(itest,jtest), & |
---|
1199 | & eair_obs(itest,jtest) |
---|
1200 | WRITE(numout,*) ' u et v = ',for_u(itest,jtest),for_v(itest,jtest) |
---|
1201 | WRITE(numout,*) ' precip rain et snow = ', & |
---|
1202 | & precip_rain(itest,jtest),precip_snow(itest,jtest) |
---|
1203 | WRITE(numout,*) ' lwdown et swnet = ', & |
---|
1204 | & for_lwdown(itest,jtest),for_swnet(itest,jtest) |
---|
1205 | WRITE(numout,*) ' petAcoef et peqAcoef = ', & |
---|
1206 | & petAcoef(itest,jtest), peqAcoef(itest,jtest) |
---|
1207 | WRITE(numout,*) ' petBcoef et peqAcoef = ', & |
---|
1208 | & petBcoef(itest,jtest),peqBcoef(itest,jtest) |
---|
1209 | WRITE(numout,*) ' zlev = ',zlev_vec(itest,jtest) |
---|
1210 | ENDIF |
---|
1211 | !----- |
---|
1212 | IF (first_CALL) THEN |
---|
1213 | |
---|
1214 | DO ik=1,nbindex |
---|
1215 | i=ilandindex(ik) |
---|
1216 | j=jlandindex(ik) |
---|
1217 | for_swdown(i,j) = swdown(i,j) |
---|
1218 | for_coszang(i,j) = coszang(i,j) |
---|
1219 | ENDDO |
---|
1220 | IF (printlev_loc>=4) THEN |
---|
1221 | WRITE(numout,*) "dim2_driver first_CALL ",it_force |
---|
1222 | WRITE(numout,*) ">> Index of land points =",kindex(1:nbindex) |
---|
1223 | WRITE(numout,*) "Lowest level wind speed North = ", & |
---|
1224 | & (/ ( for_u(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1225 | WRITE(numout,*) "Lowest level wind speed East = ", & |
---|
1226 | & (/ ( for_v(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1227 | WRITE(numout,*) "z0 ; Surface roughness = ", & |
---|
1228 | & (/ ( z0(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1229 | WRITE(numout,*) "Height of first layer = ", & |
---|
1230 | & (/ ( zlev_vec(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1231 | WRITE(numout,*) "Lowest level specific humidity = ", & |
---|
1232 | & (/ ( for_qair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1233 | WRITE(numout,*) "Rain precipitation = ", & |
---|
1234 | & (/ ( precip_rain(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1235 | WRITE(numout,*) "Snow precipitation = ", & |
---|
1236 | & (/ ( precip_snow(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1237 | WRITE(numout,*) "Down-welling long-wave flux = ", & |
---|
1238 | & (/ ( for_lwdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1239 | WRITE(numout,*) "Net surface short-wave flux = ", & |
---|
1240 | & (/ ( for_swnet(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1241 | WRITE(numout,*) "Downwelling surface short-wave flux = ", & |
---|
1242 | & (/ ( for_swdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1243 | WRITE(numout,*) "Air temperature in Kelvin = ", & |
---|
1244 | & (/ ( for_tair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1245 | WRITE(numout,*) "Air potential energy = ", & |
---|
1246 | & (/ ( for_eair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1247 | WRITE(numout,*) "CO2 concentration in the canopy = ", & |
---|
1248 | & (/ ( for_ccanopy(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1249 | WRITE(numout,*) "Coeficients A from the PBL resolution = ", & |
---|
1250 | & (/ ( petAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1251 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1252 | & (/ ( peqAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1253 | WRITE(numout,*) "Coeficients B from the PBL resolution = ", & |
---|
1254 | & (/ ( petBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1255 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1256 | & (/ ( peqBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1257 | WRITE(numout,*) "Cdrag = ", & |
