source: branches/publications/ORCHIDEE-GMv3.2/ORCHIDEE/src_sechiba/gammad_inc.f90 @ 7481

Last change on this file since 7481 was 6940, checked in by jinfeng.chang, 4 years ago

add missing files for ORCHIDEE-GMv3.2

File size: 15.3 KB
Line 
1! =================================================================================================================================
2! MODULE        : gammad_inc
3!
4! CONTACT       : orchidee-help _at_ ipsl.jussieu.fr
5!
6! LICENCE       : IPSL (2006)
7! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC
8!
9!>\BRIEF        This module computes the parameters for TOPMODEL, gamma distribution fitting.
10!!
11!!\n DESCRIPTION : contains.
12!!
13!! RECENT CHANGE(S) : None
14!!
15!! REFERENCE(S) : None
16!!
17!! SVN          :
18!! $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/perso/shushi.peng/ORCHIDEE/src_sechiba/gammad_inc.f90 $
19!! $Date: 2015-03-10 10:16:04 +0100 (Tue, 10 Mar 2015) $
20!! $Revision: 2535 $
21!! \n
22!_ ================================================================================================================================
23
24!C######################################################################
25!C######################################################################
26!C
27!C       THIS ROUTINE COMPUTE THE INCOMPLETE AND THE COMPLEMENTARY
28!C INCOMPLETE GAMMA FUNCTION DOUBLE PRECISION. IN BRIEF, THIS
29!C FUNCTION HELP TO COMPUTE THE DIFFERENT FRACTION PRESENT IN THE
30!C TOPMODEL FRAMEWORK.
31!C       MORE EXPLANATION ON THE SUBROUTINE USE ARE GIVEN IN THE NEXT
32!C COMMENTARY
33!C
34!C THIS ROUTINE WAS FOUND ON http://www.netlib.org WEB SITE.
35!C     
36!C REFERENCE - W. GAUTSCHI, :: A COMPUTATIONAL PROCEDURE FOR INCOMPLETE
37!C GAMMA FUNCTIONS, ACM TRANS. MATH. SOFTWARE., (1979) 482-489
38!C
39!C######################################################################
40!C######################################################################
41!C
42!C     LET  GAMMA(A)  DENOTE THE GAMMA FUNCTION AND  GAM(A,X)  THE
43!C (COMPLEMENTARY) INCOMPLETE GAMMA FUNCTION,
44!C
45!C    GAM(A,X)=INTEGRAL FROM T=X TO T=INFINITY OF EXP(-T)*T**(A-1).
46!C
47!C LET  GAMSTAR(A,X)  DENOTE TRICOMI:S FORM OF THE INCOMPLETE GAMMA
48!C FUNCTION, WHICH FOR A.GT.0. IS DEFINED BY
49!C
50!C  GAMSTAR(A,X)=(X**(-A)/GAMMA(A))*INTEGRAL FROM T=0 TO T=X OF
51!C                EXP(-T)*T**(A-1),
52!C
53!C AND FOR A.LE.0. BY ANALYTIC CONTINUATION. FOR THE PURPOSE OF
54!C THIS SUBROUTINE, THESE FUNCTIONS ARE NORMALIZED AS FOLLOWS&
55!C
56!C             GAM(A,X)/GAMMA(A),  IF A.GT.0.,
57!C     G(A,X)=
58!C             EXP(X)*X**(-A)*GAM(A,X),  IF A.LE.0.,
59!C
60!C     GSTAR(A,X)=(X**A)*GAMSTAR(A,X)
61!C               =(1/GAMMA(A))*INTEGRAL FROM T=0 TO T=X OF EXP(-T)*T**(A-1)
62!C
63!C THE PROGRAM BELOW ATTEMPTS TO EVALUATE  G(A,X)  AND  GSTAR(A,X),
64!C BOTH TO AN ACCURACY OF ACC SIGNIFICANT DECIMAL DIGITS, FOR ARBI-
65!C TRARY REAL VALUES OF  A  AND NONNEGATIVE VALUES OF  X. THE SUB-
66!C ROUTINE AUTOMATICALLY CHECKS FOR UNDERFLOW AND OVERFLOW CONDI-
67!C TIONS AND RETURNS APPROPRIATE WARNINGS THROUGH THE OUTPUT PARA-
68!C METERS  IFLG, IFLGST. A RESULT THAT UNDERFLOWS IS RETURNED WITH
69!C THE VALUE 0., ONE THAT OVERFLOWS WITH THE VALUE OF THE LARGEST
70!C MACHINE-REPRESENTABLE NUMBER.
