1 | ! =============================================================================================================================== |
---|
2 | ! MODULE : condveg |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ listes.ipsl.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Initialise, compute and update the surface parameters emissivity, |
---|
10 | !! roughness and albedo. |
---|
11 | !! |
---|
12 | !! \n DESCRIPTION : The module uses 3 settings to control its flow:\n |
---|
13 | !! 1. :: rough_dyn to choose between two methods to calculate |
---|
14 | !! the roughness height. If set to false: the roughness height is calculated by the old formulation |
---|
15 | !! which does not distinguish between z0m and z0h and which does not vary with LAI |
---|
16 | !! If set to true: the grid average is calculated by the formulation proposed by Su et al. (2001) |
---|
17 | !! 2. :: impaze for choosing surface parameters. If set to false, the values for the |
---|
18 | !! soil albedo, emissivity and roughness height are set to default values which are read from |
---|
19 | !! the run.def. If set to true, the user imposes its own values, fixed for the grid point. This is useful if |
---|
20 | !! one performs site simulations, however, |
---|
21 | !! it is not recommended to do so for spatialized simulations. |
---|
22 | !! roughheight_scal imposes the roughness height in (m) , |
---|
23 | !! same for emis_scal (in %), albedo_scal (in %), zo_scal (in m) |
---|
24 | !! Note that these values are only used if 'impaze' is true.\n |
---|
25 | !! 3. :: alb_bare_model for choosing values of bare soil albedo. If set to TRUE bare |
---|
26 | !! soil albedo depends on soil wetness. If set to FALSE bare soil albedo is the mean |
---|
27 | !! values of wet and dry soil albedos.\n |
---|
28 | !! The surface fluxes are calculated between two levels: the atmospheric level reference and the effective roughness height |
---|
29 | !! defined as the difference between the mean height of the vegetation and the displacement height (zero wind |
---|
30 | !! level). Over bare soils, the zero wind level is equal to the soil roughness. Over vegetation, the zero wind level |
---|
31 | !! is increased by the displacement height |
---|
32 | !! which depends on the height of the vegetation. For a grid point composed of different types of vegetation, |
---|
33 | !! an effective surface roughness has to be calculated |
---|
34 | !! |
---|
35 | !! RECENT CHANGE(S): Added option rough_dyn and subroutine condveg_z0cdrag_dyn. Removed subroutine condveg_z0logz. June 2016. |
---|
36 | !! |
---|
37 | !! REFERENCES(S) : None |
---|
38 | !! |
---|
39 | !! SVN : |
---|
40 | !! $HeadURL$ |
---|
41 | !! $Date$ |
---|
42 | !! $Revision$ |
---|
43 | !! \n |
---|
44 | !_ ================================================================================================================================ |
---|
45 | |
---|
46 | MODULE condveg |
---|
47 | |
---|
48 | USE ioipsl |
---|
49 | USE xios_orchidee |
---|
50 | USE constantes |
---|
51 | USE constantes_soil |
---|
52 | USE pft_parameters |
---|
53 | USE qsat_moisture |
---|
54 | USE interpol_help |
---|
55 | USE mod_orchidee_para |
---|
56 | USE ioipsl_para |
---|
57 | USE sechiba_io_p |
---|
58 | USE grid |
---|
59 | |
---|
60 | IMPLICIT NONE |
---|
61 | |
---|
62 | PRIVATE |
---|
63 | PUBLIC :: condveg_xios_initialize, condveg_main, condveg_initialize, condveg_finalize, condveg_clear |
---|
64 | |
---|
65 | ! |
---|
66 | ! Variables used inside condveg module |
---|
67 | ! |
---|
68 | LOGICAL, SAVE :: l_first_condveg=.TRUE. !! To keep first call's trace |
---|
69 | !$OMP THREADPRIVATE(l_first_condveg) |
---|
70 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_dry(:,:) !! Albedo values for the dry bare soil (unitless) |
---|
71 | !$OMP THREADPRIVATE(soilalb_dry) |
---|
72 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_wet(:,:) !! Albedo values for the wet bare soil (unitless) |
---|
73 | !$OMP THREADPRIVATE(soilalb_wet) |
---|
74 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_moy(:,:) !! Albedo values for the mean bare soil (unitless) |
---|
75 | !$OMP THREADPRIVATE(soilalb_moy) |
---|
76 | REAL(r_std), ALLOCATABLE, SAVE :: soilalb_bg(:,:) !! Albedo values for the background bare soil (unitless) |
---|
77 | !$OMP THREADPRIVATE(soilalb_bg) |