---|
1258 | & (/ ( cdrag(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1259 | WRITE(numout,*) "Lowest level pressure = ", & |
---|
1260 | & (/ ( for_psurf(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1261 | WRITE(numout,*) "Geographical coordinates lon = ", & |
---|
1262 | & (/ ( lon(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1263 | WRITE(numout,*) "Geographical coordinates lat = ", & |
---|
1264 | & (/ ( lat(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1265 | WRITE(numout,*) "Fraction of continent in the grid = ", & |
---|
1266 | & (/ ( for_contfrac(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1267 | ENDIF |
---|
1268 | !------- |
---|
1269 | !------ CALL sechiba to initialize fields |
---|
1270 | !------ and have some initial results: emis, albedo, z0 |
---|
1271 | !------- |
---|
1272 | CALL intersurf_initialize_2d & |
---|
1273 | & (istp_old, iim, jjm, nbindex, kindex, dt, & |
---|
1274 | & first_CALL, .FALSE., lon, lat, for_contfrac, for_resolution, date0_rest, & |
---|
1275 | ! first level conditions |
---|
1276 | & zlev_vec, for_u, for_v, & |
---|
1277 | & for_qair, for_tair, for_eair, for_ccanopy, & |
---|
1278 | ! Variables for the implicit coupling |
---|
1279 | & cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
1280 | ! Rain, snow, radiation and surface pressure |
---|
1281 | & precip_rain, precip_snow, & |
---|
1282 | & for_lwdown, for_swnet, for_swdown, for_psurf, & |
---|
1283 | ! Output : Fluxes |
---|
1284 | & vevapp, fluxsens, fluxlat, coastalflow(:,:,ih2o), riverflow(:,:,ih2o), & |
---|
1285 | ! Surface temperatures and surface properties |
---|
1286 | & tsol_rad, temp_sol_NEW, qsurf, albedo, emis, z0 ) |
---|
1287 | |
---|
1288 | CALL Stop_timer(timer_global) |
---|
1289 | CALL Stop_timer(timer_mpi) |
---|
1290 | CALL Start_timer(timer_global) |
---|
1291 | CALL Start_timer(timer_mpi) |
---|
1292 | ! |
---|
1293 | first_CALL = .FALSE. |
---|
1294 | ! |
---|
1295 | ! Get Restart values for albedo and z0, |
---|
1296 | ! as they modify forcing variables swnet and wind. |
---|
1297 | !------- |
---|
1298 | ! albedo |
---|
1299 | IF (is_root_prc) THEN |
---|
1300 | ALLOCATE(albedo_g(iim_g,jjm_g)) |
---|
1301 | ELSE |
---|
1302 | ALLOCATE(albedo_g(0,1)) |
---|
1303 | ENDIF |
---|
1304 | ! |
---|
1305 | IF (is_root_prc) THEN |
---|
1306 | var_name= 'albedo_vis' |
---|
1307 | CALL restget & |
---|
1308 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., albedo_g) |
---|
1309 | IF (ALL(albedo_g(:,:) == val_exp)) THEN |
---|
1310 | Flag=.TRUE. |
---|
1311 | ELSE |
---|
1312 | Flag=.FALSE. |
---|
1313 | ENDIF |
---|
1314 | ENDIF |
---|
1315 | CALL bcast(Flag) |
---|
1316 | IF ( .NOT. Flag ) THEN |
---|
1317 | CALL scatter2D_mpi(albedo_g,albedo_vis) |
---|
1318 | albedo(:,:,1)=albedo_vis(:,:) |
---|
1319 | ELSE |
---|
1320 | albedo_vis(:,:)=albedo(:,:,1) |
---|
1321 | ENDIF |
---|
1322 | ! |
---|
1323 | IF (is_root_prc) THEN |
---|
1324 | var_name= 'albedo_nir' |
---|
1325 | CALL restget & |
---|
1326 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., albedo_g) |
---|
1327 | IF (ALL(albedo_g(:,:) == val_exp)) THEN |
---|
1328 | Flag=.TRUE. |
---|
1329 | ELSE |
---|
1330 | Flag=.FALSE. |
---|
1331 | ENDIF |
---|
1332 | ENDIF |
---|
1333 | CALL bcast(Flag) |
---|
1334 | IF ( .NOT. Flag ) THEN |
---|
1335 | CALL scatter2D_mpi(albedo_g,albedo_nir) |
---|
1336 | albedo(:,:,2)=albedo_nir(:,:) |
---|
1337 | ELSE |
---|