71!C
72!C     NEAR LINES IN THE (A,X)-PLANE, A.LT.0., ALONG WHICH  GSTAR
73!C VANISHES, THE ACCURACY SPECIFIED WILL BE ATTAINED ONLY IN TERMS
74!C OF ABSOLUTE ERROR, NOT RELATIVE ERROR. THERE ARE OTHER (RARE)
75!C INSTANCES IN WHICH THE ACCURACY ATTAINED IS SOMEWHAT LESS THAN
76!C THE ACCURACY SPECIFIED. THE DISCREPANCY, HOWEVER, SHOULD NEVER
77!C EXCEED ONE OR TWO (DECIMAL) ORDERS OF ACCURACY# NO INDICATION
78!C OF THIS IS GIVEN THROUGH ERROR FLAGS.
79!C
80!C     PARAMETER LIST&
81!C
82!C        A - - THE FIRST ARGUMENT OF G AND GSTAR. TYPE REAL.
83!C        X - - THE SECOND ARGUMENT OF G AND GSTAR. TYPE REAL.
84!C      ACC - - THE NUMBER OF CORRECT SIGNIFICANT DECIMAL DIGITS
85!C              DESIRED IN THE RESULTS. TYPE REAL.
86!C        G - - AN OUTPUT VARIABLE RETURNING THE VALUE OF G(A,X).
87!C              TYPE REAL.
88!C    GSTAR - - AN OUTPUT VARIABLE RETURNING THE VALUE OF
89!C              GSTAR(A,X). TYPE REAL.
90!C     IFLG - - AN ERROR FLAG INDICATING A NUMBER OF ERROR CONDI-
91!C              TIONS IN G UPON EXECUTION. TYPE INTEGER.
92!C!   IFLGST - - AN ERROR FLAG INDICATING A NUMBER OF ERROR CONDI-
93!C              TIONS IN GSTAR UPON EXECUTION. TYPE INTEGER.
94!C              THE VALUES OF IFLG AND IFLGST HAVE THE FOLLOWING
95!C              MEANINGS&
96!C              0 - NO ERROR CONDITION.
97!C              1 - ILLEGAL NEGATIVE ARGUMENT X. THE ROUTINE EXITS
98!C                  WITH THE VALUES ZERO FOR G AND GSTAR.
99!C              2 - INFINITELY LARGE RESULT AT X=0. THE ROUTINE
100!C                  RETURNS THE LARGEST MACHINE-REPRESENTABLE NUMBER.
101!C              3 - (ONLY FOR IFLGST) GSTAR IS INDETERMINATE AT
102!C                  A=0. AND X=0. THE ROUTINE RETURNS THE VALUE 1.,
103!C                  WHICH IS THE LIMIT VALUE AS X TENDS TO ZERO FOR
104!C                  FIXED A=0.
105!C              4 - THE RESULT UNDERFLOWS. IT IS SET EQUAL TO 0.
106!C              5 - THE RESULT OVERFLOWS. IT IS SET EQUAL TO THE
107!C                  LARGEST MACHINE-REPRESENTABLE NUMBER, WITH
108!C                  PROPER SIGN.
109!C              6 - CONVERGENCE FAILS WITHIN 600 ITERATIONS, EITHER
110!C                  IN TAYLOR:S SERIES OR IN LEGENDRE:S CONTINUED
111!C                  FRACTION. REASON UNKNOWN. THE COMPUTATION IS
112!C                  ABORTED AND THE ROUTINE RETURNS WITH ZERO
113!C                  VALUES FOR G AND GSTAR.
114!C
115!C     ALL MACHINE-DEPENDENT PARAMETERS ARE COLLECTED IN THE FIRST
116!C DATA DECLARATION. THEY ARE AS FOLLOWS&
117!C
118!C     PREC - - THE SINGLE PRECISION ACCURACY, TO BE SET APPROXI-
119!C              MATELY EQUAL TO BETA*ALOG(2.)/ALOG(10.), WHERE BETA
120!C              IS THE NUMBER OF BINARY DIGITS AVAILABLE IN THE MAN-
121!C              TISSA OF THE SINGLE PRECISION FLOATING-POINT WORD.