---|
78 | INTEGER, SAVE :: printlev_loc !! Output debug level |
---|
79 | !$OMP THREADPRIVATE(printlev_loc) |
---|
80 | |
---|
81 | CONTAINS |
---|
82 | |
---|
83 | |
---|
84 | !! ============================================================================================================================= |
---|
85 | !! SUBROUTINE: condveg_xios_initialize |
---|
86 | !! |
---|
87 | !>\BRIEF Initialize xios dependant defintion before closing context defintion |
---|
88 | !! |
---|
89 | !! DESCRIPTION: Initialize xios dependant defintion needed for the interpolations done in condveg. |
---|
90 | !! Reading is deactivated if the sechiba restart file exists because the variable |
---|
91 | !! should be in the restart file already. |
---|
92 | !! This subruting is called before closing context with xios_orchidee_close_definition in intersurf |
---|
93 | !! via the subroutine sechiba_xios_initialize. |
---|
94 | !! |
---|
95 | !! \n |
---|
96 | !_ ============================================================================================================================== |
---|
97 | |
---|
98 | SUBROUTINE condveg_xios_initialize |
---|
99 | |
---|
100 | CHARACTER(LEN=255) :: filename !! Filename read from run.def |
---|
101 | CHARACTER(LEN=255) :: name !! Filename without suffix .nc |
---|
102 | LOGICAL :: lerr !! Flag to dectect error |
---|
103 | |
---|
104 | |
---|
105 | ! Read the file name for the albedo input file from run.def |
---|
106 | filename = 'alb_bg.nc' |
---|
107 | CALL getin_p('ALB_BG_FILE',filename) |
---|
108 | |
---|
109 | ! Remove suffix .nc from filename |
---|
110 | name = filename(1:LEN_TRIM(FILENAME)-3) |
---|
111 | |
---|
112 | ! Define the file name in XIOS |
---|
113 | CALL xios_orchidee_set_file_attr("albedo_file",name=name) |
---|
114 | |
---|
115 | ! Define default values for albedo |
---|
116 | lerr=xios_orchidee_setvar('albbg_vis_default',0.129) |
---|
117 | lerr=xios_orchidee_setvar('albbg_nir_default',0.247) |
---|
118 | |
---|
119 | ! Check if the albedo file will be read by XIOS, by IOIPSL or not at all |
---|
120 | IF (xios_interpolation .AND. alb_bg_modis .AND. restname_in=='NONE') THEN |
---|
121 | ! The albedo file will be read using XIOS |
---|
122 | IF (printlev>=2) WRITE(numout,*) 'Reading of albedo file will be done later using XIOS. The filename is ', filename |
---|
123 | |
---|
124 | ELSE |
---|
125 | IF (.NOT. alb_bg_modis) THEN |
---|
126 | IF (printlev>=2) WRITE (numout,*) 'No reading of albedo will be done because alb_bg_modis=FALSE' |
---|
127 | ELSE IF (restname_in=='NONE') THEN |
---|
128 | IF (printlev>=2) WRITE (numout,*) 'The albedo file will be read later by IOIPSL' |
---|
129 | ELSE |
---|
130 | IF (printlev>=2) WRITE (numout,*) 'The albedo file will not be read because the restart file exists.' |
---|
131 | END IF |
---|
132 | |
---|
133 | ! The albedo file will not be read by XIOS. Now deactivate albedo for XIOS. |
---|
134 | CALL xios_orchidee_set_file_attr("albedo_file",enabled=.FALSE.) |
---|
135 | CALL xios_orchidee_set_field_attr("bg_alb_vis_interp",enabled=.FALSE.) |
---|
136 | CALL xios_orchidee_set_field_attr("bg_alb_nir_interp",enabled=.FALSE.) |
---|
137 | END IF |
---|
138 | |
---|
139 | END SUBROUTINE condveg_xios_initialize |
---|
140 | |
---|
141 | |
---|
142 | !! ============================================================================================================================= |
---|
143 | !! SUBROUTINE : condveg_initialize |
---|
144 | !! |
---|
145 | !>\BRIEF Allocate module variables, read from restart file or initialize with default values |
---|
146 | !! |
---|
147 | !! DESCRIPTION : Allocate module variables, read from restart file or initialize with default values. |
---|
148 | !! condveg_snow is called to initialize corresponding variables. |
---|
149 | !! |
---|
150 | !! RECENT CHANGE(S) : None |
---|
151 | !! |
---|
152 | !! MAIN OUTPUT VARIABLE(S) |
---|
153 | !! |
---|
154 | !! REFERENCE(S) : None |
---|
155 | !! |
---|
156 | !! FLOWCHART : None |
---|
157 | !! \n |
---|
158 | !_ ============================================================================================================================== |
---|
159 | SUBROUTINE condveg_initialize (kjit, kjpindex, index, rest_id, & |
---|
160 | lalo, neighbours, resolution, contfrac, veget, veget_max, frac_nobio, totfrac_nobio, & |