1338 | albedo_nir(:,:)=albedo(:,:,2) |
---|
1339 | ENDIF |
---|
1340 | ! |
---|
1341 | DEALLOCATE(albedo_g) |
---|
1342 | !-- |
---|
1343 | ! z0 |
---|
1344 | IF (is_root_prc) THEN |
---|
1345 | ALLOCATE(z0_g(iim_g,jjm_g)) |
---|
1346 | var_name= 'z0' |
---|
1347 | CALL restget & |
---|
1348 | & (rest_id, var_name, iim_g, jjm_g, 1, istp_old, .TRUE., z0_g) |
---|
1349 | IF (ALL(z0_g(:,:) == val_exp)) THEN |
---|
1350 | Flag=.TRUE. |
---|
1351 | ELSE |
---|
1352 | Flag=.FALSE. |
---|
1353 | ENDIF |
---|
1354 | ELSE |
---|
1355 | ALLOCATE(z0_g(0,1)) |
---|
1356 | ENDIF |
---|
1357 | CALL bcast(Flag) |
---|
1358 | IF (.NOT. Flag) & |
---|
1359 | CALL scatter2D_mpi(z0_g,z0) |
---|
1360 | DEALLOCATE(z0_g) |
---|
1361 | !------- |
---|
1362 | DO ik=1,nbindex |
---|
1363 | i=ilandindex(ik) |
---|
1364 | j=jlandindex(ik) |
---|
1365 | temp_sol_old(i,j) = temp_sol_NEW(i,j) |
---|
1366 | for_swnet(i,j) = (1.- (albedo(i,j,1)+albedo(i,j,2))/2.)*swdown(i,j) |
---|
1367 | for_swdown(i,j) = swdown(i,j) |
---|
1368 | for_coszang(i,j) = coszang(i,j) |
---|
1369 | ENDDO |
---|
1370 | ! |
---|
1371 | ! MM : z0 have been modified then we must lower the wind again |
---|
1372 | !----- |
---|
1373 | !---- SECHIBA expects wind, temperature and humidity at the same height. |
---|
1374 | !---- If this is not the case then we need to correct for that. |
---|
1375 | !----- |
---|
1376 | DO ik=1,nbindex |
---|
1377 | i=ilandindex(ik) |
---|
1378 | j=jlandindex(ik) |
---|
1379 | for_u(i,j) = u(i,j) * LOG(zlev_vec(i,j)/z0(i,j)) / & |
---|
1380 | LOG(zlevuv_vec(i,j)/z0(i,j)) |
---|
1381 | for_v(i,j) = v(i,j) * LOG(zlev_vec(i,j)/z0(i,j)) / & |
---|
1382 | LOG(zlevuv_vec(i,j)/z0(i,j)) |
---|
1383 | END DO |
---|
1384 | |
---|
1385 | !----- |
---|
1386 | !---- PRINT input value after first_CALL for printlev_loc>=3 |
---|
1387 | !----- |
---|
1388 | IF (printlev_loc>=3) THEN |
---|
1389 | WRITE(numout,*) ' >>>>>> after first_CALL = ',first_CALL |
---|
1390 | WRITE(numout,*) ' u et v = ',for_u(itest,jtest),for_v(itest,jtest) |
---|
1391 | WRITE(numout,*) ' swnet = ', for_swnet(itest,jtest) |
---|
1392 | ENDIF |
---|
1393 | !------- |
---|
1394 | IF (printlev_loc>=4) THEN |
---|
1395 | WRITE(numout,*) "dim2_driver first_CALL outputs" |
---|
1396 | ! Output : Fluxes |
---|
1397 | WRITE(numout,*) "vevapp ; Total of evaporation = ", & |
---|
1398 | & (/ ( vevapp(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1399 | WRITE(numout,*) "Sensible heat flux = ", & |
---|
1400 | & (/ ( fluxsens(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1401 | WRITE(numout,*) "Latent heat flux = ", & |
---|
1402 | & (/ ( fluxlat(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1403 | WRITE(numout,*) "coastalflow ; Diffuse flow of water into the ocean (m^3/dt) = ", & |
---|
1404 | & (/ ( coastalflow(ilandindex(ik), jlandindex(ik),ih2o),ik=1,nbindex ) /) |
---|
1405 | WRITE(numout,*) "riverflow ; Largest rivers flowing into the ocean (m^3/dt) = ", & |
---|
1406 | & (/ ( riverflow(ilandindex(ik), jlandindex(ik),ih2o),ik=1,nbindex ) /) |
---|
1407 | ! Surface temperatures and surface properties |
---|
1408 | WRITE(numout,*) "tsol_rad ; Radiative surface temperature = ", & |
---|
1409 | & (/ ( tsol_rad(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1410 | WRITE(numout,*) "temp_sol_new ; New soil temperature = ", & |
---|
1411 | & (/ ( temp_sol_NEW(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1412 | WRITE(numout,*) "qsurf ; Surface specific humidity = ", & |
---|