122!C              TYPE REAL.
123!C   TOPEXP - - APPROXIMATELY THE LARGEST POSITIVE NUMBER T SUCH
124!C              THAT 10.**T IS STILL REPRESENTABLE ON THE COMPUTER
125!C              IN SINGLE PRECISION FLOATING-POINT ARITHMETIC.
126!C              TYPE REAL.
127!C   BOTEXP - - APPROXIMATELY THE SMALLEST NEGATIVE NUMBER T SUCH
128!C              THAT 10.**T IS STILL REPRESENTABLE ON THE COMPUTER
129!C              IN SINGLE PRECISION FLOATING-POINT ARITHMETIC.
130!C              TYPE REAL.
131!C
132!C IN THE PROGRAM BELOW THESE PARAMETERS ARE SET TO CORRESPOND TO
133!C THE MACHINE CHARACTERISTICS OF THE CDC 6500 COMPUTER.
134!C
135!C     THE SECOND DATA DECLARATION CONTAINS THE SINGLE PRECISION
136!C VALUE OF ALOG(10.). THE NEXT DATA DECLARATION CONTAINS THE SUCCES-
137!C SIVE COEFFICIENTS IN THE MACLAURIN EXPANSION OF (1/GAMMA(A+1))-1.
138!C THEY ARE GIVEN TO AS MANY DECIMAL PLACES AS IS NECESSARY TO ACHIEVE
139!C MACHINE PRECISION (ON THE CDC 6500 COMPUTER) IN THE RANGE
140!C ABS(A).LE..5. MORE ACCURATE VALUES OF THESE COEFFICIENTS (TO
141!C 31 DECIMAL PLACES) CAN BE FOUND IN TABLE 5 OF J.W.WRENCH,JR.,
142!C CONCERNING TWO SERIES FOR THE GAMMA FUNCTION, MATH. COMPUT.
143!C 22, 1968, 617-626.
144!C
145!C     THE SUBROUTINE CALLS ON A FUNCTION SUBROUTINE, NAMED  ALGA,
146!C WHICH IS TO PROVIDE SINGLE PRECISION VALUES OF THE LOGARITHM OF
147!C THE GAMMA FUNCTION FOR ARGUMENTS LARGER THAN OR EQUAL TO .5.
148!C A POSSIBLE VERSION OF SUCH A FUNCTION SUBROUTINE IS APPENDED
149!C TO THE PRESENT SUBROUTINE. IT IS TAYLORED TO THE ACCURACY RE-
150!C QUIREMENTS OF THE CDC 6500 COMPUTER, AND USES RATIONAL APPROXI-
151!C MATIONS DUE TO CODY AND HILLSTROM (MATH. COMPUT. 21, 1967, 198-
152!C 203).
153!C
154!C     REFERENCE - W. GAUTSCHI, ::A COMPUTATIONAL PROCEDURE FOR
155!C INCOMPLETE GAMMA FUNCTIONS, ACM TRANS. MATH. SOFTWARE.
156!C
157!!     ################     
158      MODULE gammad_inc 
159!     ################
160!
161!
162      INTERFACE
163!     
164!
165      SUBROUTINE DGAM(A, X, ACC, G, GSTAR, IFLG, IFLGST)               
166     
167        DOUBLE PRECISION :: A, X, G, GSTAR, C, AL10, ALX, ALPHA, ALPREC, &
168     & TOP, BOT, AINF, EPS, EPS1, ES, SGA, AE, AA, AP1, AM1, AEP1, &
169     & AEM1, FMA, AEPS, SGAE, AAEPS, ALGP1, SGGA, ALGEP1, SGGS, ALGS, &
170     & ALG, SUMM, GA, Y, TERM, U, P, Q, R, V, T, H, SGT, A1X, RHO, XPA, &
171     & XMA, S, DLGA
172!
173      END
174!
175      END INTERFACE
176!
177      END MODULE gammad_inc 
178!
179!################################################################
180!
181      SUBROUTINE DGAM(A, X, ACC, G, GSTAR, IFLG, IFLGST)               
182!