---|
161 | zlev, snow, snow_age, snow_nobio, snow_nobio_age, & |
---|
162 | drysoil_frac, height, snowdz, snowrho, tot_bare_soil, & |
---|
163 | temp_air, pb, u, v, lai, & |
---|
164 | emis, albedo, z0m, z0h, roughheight, & |
---|
165 | frac_snow_veg,frac_snow_nobio) |
---|
166 | |
---|
167 | !! 0. Variable and parameter declaration |
---|
168 | !! 0.1 Input variables |
---|
169 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
170 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
171 | INTEGER(i_std),INTENT (in) :: rest_id !! _Restart_ file identifier |
---|
172 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map |
---|
173 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (in) :: lalo !! Geographical coordinates |
---|
174 | INTEGER(i_std),DIMENSION (kjpindex,NbNeighb), INTENT(in):: neighbours!! neighoring grid points if land |
---|
175 | REAL(r_std), DIMENSION (kjpindex,2), INTENT(in) :: resolution !! size in x an y of the grid (m) |
---|
176 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: contfrac ! Fraction of land in each grid box. |
---|
177 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget !! Fraction of vegetation types |
---|
178 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max !! Fraction of vegetation type |
---|
179 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of continental ice, lakes, ... |
---|
180 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! total fraction of continental ice+lakes+... |
---|
181 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer |
---|
182 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass [Kg/m^2] |
---|
183 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age |
---|
184 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass [Kg/m^2] on ice, lakes, ... |
---|
185 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_nobio_age !! Snow age on ice, lakes, ... |
---|
186 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
187 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: height !! Vegetation Height (m) |
---|
188 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowdz !! Snow depth at each snow layer |
---|
189 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowrho !! Snow density at each snow layer |
---|
190 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
191 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
192 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
193 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: u !! Horizontal wind speed, u direction |
---|
194 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: v !! Horizontal wind speed, v direction |
---|
195 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
196 | |
---|
197 | !! 0.2 Output variables |
---|
198 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: emis !! Emissivity |
---|
199 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo, vis(1) and nir(2) |
---|
200 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0m !! Roughness for momentum (m) |
---|
201 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0h !! Roughness for heat (m) |
---|
202 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: roughheight !! Effective height for roughness |
---|
203 | REAL(r_std),DIMENSION (kjpindex), INTENT(out) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
204 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Snow cover fraction on non-vegeted area |
---|
205 | |
---|
206 | !! 0.4 Local variables |
---|
207 | INTEGER :: ier |
---|
208 | REAL(r_std), DIMENSION(kjpindex,2) :: albedo_snow !! Snow albedo for visible and near-infrared range(unitless) |
---|
209 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
210 | !! range (unitless) |
---|
211 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
212 | ! !! range (unitless) |
---|
213 | !_ ================================================================================================================================ |
---|
214 | |
---|
215 | IF (.NOT. l_first_condveg) CALL ipslerr_p(3,'condveg_initialize','Error: initialization already done','','') |
---|
216 | l_first_condveg=.FALSE. |
---|
217 | |
---|
218 | !! Initialize local printlev |
---|
219 | printlev_loc=get_printlev('condveg') |
---|
220 | |
---|