1413 | & (/ ( qsurf(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1414 | WRITE(numout,*) "albedoVIS = ", & |
---|
1415 | & (/ ( albedo(ilandindex(ik), jlandindex(ik), 1),ik=1,nbindex ) /) |
---|
1416 | WRITE(numout,*) "albedoNIR = ", & |
---|
1417 | & (/ ( albedo(ilandindex(ik), jlandindex(ik), 2),ik=1,nbindex ) /) |
---|
1418 | WRITE(numout,*) "emis ; Emissivity = ", & |
---|
1419 | & (/ ( emis(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1420 | WRITE(numout,*) "z0 ; Surface roughness = ", & |
---|
1421 | & (/ ( z0(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1422 | ENDIF |
---|
1423 | !------- |
---|
1424 | IF (printlev_loc>=3) THEN |
---|
1425 | WRITE(numout,*) & |
---|
1426 | & ' OUT rest : z0, albedoVIS, albedoNIR, emis = ', & |
---|
1427 | & z0(itest,jtest),albedo(itest,jtest,1), & |
---|
1428 | & albedo(itest,jtest,2),emis(itest,jtest) |
---|
1429 | WRITE(numout,*) ' OUT rest : coastal and river flow = ', & |
---|
1430 | & coastalflow(itest,jtest,ih2o), riverflow(itest,jtest,ih2o) |
---|
1431 | WRITE(numout,*) ' OUT rest : tsol_rad, vevapp = ', & |
---|
1432 | & tsol_rad(itest,jtest), vevapp(itest,jtest) |
---|
1433 | WRITE(numout,*) ' OUT rest : temp_sol_new =', & |
---|
1434 | & temp_sol_NEW(itest,jtest) |
---|
1435 | ENDIF |
---|
1436 | |
---|
1437 | !ANNE/ CALL barrier_para |
---|
1438 | !ANNE/ CALL start_timer(timer_global) |
---|
1439 | !ANNE/ CALL start_timer(timer_mpi) |
---|
1440 | |
---|
1441 | ENDIF |
---|
1442 | !----- |
---|
1443 | !---- Calling SECHIBA and doing the number crunching. |
---|
1444 | !---- Note that for the first time step SECHIBA is called twice. |
---|
1445 | !---- |
---|
1446 | !---- All H_2O fluxes are now in Kg/m^2s |
---|
1447 | !----- |
---|
1448 | IF (printlev_loc>=4) THEN |
---|
1449 | WRITE(numout,*) "dim2_driver ",it_force |
---|
1450 | WRITE(numout,*) ">> Index of land points =",kindex(1:nbindex) |
---|
1451 | WRITE(numout,*) "Lowest level wind speed North = ", & |
---|
1452 | & (/ ( for_u(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1453 | WRITE(numout,*) "Lowest level wind speed East = ", & |
---|
1454 | & (/ ( for_v(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1455 | WRITE(numout,*) "z0 ; Surface roughness = ", & |
---|
1456 | & (/ ( z0(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1457 | WRITE(numout,*) "Height of first layer = ", & |
---|
1458 | & (/ ( zlev_vec(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1459 | WRITE(numout,*) "Lowest level specific humidity = ", & |
---|
1460 | & (/ ( for_qair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1461 | WRITE(numout,*) "Rain precipitation = ", & |
---|
1462 | & (/ ( precip_rain(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1463 | WRITE(numout,*) "Snow precipitation = ", & |
---|
1464 | & (/ ( precip_snow(ilandindex(ik), jlandindex(ik))*dt,ik=1,nbindex ) /) |
---|
1465 | WRITE(numout,*) "Down-welling long-wave flux = ", & |
---|
1466 | & (/ ( for_lwdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1467 | WRITE(numout,*) "Net surface short-wave flux = ", & |
---|
1468 | & (/ ( for_swnet(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1469 | WRITE(numout,*) "Downwelling surface short-wave flux = ", & |
---|
1470 | & (/ ( for_swdown(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1471 | WRITE(numout,*) "Air temperature in Kelvin = ", & |
---|
1472 | & (/ ( for_tair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1473 | WRITE(numout,*) "Air potential energy = ", & |
---|