183!################################################################
184      DOUBLE PRECISION :: A, X, G, GSTAR, C, AL10, ALX, ALPHA, ALPREC, &
185     & TOP, BOT, AINF, EPS, EPS1, ES, SGA, AE, AA, AP1, AM1, AEP1, &
186     & AEM1, FMA, AEPS, SGAE, AAEPS, ALGP1, SGGA, ALGEP1, SGGS, ALGS, &
187     & ALG, SUMM, GA, Y, TERM, U, P, Q, R, V, T, H, SGT, A1X, RHO, XPA, &
188     & XMA, S, DLGA
189      DIMENSION C(29)
190      DATA PREC, TOPEXP, BOTEXP /15.9545,308.,-308./
191      DATA AL10 /2.3025850929940456840179914547D0/
192      DATA C /.57721566490153286060651209008D0, &
193     &       -.65587807152025388107701951515D0, &
194     &       -4.200263503409523552900393488D-2, &
195     &        .1665386113822914895017007951D0, &
196     &       -4.21977345555443367482083013D-2, &
197     &       -9.6219715278769735621149217D-3, &
198     &       7.2189432466630995423950103D-3, &
199     &       -1.165167591859065112113971D-3, &
200     &       -2.15241674114950972815730D-4, &
201     &       1.2805028238811618615320D-4, &
202     &       -2.013485478078823865569D-5, &
203     &       -1.2504934821426706573D-6, &
204     &       1.1330272319816958824D-6, &
205     &       -2.056338416977607103D-7, &
206     &       6.1160951044814158D-9, &
207     &       5.0020076444692229D-9, &
208     &       -1.181274570487020D-9, &
209     &       1.04342671169110D-10, &
210     &       7.782263439905D-12, &
211     &       -3.696805618642D-12, &
212     &       5.1003702875D-13, &
213     &       -2.058326054D-14, -5.34812254D-15, &
214     &       1.2267786D-15, -1.181259D-16,1.187D-18, &
215     &       1.412D-18,-2.30D-19,1.7D-20/ 
216      G = 0.D0
217      GSTAR = 0.D0
218      IF (X.LT.0.D0) GO TO 290
219!C
220!C INITIALIZATION
221!C
222      IFLG = 0
223      IFLGST = 0
224      I = 0
225      IF (X.GT.0.D0) ALX = DLOG(X)
226      ALPHA = X + .25D0
227      IF (X.LT..25D0 .AND. X.GT.0.D0) ALPHA = DLOG(.5D0)/ALX
228!C      ALPREC = AL10*DBLE(PREC)
229!C      TOP    = AL10*DBLE(TOPEXP)
230!C      BOT    = AL10*DBLE(BOTEXP)
231      ALPREC =DBLE(DIGITS(1.D0))*DLOG(2.D0)
232      TOP    =DLOG10(HUGE(1.D0))
233      BOT    =DLOG10(TINY(1.D0))
234      AINF   = 10.D0**TOPEXP
235      EPS = .5D0*10.D0**(-ACC)
236      EPS1 = EPS/1.D2
237      SGA = 1.D0
238      IF (A.LT.0.D0) SGA = -SGA
239      AE = A
240      AA = DABS(A)
241      AP1 = A + 1.D0
242      AEP1 = AP1
243      MA = SNGL(.5D0-A)
244      FMA = DBLE(FLOAT(MA))
245      AEPS = A + FMA
246      SGAE = 1.D0
247      IF (AEPS.LT.0.D0) SGAE = -SGAE
248      AAEPS = DABS(AEPS)
249      ALGP1 = 0.D0
250!C
251!C EVALUATION OF THE LOGARITHM OF THE ABSOLUTE VALUE OF
252!C GAMMA(A+1.) AND DETERMINATION OF THE SIGN OF GAMMA(A+1.)
253!C
254      SGGA = 1.D0
255      IF (MA.LE.0) GO TO 10
256      IF (AEPS.EQ.0.D0) GO TO 20
257      SGGA = SGAE
258      IF (MA.EQ.2*(MA/2)) SGGA = -SGGA
259      ALGP1 = DLGA(AEPS+1.D0) - DLOG(AAEPS)
260      IF (MA.EQ.1) GO TO 20
261      ALGP1 = ALGP1 + DLGA(1.D0-AEPS) - DLGA(FMA-AEPS)
262      GO TO 20
263   10 ALGP1 = DLGA(AP1)
264   20 ALGEP1 = ALGP1
265      IF (X.GT.0.D0) GO TO 60
266!C
267!C EVALUATION OF GSTAR(A,0.) AND G(A,0.)