221 | IF (printlev>=3) WRITE (numout,*) 'Start condveg_initialize' |
---|
222 | |
---|
223 | !! 1. Allocate module variables and read from restart or initialize |
---|
224 | |
---|
225 | IF (alb_bg_modis) THEN |
---|
226 | ! Allocate background soil albedo |
---|
227 | ALLOCATE (soilalb_bg(kjpindex,2),stat=ier) |
---|
228 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_bg','','') |
---|
229 | |
---|
230 | ! Read background albedo from restart file |
---|
231 | CALL ioconf_setatt_p('UNITS', '-') |
---|
232 | CALL ioconf_setatt_p('LONG_NAME','Background soil albedo for visible and near-infrared range') |
---|
233 | CALL restget_p (rest_id, 'soilalbedo_bg', nbp_glo, 2, 1, kjit, .TRUE., soilalb_bg, "gather", nbp_glo, index_g) |
---|
234 | |
---|
235 | ! Initialize by interpolating from file if the variable was not in restart file |
---|
236 | IF ( ALL(soilalb_bg(:,:) == val_exp) ) THEN |
---|
237 | CALL condveg_background_soilalb(kjpindex, lalo, neighbours, resolution, contfrac) |
---|
238 | END IF |
---|
239 | CALL xios_orchidee_send_field("soilalb_bg",soilalb_bg) |
---|
240 | |
---|
241 | ELSE |
---|
242 | ! Allocate |
---|
243 | ! Dry soil albedo |
---|
244 | ALLOCATE (soilalb_dry(kjpindex,2),stat=ier) |
---|
245 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_dry','','') |
---|
246 | |
---|
247 | ! Wet soil albedo |
---|
248 | ALLOCATE (soilalb_wet(kjpindex,2),stat=ier) |
---|
249 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_wet','','') |
---|
250 | |
---|
251 | ! Mean soil albedo |
---|
252 | ALLOCATE (soilalb_moy(kjpindex,2),stat=ier) |
---|
253 | IF (ier /= 0) CALL ipslerr_p(3,'condveg_initialize','Pb in allocation for soilalb_moy','','') |
---|
254 | |
---|
255 | ! Read variables from restart file |
---|
256 | ! dry soil albedo |
---|
257 | CALL ioconf_setatt_p('UNITS', '-') |
---|
258 | CALL ioconf_setatt_p('LONG_NAME','Dry bare soil albedo') |
---|
259 | CALL restget_p (rest_id,'soilalbedo_dry' , nbp_glo, 2, 1, kjit, .TRUE., soilalb_dry, "gather", nbp_glo, index_g) |
---|
260 | |
---|
261 | ! wet soil albedo |
---|
262 | CALL ioconf_setatt_p('UNITS', '-') |
---|
263 | CALL ioconf_setatt_p('LONG_NAME','Wet bare soil albedo') |
---|
264 | CALL restget_p (rest_id, 'soilalbedo_wet', nbp_glo, 2, 1, kjit, .TRUE., soilalb_wet, "gather", nbp_glo, index_g) |
---|
265 | |
---|
266 | ! mean soil aledo |
---|
267 | CALL ioconf_setatt_p('UNITS', '-') |
---|
268 | CALL ioconf_setatt_p('LONG_NAME','Mean bare soil albedo') |
---|
269 | CALL restget_p (rest_id, 'soilalbedo_moy', nbp_glo, 2, 1, kjit, .TRUE., soilalb_moy, "gather", nbp_glo, index_g) |
---|
270 | |
---|
271 | |
---|
272 | ! Initialize the variables if not found in restart file |
---|
273 | IF ( ALL(soilalb_wet(:,:) == val_exp) .OR. & |
---|
274 | ALL(soilalb_dry(:,:) == val_exp) .OR. & |
---|
275 | ALL(soilalb_moy(:,:) == val_exp)) THEN |
---|
276 | ! One or more of the variables were not in the restart file. |
---|
277 | ! Call routine condveg_soilalb to calculate them. |
---|
278 | CALL condveg_soilalb(kjpindex, lalo, neighbours, resolution, contfrac) |
---|
279 | WRITE(numout,*) '---> val_exp ', val_exp |
---|
280 | WRITE(numout,*) '---> ALBEDO_wet VIS:', MINVAL(soilalb_wet(:,ivis)), MAXVAL(soilalb_wet(:,ivis)) |
---|
281 | WRITE(numout,*) '---> ALBEDO_wet NIR:', MINVAL(soilalb_wet(:,inir)), MAXVAL(soilalb_wet(:,inir)) |
---|
282 | WRITE(numout,*) '---> ALBEDO_dry VIS:', MINVAL(soilalb_dry(:,ivis)), MAXVAL(soilalb_dry(:,ivis)) |
---|
283 | WRITE(numout,*) '---> ALBEDO_dry NIR:', MINVAL(soilalb_dry(:,inir)), MAXVAL(soilalb_dry(:,inir)) |
---|
284 | WRITE(numout,*) '---> ALBEDO_moy VIS:', MINVAL(soilalb_moy(:,ivis)), MAXVAL(soilalb_moy(:,ivis)) |
---|
285 | WRITE(numout,*) '---> ALBEDO_moy NIR:', MINVAL(soilalb_moy(:,inir)), MAXVAL(soilalb_moy(:,inir)) |
---|
286 | ENDIF |
---|
287 | END IF |
---|
288 | |
---|
289 | ! z0m |
---|
290 | CALL ioconf_setatt_p('UNITS', '-') |
---|
291 | CALL ioconf_setatt_p('LONG_NAME','Roughness for momentum') |
---|
292 | CALL restget_p (rest_id, 'z0m', nbp_glo, 1, 1, kjit, .TRUE., z0m, "gather", nbp_glo, index_g) |
---|
293 | |
---|
294 | ! z0h |
---|
295 | CALL ioconf_setatt_p('UNITS', '-') |
---|
296 | CALL ioconf_setatt_p('LONG_NAME','Roughness for heat') |
---|
297 | CALL restget_p (rest_id, 'z0h', nbp_glo, 1, 1, kjit, .TRUE., z0h, "gather", nbp_glo, index_g) |