1474 | & (/ ( for_eair(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1475 | WRITE(numout,*) "CO2 concentration in the canopy = ", & |
---|
1476 | & (/ ( for_ccanopy(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1477 | WRITE(numout,*) "Coeficients A from the PBL resolution = ", & |
---|
1478 | & (/ ( petAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1479 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1480 | & (/ ( peqAcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1481 | WRITE(numout,*) "Coeficients B from the PBL resolution = ", & |
---|
1482 | & (/ ( petBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1483 | WRITE(numout,*) "One for T and another for q = ", & |
---|
1484 | & (/ ( peqBcoef(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1485 | WRITE(numout,*) "Cdrag = ", & |
---|
1486 | & (/ ( cdrag(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1487 | WRITE(numout,*) "Lowest level pressure = ", & |
---|
1488 | & (/ ( for_psurf(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1489 | WRITE(numout,*) "Geographical coordinates lon = ", & |
---|
1490 | & (/ ( lon(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1491 | WRITE(numout,*) "Geographical coordinates lat = ", & |
---|
1492 | & (/ ( lat(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1493 | WRITE(numout,*) "Fraction of continent in the grid = ", & |
---|
1494 | & (/ ( for_contfrac(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | CALL intersurf_main_2d & |
---|
1498 | & (istp, iim, jjm, nbindex, kindex, dt, & |
---|
1499 | & first_CALL, last_CALL, lon, lat, for_contfrac, for_resolution, date0_rest, & |
---|
1500 | ! first level conditions |
---|
1501 | & zlev_vec, for_u, for_v, & |
---|
1502 | & for_qair, for_tair, for_eair, for_ccanopy, & |
---|
1503 | ! Variables for the implicit coupling |
---|
1504 | & cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
1505 | ! Rain, snow, radiation and surface pressure |
---|
1506 | & precip_rain, precip_snow, & |
---|
1507 | & for_lwdown, for_swnet, for_swdown, for_psurf, & |
---|
1508 | ! Output : Fluxes |
---|
1509 | & vevapp, fluxsens, fluxlat, coastalflow(:,:,ih2o), riverflow(:,:,ih2o), & |
---|
1510 | ! Surface temperatures and surface properties |
---|
1511 | & tsol_rad, temp_sol_NEW, qsurf, albedo, emis, z0, & |
---|
1512 | ! VOC : radiation |
---|
1513 | & for_coszang) |
---|
1514 | ! & for_coszang,soil_mc,litter_mc) |
---|
1515 | !------- |
---|
1516 | IF (printlev_loc>=4) THEN |
---|
1517 | WRITE(numout,*) "dim2_driver outputs" |
---|
1518 | ! Output : Fluxes |
---|
1519 | WRITE(numout,*) "vevapp ; Total of evaporation = ", & |
---|
1520 | & (/ ( vevapp(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1521 | WRITE(numout,*) "Sensible heat flux = ", & |
---|
1522 | & (/ ( fluxsens(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1523 | WRITE(numout,*) "Latent heat flux = ", & |
---|
1524 | & (/ ( fluxlat(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1525 | WRITE(numout,*) "coastalflow ; Diffuse flow of water into the ocean (m^3/dt) = ", & |
---|
1526 | & (/ ( coastalflow(ilandindex(ik), jlandindex(ik),ih2o),ik=1,nbindex ) /) |
---|
1527 | WRITE(numout,*) "riverflow ; Largest rivers flowing into the ocean (m^3/dt) = ", & |
---|
1528 | & (/ ( riverflow(ilandindex(ik), jlandindex(ik),ih2o),ik=1,nbindex ) /) |
---|
1529 | ! Surface temperatures and surface properties |
---|
1530 | WRITE(numout,*) "tsol_rad ; Radiative surface temperature = ", & |
---|