268!C
269      IF (A) 30, 40, 50
270   30 IFLGST = 2
271      GSTAR = AINF
272      G = 1.D0/AA
273      RETURN
274   40 IFLGST = 3
275      GSTAR = 1.D0
276      IFLG = 2
277      G = AINF
278      RETURN
279   50 G = 1.D0
280      RETURN
281   60 IF (A.GT.ALPHA) GO TO 220
282      IF (X.GT.1.5D0) GO TO 240
283      IF (A.LT.-.5D0) GO TO 170
284!C
285!C DIRECT EVALUATION OF G(A,X) AND GSTAR(A,X) FOR X.LE.1.5
286!C AND -.5.LE.A.LE.ALPHA(X)
287!C
288      GSTAR = 1.D0
289      IF (A.GE..5D0) GO TO 110
290   70 SUMM = C(29)
291      DO 80 K=1,28
292        K1 = 29 - K
293        SUMM = AE*SUMM + C(K1)
294   80 CONTINUE
295      GA = -SUMM/(1.D0+AE*SUMM)
296      Y = AE*ALX
297      IF (DABS(Y).GE.1.D0) GO TO 100
298      SUMM = 1.D0
299      TERM = 1.D0
300      K = 1
301   90 K = K + 1
302      IF (K.GT.600) GO TO 330
303      TERM = Y*TERM/DBLE(FLOAT(K))
304      SUMM = SUMM + TERM
305      IF (DABS(TERM).GT.EPS1*SUMM) GO TO 90
306      U = GA - SUMM*ALX
307      GO TO 120
308  100 U = GA - (DEXP(Y)-1.D0)/AE
309      GO TO 120
310  110 U = DEXP(DLGA(A)) - (X**A)/A
311  120 P = AE*X
312      Q = AEP1
313      R = AE + 3.D0
314      TERM = 1.D0
315      SUMM = 1.D0
316      K = 1
317  130 K = K + 1
318      IF (K.GT.600) GO TO 330
319      P = P + X
320      Q = Q + R
321      R = R + 2.D0
322      TERM = -P*TERM/Q
323      SUMM = SUMM + TERM
324      IF (DABS(TERM).GT.EPS1*SUMM) GO TO 130
325      V = (X**AEP1)*SUMM/AEP1
326      G = U + V
327      IF (I.EQ.1) GO TO 180
328      IF (A) 140, 150, 160
329  140 T = DEXP(X)*X**(-A)
330      G = T*G
331      GSTAR = 1.D0 - A*G*DEXP(-ALGP1)/T
332      RETURN
333  150 G = DEXP(X)*G
334      RETURN
335  160 G = A*G*DEXP(-ALGP1)
336      GSTAR = 1.D0 - G
337      RETURN
338!C
339!C RECURSIVE EVALUATION OF G(A,X) FOR X.LE.1.5 AND A.LT.-.5
340!C
341  170 I = 1
342      AE = AEPS
343      AEP1 = AEPS + 1.D0
344      IF (X.LT..25D0 .AND. AE.GT.ALPHA) GO TO 210
345      GO TO 70
346  180 G = G*DEXP(X)*X**(-AE)
347      DO 190 K=1,MA
348        G = (1.D0-X*G)/(DBLE(FLOAT(K))-AE)
349  190 CONTINUE
350      ALG = DLOG(G)
351!C
352!C EVALUATION OF GSTAR(A,X) IN TERMS OF G(A,X)
353!C
354  200 GSTAR = 1.D0
355      IF (MA.GE.0 .AND. AEPS.EQ.0.D0) RETURN
356      SGT = SGA*SGGA
357      T = DLOG(AA) - X + A*ALX + ALG - ALGP1
358      IF (T.LT.-ALPREC) RETURN
359      IF (T.GE.TOP) GO TO 320
360      GSTAR = 1.D0 - SGT*DEXP(T)
361      RETURN
362  210 I = 2
363      ALGEP1 = DLGA(AEP1)
364!C
365!C EVALUATION OF GSTAR(A,X) FOR A.GT.ALPHA(X) BY TAYLOR
366!C EXPANSION
367!C
368  220 G = 1.D0
369      TERM = 1.D0
370      SUMM = 1.D0
371      K = 0
372  230 K = K + 1