---|
298 | |
---|
299 | ! roughness height |
---|
300 | CALL ioconf_setatt_p('UNITS', '-') |
---|
301 | CALL ioconf_setatt_p('LONG_NAME','Roughness height') |
---|
302 | CALL restget_p (rest_id, 'roughheight', nbp_glo, 1, 1, kjit, .TRUE., roughheight, "gather", nbp_glo, index_g) |
---|
303 | |
---|
304 | |
---|
305 | !! Initialize emissivity |
---|
306 | IF ( impaze ) THEN |
---|
307 | ! Use parameter CONDVEG_EMIS from run.def |
---|
308 | emis(:) = emis_scal |
---|
309 | ELSE |
---|
310 | ! Set emissivity to 1. |
---|
311 | emis_scal = un |
---|
312 | emis(:) = emis_scal |
---|
313 | ENDIF |
---|
314 | |
---|
315 | |
---|
316 | !! 3. Calculate the fraction of snow on vegetation and nobio |
---|
317 | CALL condveg_frac_snow(kjpindex, snow_nobio, snowrho, snowdz, & |
---|
318 | frac_snow_veg, frac_snow_nobio) |
---|
319 | |
---|
320 | !! 4. Calculate roughness height if it was not found in the restart file |
---|
321 | IF ( ALL(z0m(:) == val_exp) .OR. ALL(z0h(:) == val_exp) .OR. ALL(roughheight(:) == val_exp)) THEN |
---|
322 | !! Calculate roughness height |
---|
323 | ! Chooses between two methods to calculate the grid average of the roughness. |
---|
324 | ! If impaze set to true: The grid average is calculated by averaging the drag coefficients over PFT. |
---|
325 | ! If impaze set to false: The grid average is calculated by averaging the logarithm of the roughness length per PFT. |
---|
326 | IF ( impaze ) THEN |
---|
327 | ! Use parameter CONDVEG_Z0 and ROUGHHEIGHT from run.def |
---|
328 | z0m(:) = z0_scal |
---|
329 | z0h(:) = z0_scal |
---|
330 | roughheight(:) = roughheight_scal |
---|
331 | ELSE |
---|
332 | ! Caluculate roughness height |
---|
333 | IF( rough_dyn ) THEN |
---|
334 | CALL condveg_z0cdrag_dyn(kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
335 | & height, temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
336 | ELSE |
---|
337 | CALL condveg_z0cdrag(kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
338 | height, tot_bare_soil, frac_snow_veg, z0m, z0h, roughheight) |
---|
339 | ENDIF |
---|
340 | END IF |
---|
341 | END IF |
---|
342 | |
---|
343 | !! 5. Calculate albedo |
---|
344 | CALL condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
345 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
346 | snow_nobio_age, snowdz, snowrho, & |
---|
347 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
348 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
349 | |
---|
350 | IF (printlev>=3) WRITE (numout,*) 'condveg_initialize done ' |
---|
351 | |
---|
352 | END SUBROUTINE condveg_initialize |
---|
353 | |
---|
354 | |
---|
355 | |
---|
356 | !! ============================================================================================================================== |
---|
357 | !! SUBROUTINE : condveg_main |
---|
358 | !! |
---|
359 | !>\BRIEF Calls the subroutines update the variables for current time step |
---|
360 | !! |
---|
361 | !! |
---|
362 | !! MAIN OUTPUT VARIABLE(S): emis (emissivity), albedo (albedo of |
---|
363 | !! vegetative PFTs in visible and near-infrared range), z0 (surface roughness height), |
---|
364 | !! roughheight (grid effective roughness height), soil type (fraction of soil types) |
---|
365 | !! |
---|
366 | !! |
---|
367 | !! REFERENCE(S) : None |
---|
368 | !! |
---|
369 | !! FLOWCHART : None |
---|
370 | !! |
---|
371 | !! REVISION(S) : None |
---|
372 | !! |
---|
373 | !_ ================================================================================================================================ |
---|
374 | |
---|
375 | SUBROUTINE condveg_main (kjit, kjpindex, index, rest_id, hist_id, hist2_id, & |
---|
376 | lalo, neighbours, resolution, contfrac, veget, veget_max, frac_nobio, totfrac_nobio, & |
---|
377 | zlev, snow, snow_age, snow_nobio, snow_nobio_age, & |
---|
378 | drysoil_frac, height, snowdz, snowrho, tot_bare_soil, & |
---|
379 | temp_air, pb, u, v, lai, & |
---|
380 | emis, albedo, z0m, z0h, roughheight, & |
---|
381 | frac_snow_veg, frac_snow_nobio ) |
---|
382 | |
---|
383 | !! 0. Variable and parameter declaration |
---|
384 | |
---|
385 | !! 0.1 Input variables |
---|
386 | |
---|
387 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
388 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
389 | INTEGER(i_std),INTENT (in) :: rest_id !! _Restart_ file identifier |