1531 | & (/ ( tsol_rad(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1532 | WRITE(numout,*) "temp_sol_new ; New soil temperature = ", & |
---|
1533 | & (/ ( temp_sol_NEW(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1534 | WRITE(numout,*) "qsurf ; Surface specific humidity = ", & |
---|
1535 | & (/ ( qsurf(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1536 | WRITE(numout,*) "albedoVIS = ", & |
---|
1537 | & (/ ( albedo(ilandindex(ik), jlandindex(ik), 1),ik=1,nbindex ) /) |
---|
1538 | WRITE(numout,*) "albedoNIR = ", & |
---|
1539 | & (/ ( albedo(ilandindex(ik), jlandindex(ik), 2),ik=1,nbindex ) /) |
---|
1540 | WRITE(numout,*) "emis ; Emissivity = ", & |
---|
1541 | & (/ ( emis(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1542 | WRITE(numout,*) "z0 ; Surface roughness = ", & |
---|
1543 | & (/ ( z0(ilandindex(ik), jlandindex(ik)),ik=1,nbindex ) /) |
---|
1544 | ENDIF |
---|
1545 | !----- |
---|
1546 | dtdt(:,:) = zero |
---|
1547 | DO ik=1,nbindex |
---|
1548 | i=ilandindex(ik) |
---|
1549 | j=jlandindex(ik) |
---|
1550 | dtdt(i,j) = ABS(temp_sol_NEW(i,j)-temp_sol_old(i,j))/dt |
---|
1551 | ENDDO |
---|
1552 | !----- |
---|
1553 | !---- Test if the point with the largest change has more than 5K per dt |
---|
1554 | !----- |
---|
1555 | IF (MAXVAL(dtdt(:,:)) > 5./dt) THEN |
---|
1556 | ml = MAXLOC(dtdt) |
---|
1557 | CALL ju2ymds(julian, yy, mm, dd, ss) |
---|
1558 | WRITE(numout,"('ATT :',I5,' big temperature jumps on ', & |
---|
1559 | & I4,'-',I2.2,'-',I2.2,':',F8.4)") & |
---|
1560 | & COUNT(dtdt(:,:) > 5./dt),yy,mm,dd,ss/3600. |
---|
1561 | WRITE(numout,*) & |
---|
1562 | & 'Maximum change of surface temperature located at :', & |
---|
1563 | & lon(ml(1),ml(2)),lat(ml(1),ml(2)) |
---|
1564 | WRITE(numout,*) 'Coordinates in grid space: ',ml(1),ml(2) |
---|
1565 | WRITE(numout,*) 'Change from ',temp_sol_old(ml(1),ml(2)), & |
---|
1566 | & ' to ',temp_sol_new(ml(1),ml(2)),& |
---|
1567 | & 'with sw_in = ',for_swnet(ml(1),ml(2)) |
---|
1568 | old_tair = & |
---|
1569 | & (old_eair(ml(1),ml(2))-cte_grav*old_zlev(ml(1),ml(2)))/cp_air |
---|
1570 | WRITE(numout,*) 'Air temperature change from ',old_tair, & |
---|
1571 | & ' to ',for_tair(ml(1),ml(2)) |
---|
1572 | WRITE(numout,*) 'Max of dtdt : ',dtdt(ml(1),ml(2)),' with dt = ',dt |
---|
1573 | ENDIF |
---|
1574 | !----- |
---|
1575 | temp_sol_old(:,:) = temp_sol_NEW(:,:) |
---|
1576 | !----- |
---|
1577 | !---- PRINT output value for printlev_loc>=3 |
---|
1578 | !----- |
---|
1579 | IF (printlev_loc>=3) THEN |
---|
1580 | WRITE(numout,*) ' OUT : z0, albedoVIS, albedoNIR, emis = ', & |
---|
1581 | & z0(itest,jtest),albedo(itest,jtest,1), & |
---|
1582 | & albedo(itest,jtest,2),emis(itest,jtest) |
---|
1583 | WRITE(numout,*) ' OUT : coastal and river flow = ',& |
---|
1584 | & coastalflow(itest,jtest,ih2o), riverflow(itest,jtest,ih2o) |
---|
1585 | WRITE(numout,*) ' OUT : tsol_rad, vevapp = ', & |
---|
1586 | & tsol_rad(itest,jtest), vevapp(itest,jtest) |
---|
1587 | WRITE(numout,*) ' OUT : temp_sol_new =', temp_sol_NEW(itest,jtest) |
---|
1588 | ENDIF |
---|
1589 | !----- |
---|
1590 | !---- Give some variables to the output package |
---|
1591 | !---- for saving on the history tape |
---|
1592 | !----- |
---|
1593 | IF (printlev_loc>=3) WRITE(numout,*) 'history written for ', istp |
---|
1594 | !----- |
---|
1595 | istp_old = istp |
---|
1596 | istp = istp+1 |
---|
1597 | !----- |
---|
1598 | old_zlev(:,:) = zlev_vec(:,:) |
---|
1599 | old_qair(:,:) = for_qair(:,:) |
---|
1600 | old_eair(:,:) = for_eair(:,:) |
---|
1601 | !----- |
---|