373      IF (K.GT.600) GO TO 340
374      TERM = X*TERM/(AE+DBLE(FLOAT(K)))
375      SUMM = SUMM + TERM
376      IF (DABS(TERM).GT.EPS*SUMM) GO TO 230
377      ALGS = AE*ALX - X + DLOG(SUMM) - ALGEP1
378      IF (ALGS.LE.BOT) GO TO 310
379      GSTAR = DEXP(ALGS)
380      G = 1.D0 - GSTAR
381      IF (I.NE.2) RETURN
382      G = G*DEXP(ALGEP1)/AE
383      GO TO 180
384!C
385!C EVALUATION OF G(A,X) FOR X.GT.1.5 AND A.LE.ALPHA(X) BY
386!C MEANS OF THE LEGENDRE CONTINUED FRACTION
387!C
388  240 GSTAR = 1.D0
389      XPA = X + 1.D0 - A
390      XMA = X - 1.D0 - A
391      P = 0.D0
392      Q = XPA*XMA
393      R = 4.D0*XPA
394      S = -A + 1.D0
395      TERM = 1.D0
396      SUMM = 1.D0
397      RHO = 0.D0
398      K = 1
399  250 K = K + 1
400      IF (K.GT.600) GO TO 330
401      P = P + S
402      Q = Q + R
403      R = R + 8.D0
404      S = S + 2.D0
405      T = P*(1.D0+RHO)
406      RHO = T/(Q-T)
407      TERM = RHO*TERM
408      SUMM = SUMM + TERM
409      IF (DABS(TERM).GT.EPS*SUMM) GO TO 250
410      IF (A) 260, 270, 280
411  260 G = SUMM/XPA
412      ALG = DLOG(G)
413      GO TO 200
414  270 G = SUMM/XPA
415      RETURN
416  280 ALG = A*ALX - X + DLOG(A*SUMM/XPA) - ALGP1
417      IF (ALG.LE.BOT) GO TO 300
418      G = DEXP(ALG)
419      GSTAR = 1.D0 - G
420      RETURN
421  290 IFLG = 1
422      IFLGST = 1
423      RETURN
424  300 IFLG = 4
425      RETURN
426  310 IFLGST = 4
427      RETURN
428  320 IFLGST = 5
429      GSTAR = -SGT*AINF
430      RETURN
431  330 IFLG = 6
432      RETURN
433  340 IFLGST = 6
434      RETURN
435      END
436     
437      DOUBLE PRECISION FUNCTION DLGA(DX)                               
438      DOUBLE PRECISION DBNUM, DBDEN, DX, DC, DP, DY, DT, DS
439      DIMENSION DBNUM(8), DBDEN(8)
440      DATA DBNUM /-3.617D3,1.D0,-6.91D2,1.D0,-1.D0,1.D0,-1.D0,1.D0/, &
441     & DBDEN /1.224D5,1.56D2,3.6036D5,1.188D3,1.68D3,1.26D3,3.6D2,1.2D1/
442      DC = .5D0*DLOG(8.D0*DATAN(1.D0))
443      DP = 1.D0
444      DY = DX
445      Y = SNGL(DY)
446!C
447!C THE CONDITIONAL CLAUSE IN THE NEXT STATEMENT EXPRESSES THE
448!C INEQUALITY Y.GT.EXP(.121189*DPREC+.053905), WHERE DPREC IS THE
449!C NUMBER OF DECIMAL DIGITS CARRIED IN DOUBLE PRECISION FLOATING-POINT
450!C ARITHMETIC.
451!C
452   10 IF (Y.GT.35.027) GO TO 20
453      DP = DY*DP
454      DY = DY + 1.D0
455      Y = SNGL(DY)
456      GO TO 10
457   20 DT = 1.D0/(DY*DY)
458      DS = 4.3867D4/2.44188D5
459      DO 30 I=1,8
460        DS = DT*DS + DBNUM(I)/DBDEN(I)
461   30 CONTINUE
462      DLGA = (DY-.5D0)*DLOG(DY) - DY + DC + DS/DY - DLOG(DP)
463      RETURN
464      END
465
466
Note: See TracBrowser for help on using the repository browser.