---|
390 | INTEGER(i_std),INTENT (in) :: hist_id !! _History_ file identifier |
---|
391 | INTEGER(i_std), OPTIONAL, INTENT (in) :: hist2_id !! _History_ file 2 identifier |
---|
392 | INTEGER(i_std),DIMENSION (kjpindex), INTENT (in) :: index !! Indeces of the points on the map |
---|
393 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (in) :: lalo !! Geographical coordinates |
---|
394 | INTEGER(i_std),DIMENSION (kjpindex,NbNeighb), INTENT(in):: neighbours!! neighoring grid points if land |
---|
395 | REAL(r_std), DIMENSION (kjpindex,2), INTENT(in) :: resolution !! size in x an y of the grid (m) |
---|
396 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: contfrac ! Fraction of land in each grid box. |
---|
397 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget !! Fraction of vegetation types |
---|
398 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max !! Fraction of vegetation type |
---|
399 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of continental ice, lakes, ... |
---|
400 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! total fraction of continental ice+lakes+... |
---|
401 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer |
---|
402 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass [Kg/m^2] |
---|
403 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age |
---|
404 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass [Kg/m^2] on ice, lakes, ... |
---|
405 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_nobio_age !! Snow age on ice, lakes, ... |
---|
406 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
407 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: height !! Vegetation Height (m) |
---|
408 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowdz !! Snow depth at each snow layer |
---|
409 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in):: snowrho !! Snow density at each snow layer |
---|
410 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
411 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: temp_air !! Air temperature |
---|
412 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
413 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: u !! Horizontal wind speed, u direction |
---|
414 | REAL(r_std),DIMENSION(kjpindex),INTENT(in) :: v !! Horizontal wind speed, v direction |
---|
415 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
416 | |
---|
417 | !! 0.2 Output variables |
---|
418 | |
---|
419 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: emis !! Emissivity |
---|
420 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo, vis(1) and nir(2) |
---|
421 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0m !! Roughness for momentum (m) |
---|
422 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: z0h !! Roughness for heat (m) |
---|
423 | REAL(r_std),DIMENSION (kjpindex), INTENT (out) :: roughheight !! Effective height for roughness |
---|
424 | REAL(r_std),DIMENSION (kjpindex), INTENT(out) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
425 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Snow cover fraction on non-vegeted area |
---|
426 | |
---|
427 | !! 0.3 Modified variables |
---|
428 | |
---|
429 | !! 0.4 Local variables |
---|
430 | REAL(r_std), DIMENSION(kjpindex,2) :: albedo_snow !! Snow albedo (unitless ratio) |
---|
431 | REAL(r_std), DIMENSION(kjpindex) :: albedo_snow_mean !! Mean snow albedo over all wave length, for diag (unitless ratio) |
---|
432 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
433 | !! range (unitless) |
---|
434 | REAL(r_std), DIMENSION(kjpindex,2) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
435 | !! range (unitless) |
---|
436 | INTEGER(i_std) :: ji |
---|
437 | !_ ================================================================================================================================ |
---|
438 | |
---|
439 | !! 1. Calculate the fraction of snow on vegetation and nobio |
---|
440 | CALL condveg_frac_snow(kjpindex, snow_nobio, snowrho, snowdz, & |
---|
441 | frac_snow_veg, frac_snow_nobio) |
---|
442 | |
---|
443 | !! 2. Calculate emissivity |
---|
444 | emis(:) = emis_scal |
---|
445 | |
---|
446 | !! 3. Calculate roughness height |
---|
447 | ! If TRUE read in prescribed values for roughness height |
---|
448 | IF ( impaze ) THEN |