1602 | is = is + 1 |
---|
1603 | ENDDO |
---|
1604 | split_start = 1 |
---|
1605 | !!$ it_force =it_force+1 |
---|
1606 | IF (it==itau_fin-1) THEN |
---|
1607 | |
---|
1608 | CALL Write_Load_Balance(REAL(Get_cpu_time(timer_mpi),r_std)) |
---|
1609 | |
---|
1610 | ENDIF |
---|
1611 | it = it + 1 |
---|
1612 | ENDDO |
---|
1613 | !- |
---|
1614 | ! Archive in restart file the prognostic variables |
---|
1615 | !- |
---|
1616 | IF (printlev_loc>=3) WRITE(numout,*) 'Write the restart for the driver', istp_old |
---|
1617 | !- |
---|
1618 | var_name = 'fluxsens' |
---|
1619 | IF (is_root_prc) THEN |
---|
1620 | ALLOCATE(fluxsens_g(iim_g,jjm_g)) |
---|
1621 | ELSE |
---|
1622 | ALLOCATE(fluxsens_g(0,1)) |
---|
1623 | ENDIF |
---|
1624 | CALL gather2D_mpi(fluxsens , fluxsens_g) |
---|
1625 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, fluxsens_g) |
---|
1626 | DEALLOCATE(fluxsens_g) |
---|
1627 | |
---|
1628 | var_name = 'vevapp' |
---|
1629 | IF (is_root_prc) THEN |
---|
1630 | ALLOCATE(vevapp_g(iim_g,jjm_g)) |
---|
1631 | ELSE |
---|
1632 | ALLOCATE(vevapp_g(0,1)) |
---|
1633 | ENDIF |
---|
1634 | CALL gather2D_mpi( vevapp, vevapp_g) |
---|
1635 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, vevapp_g) |
---|
1636 | DEALLOCATE(vevapp_g) |
---|
1637 | |
---|
1638 | var_name = 'zlev_old' |
---|
1639 | IF (is_root_prc) THEN |
---|
1640 | ALLOCATE(old_zlev_g(iim_g,jjm_g)) |
---|
1641 | ELSE |
---|
1642 | ALLOCATE(old_zlev_g(0,1)) |
---|
1643 | ENDIF |
---|
1644 | CALL gather2D_mpi( old_zlev, old_zlev_g) |
---|
1645 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, old_zlev_g) |
---|
1646 | DEALLOCATE(old_zlev_g) |
---|
1647 | |
---|
1648 | var_name = 'qair_old' |
---|
1649 | IF (is_root_prc) THEN |
---|
1650 | ALLOCATE(old_qair_g(iim_g,jjm_g)) |
---|
1651 | ELSE |
---|
1652 | ALLOCATE(old_qair_g(0,1)) |
---|
1653 | ENDIF |
---|
1654 | CALL gather2D_mpi( old_qair, old_qair_g) |
---|
1655 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, old_qair_g) |
---|
1656 | DEALLOCATE(old_qair_g) |
---|
1657 | |
---|
1658 | var_name = 'eair_old' |
---|
1659 | IF (is_root_prc) THEN |
---|
1660 | ALLOCATE(old_eair_g(iim_g,jjm_g)) |
---|
1661 | ELSE |
---|
1662 | ALLOCATE(old_eair_g(0,1)) |
---|
1663 | ENDIF |
---|
1664 | CALL gather2D_mpi( old_eair, old_eair_g) |
---|
1665 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, old_eair_g) |
---|
1666 | DEALLOCATE(old_eair_g) |
---|
1667 | |
---|
1668 | var_name = 'rau_old' |
---|
1669 | IF (is_root_prc) THEN |
---|
1670 | ALLOCATE(for_rau_g(iim_g,jjm_g)) |
---|
1671 | ELSE |
---|
1672 | ALLOCATE(for_rau_g(0,1)) |
---|
1673 | ENDIF |
---|
1674 | CALL gather2D_mpi( for_rau, for_rau_g) |
---|
1675 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, for_rau_g) |
---|
1676 | DEALLOCATE(for_rau_g) |
---|
1677 | |
---|
1678 | IF (is_root_prc) THEN |
---|
1679 | ALLOCATE(albedo_g(iim_g,jjm_g)) |
---|
1680 | ELSE |
---|
1681 | ALLOCATE(albedo_g(0,1)) |
---|
1682 | ENDIF |
---|
1683 | var_name= 'albedo_vis' |
---|
1684 | albedo_vis(:,:)=albedo(:,:,1) |
---|
1685 | CALL gather2D_mpi(albedo_vis,albedo_g) |
---|
1686 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, albedo_g) |
---|
1687 | ! |
---|
1688 | var_name= 'albedo_nir' |
---|
1689 | albedo_nir(:,:)=albedo(:,:,2) |
---|
1690 | CALL gather2D_mpi(albedo_nir,albedo_g) |
---|
1691 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, albedo_g) |
---|
1692 | DEALLOCATE(albedo_g) |
---|
1693 | |
---|
1694 | IF (is_root_prc) THEN |
---|