---|
449 | |
---|
450 | DO ji = 1, kjpindex |
---|
451 | z0m(ji) = z0_scal |
---|
452 | z0h(ji) = z0_scal |
---|
453 | roughheight(ji) = roughheight_scal |
---|
454 | ENDDO |
---|
455 | |
---|
456 | ELSE |
---|
457 | ! Calculate roughness height |
---|
458 | IF ( rough_dyn ) THEN |
---|
459 | CALL condveg_z0cdrag_dyn (kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, height, & |
---|
460 | & temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
461 | ELSE |
---|
462 | CALL condveg_z0cdrag (kjpindex, veget, veget_max, frac_nobio, totfrac_nobio, zlev, & |
---|
463 | height, tot_bare_soil, frac_snow_veg, z0m, z0h, roughheight) |
---|
464 | ENDIF |
---|
465 | |
---|
466 | ENDIF |
---|
467 | |
---|
468 | |
---|
469 | !! 4. Calculate albedo |
---|
470 | CALL condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
471 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
472 | snow_nobio_age, snowdz, snowrho, & |
---|
473 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
474 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
475 | |
---|
476 | |
---|
477 | |
---|
478 | !! 5. Output diagnostics |
---|
479 | IF (.NOT. impaze) THEN |
---|
480 | CALL xios_orchidee_send_field("soilalb_vis",alb_bare(:,1)) |
---|
481 | CALL xios_orchidee_send_field("soilalb_nir",alb_bare(:,2)) |
---|
482 | CALL xios_orchidee_send_field("vegalb_vis",alb_veget(:,1)) |
---|
483 | CALL xios_orchidee_send_field("vegalb_nir",alb_veget(:,2)) |
---|
484 | END IF |
---|
485 | CALL xios_orchidee_send_field("albedo_vis",albedo(:,1)) |
---|
486 | CALL xios_orchidee_send_field("albedo_nir",albedo(:,2)) |
---|
487 | |
---|
488 | ! Calculcate albedo_snow mean over wave length, setting xios_default_val when there is no snow |
---|
489 | DO ji=1,kjpindex |
---|
490 | IF (snow(ji) > 0) THEN |
---|
491 | albedo_snow_mean(ji) = (albedo_snow(ji,1) + albedo_snow(ji,2))/2 |
---|
492 | ELSE |
---|
493 | albedo_snow_mean(ji) = xios_default_val |
---|
494 | END IF |
---|
495 | END DO |
---|
496 | CALL xios_orchidee_send_field("albedo_snow", albedo_snow_mean) |
---|
497 | |
---|
498 | IF ( almaoutput ) THEN |
---|
499 | CALL histwrite_p(hist_id, 'Albedo', kjit, (albedo(:,1) + albedo(:,2))/2, kjpindex, index) |
---|
500 | CALL histwrite_p(hist_id, 'SAlbedo', kjit, (albedo_snow(:,1) + albedo_snow(:,2))/2, kjpindex, index) |
---|
501 | IF ( hist2_id > 0 ) THEN |
---|
502 | CALL histwrite_p(hist2_id, 'Albedo', kjit, (albedo(:,1) + albedo(:,2))/2, kjpindex, index) |
---|
503 | CALL histwrite_p(hist2_id, 'SAlbedo', kjit, (albedo_snow(:,1) + albedo_snow(:,2))/2, kjpindex, index) |
---|
504 | ENDIF |
---|
505 | ELSE |
---|
506 | IF (.NOT. impaze) THEN |
---|
507 | CALL histwrite_p(hist_id, 'soilalb_vis', kjit, alb_bare(:,1), kjpindex, index) |
---|
508 | CALL histwrite_p(hist_id, 'soilalb_nir', kjit, alb_bare(:,2), kjpindex, index) |
---|
509 | CALL histwrite_p(hist_id, 'vegalb_vis', kjit, alb_veget(:,1), kjpindex, index) |
---|
510 | CALL histwrite_p(hist_id, 'vegalb_nir', kjit, alb_veget(:,2), kjpindex, index) |
---|
511 | IF ( hist2_id > 0 ) THEN |
---|
512 | CALL histwrite_p(hist2_id, 'soilalb_vis', kjit, alb_bare(:,1), kjpindex, index) |
---|
513 | CALL histwrite_p(hist2_id, 'soilalb_nir', kjit, alb_bare(:,2), kjpindex, index) |
---|
514 | CALL histwrite_p(hist2_id, 'vegalb_vis', kjit, alb_veget(:,1), kjpindex, index) |
---|
515 | CALL histwrite_p(hist2_id, 'vegalb_nir', kjit, alb_veget(:,2), kjpindex, index) |
---|
516 | ENDIF |
---|
517 | END IF |
---|
518 | ENDIF |
---|
519 | |
---|
520 | IF (printlev>=3) WRITE (numout,*)' condveg_main done ' |
---|
521 | |
---|
522 | END SUBROUTINE condveg_main |
---|
523 | |
---|
524 | !! ============================================================================================================================= |
---|
525 | !! SUBROUTINE : condveg_finalize |
---|
526 | !! |
---|
527 | !>\BRIEF Write to restart file |
---|
528 | !! |
---|
529 | !! DESCRIPTION : This subroutine writes the module variables and variables calculated in condveg |
---|
530 | !! to restart file |
---|
531 | !! |
---|
532 | !! RECENT CHANGE(S) : None |
---|
533 | !! |
---|
534 | !! REFERENCE(S) : None |
---|
535 | !! |
---|
536 | !! FLOWCHART : None |
---|
537 | !! \n |
---|
538 | !_ ============================================================================================================================== |