1695 | ALLOCATE(z0_g(iim_g,jjm_g)) |
---|
1696 | ELSE |
---|
1697 | ALLOCATE(z0_g(0,1)) |
---|
1698 | ENDIF |
---|
1699 | var_name= 'z0' |
---|
1700 | CALL gather2D_mpi(z0,z0_g) |
---|
1701 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, z0_g) |
---|
1702 | DEALLOCATE(z0_g) |
---|
1703 | |
---|
1704 | if (.NOT. is_watchout) THEN |
---|
1705 | var_name = 'petAcoef' |
---|
1706 | IF (is_root_prc) THEN |
---|
1707 | ALLOCATE(petAcoef_g(iim_g,jjm_g)) |
---|
1708 | ELSE |
---|
1709 | ALLOCATE(petAcoef_g(0,1)) |
---|
1710 | ENDIF |
---|
1711 | CALL gather2D_mpi( petAcoef, petAcoef_g) |
---|
1712 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, petAcoef_g) |
---|
1713 | DEALLOCATE(petAcoef_g) |
---|
1714 | |
---|
1715 | var_name = 'petBcoef' |
---|
1716 | IF (is_root_prc) THEN |
---|
1717 | ALLOCATE(petBcoef_g(iim_g,jjm_g)) |
---|
1718 | ELSE |
---|
1719 | ALLOCATE(petBcoef_g(0,1)) |
---|
1720 | ENDIF |
---|
1721 | CALL gather2D_mpi( petBcoef, petBcoef_g) |
---|
1722 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, petBcoef_g) |
---|
1723 | DEALLOCATE(petBcoef_g) |
---|
1724 | |
---|
1725 | var_name = 'peqAcoef' |
---|
1726 | IF (is_root_prc) THEN |
---|
1727 | ALLOCATE(peqAcoef_g(iim_g,jjm_g)) |
---|
1728 | ELSE |
---|
1729 | ALLOCATE(peqAcoef_g(0,1)) |
---|
1730 | ENDIF |
---|
1731 | CALL gather2D_mpi( peqAcoef, peqAcoef_g) |
---|
1732 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, peqAcoef_g) |
---|
1733 | DEALLOCATE(peqAcoef_g) |
---|
1734 | |
---|
1735 | var_name = 'peqBcoef' |
---|
1736 | IF (is_root_prc) THEN |
---|
1737 | ALLOCATE(peqBcoef_g(iim_g,jjm_g)) |
---|
1738 | ELSE |
---|
1739 | ALLOCATE(peqBcoef_g(0,1)) |
---|
1740 | ENDIF |
---|
1741 | CALL gather2D_mpi( peqBcoef, peqBcoef_g) |
---|
1742 | IF(is_root_prc) CALL restput (rest_id, var_name, iim_g, jjm_g, 1, istp_old, peqBcoef_g) |
---|
1743 | DEALLOCATE(peqBcoef_g) |
---|
1744 | ENDIF |
---|
1745 | !- |
---|
1746 | IF (printlev_loc>=3) WRITE(numout,*) 'Restart for the driver written' |
---|
1747 | !===================================================================== |
---|
1748 | !- 5.0 Closing all files |
---|
1749 | !===================================================================== |
---|
1750 | CALL flinclo(force_id) |
---|
1751 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'FLIN CLOSED' |
---|
1752 | CALL histclo |
---|
1753 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'HIST CLOSED' |
---|
1754 | |
---|
1755 | IF(is_root_prc) THEN |
---|
1756 | CALL restclo |
---|
1757 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'REST CLOSED' |
---|
1758 | CALL getin_dump |
---|
1759 | IF ( printlev_loc>=3 ) WRITE(numout,*) 'GETIN CLOSED' |
---|
1760 | ENDIF |
---|
1761 | |
---|
1762 | |
---|
1763 | |
---|
1764 | WRITE(numout,*) '-------------------------------------------' |
---|
1765 | WRITE(numout,*) '------> CPU Time Global ',Get_cpu_Time(timer_global) |
---|
1766 | WRITE(numout,*) '------> CPU Time without mpi ',Get_cpu_Time(timer_mpi) |
---|
1767 | WRITE(numout,*) '------> Real Time Global ',Get_real_Time(timer_global) |
---|
1768 | WRITE(numout,*) '------> real Time without mpi ',Get_real_Time(timer_mpi) |
---|
1769 | WRITE(numout,*) '-------------------------------------------' |
---|
1770 | CALL Finalize_mpi |
---|
1771 | !--------------- |
---|
1772 | ! CALL Write_Load_Balance(Get_cpu_time(timer_mpi)) |
---|
1773 | |
---|
1774 | !- |
---|
1775 | WRITE(numout,*) 'END of dim2_driver' |
---|
1776 | !--------------- |
---|
1777 | END PROGRAM driver |
---|