---|
539 | SUBROUTINE condveg_finalize (kjit, kjpindex, rest_id, z0m, z0h, roughheight) |
---|
540 | |
---|
541 | !! 0. Variable and parameter declaration |
---|
542 | !! 0.1 Input variables |
---|
543 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number |
---|
544 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
545 | INTEGER(i_std),INTENT (in) :: rest_id !! Restart file identifier |
---|
546 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: z0m !! Roughness for momentum |
---|
547 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: z0h !! Roughness for heat |
---|
548 | REAL(r_std),DIMENSION(kjpindex), INTENT(in) :: roughheight !! Grid effective roughness height (m) |
---|
549 | |
---|
550 | !_ ================================================================================================================================ |
---|
551 | |
---|
552 | CALL restput_p (rest_id, 'z0m', nbp_glo, 1, 1, kjit, z0m, 'scatter', nbp_glo, index_g) |
---|
553 | CALL restput_p (rest_id, 'z0h', nbp_glo, 1, 1, kjit, z0h, 'scatter', nbp_glo, index_g) |
---|
554 | CALL restput_p (rest_id, 'roughheight', nbp_glo, 1, 1, kjit, roughheight, 'scatter', nbp_glo, index_g) |
---|
555 | |
---|
556 | IF ( alb_bg_modis ) THEN |
---|
557 | CALL restput_p (rest_id, 'soilalbedo_bg', nbp_glo, 2, 1, kjit, soilalb_bg, 'scatter', nbp_glo, index_g) |
---|
558 | ELSE |
---|
559 | CALL restput_p (rest_id, 'soilalbedo_dry', nbp_glo, 2, 1, kjit, soilalb_dry, 'scatter', nbp_glo, index_g) |
---|
560 | CALL restput_p (rest_id, 'soilalbedo_wet', nbp_glo, 2, 1, kjit, soilalb_wet, 'scatter', nbp_glo, index_g) |
---|
561 | CALL restput_p (rest_id, 'soilalbedo_moy', nbp_glo, 2, 1, kjit, soilalb_moy, 'scatter', nbp_glo, index_g) |
---|
562 | END IF |
---|
563 | END SUBROUTINE condveg_finalize |
---|
564 | |
---|
565 | !! ============================================================================================================================== |
---|
566 | !! SUBROUTINE : condveg_clear |
---|
567 | !! |
---|
568 | !>\BRIEF Deallocate albedo variables |
---|
569 | !! |
---|
570 | !! DESCRIPTION : None |
---|
571 | !! |
---|
572 | !! RECENT CHANGE(S): None |
---|
573 | !! |
---|
574 | !! MAIN OUTPUT VARIABLE(S): None |
---|
575 | !! |
---|
576 | !! REFERENCES : None |
---|
577 | !! |
---|
578 | !! FLOWCHART : None |
---|
579 | !! \n |
---|
580 | !_ ================================================================================================================================ |
---|
581 | |
---|
582 | SUBROUTINE condveg_clear () |
---|
583 | |
---|
584 | l_first_condveg=.TRUE. |
---|
585 | |
---|
586 | ! Dry soil albedo |
---|
587 | IF (ALLOCATED (soilalb_dry)) DEALLOCATE (soilalb_dry) |
---|
588 | ! Wet soil albedo |
---|
589 | IF (ALLOCATED(soilalb_wet)) DEALLOCATE (soilalb_wet) |
---|
590 | ! Mean soil albedo |
---|
591 | IF (ALLOCATED(soilalb_moy)) DEALLOCATE (soilalb_moy) |
---|
592 | ! BG soil albedo |
---|
593 | IF (ALLOCATED(soilalb_bg)) DEALLOCATE (soilalb_bg) |
---|
594 | |
---|
595 | END SUBROUTINE condveg_clear |
---|
596 | |
---|
597 | !! ==============================================================================================================================\n |
---|
598 | !! SUBROUTINE : condveg_albedo |
---|
599 | !! |
---|
600 | !>\BRIEF Calculate albedo |
---|
601 | !! |
---|
602 | !! DESCRIPTION : The albedo is calculated for both the visible and near-infrared |
---|
603 | !! domain. First the mean albedo of the bare soil is calculated. Two options exist: |
---|
604 | !! either the soil albedo depends on soil wetness (drysoil_frac variable), or the soil albedo |
---|
605 | !! is set to a mean soil albedo value. |
---|
606 | !! The snow albedo scheme presented below belongs to prognostic albedo |
---|
607 | !! category, i.e. the snow albedo value at a time step depends on the snow albedo value |
---|
608 | !! at the previous time step. |
---|
609 | !! |
---|
610 | !! First, the following formula (described in Chalita and Treut 1994) is used to describe |
---|
611 | !! the change in snow albedo with snow age on each PFT and each non-vegetative surfaces, |
---|
612 | !! i.e. continental ice, lakes, etc.: \n |
---|
613 | !! \latexonly |
---|
614 | !! \input{SnowAlbedo.tex} |
---|
615 | !! \endlatexonly |
---|
616 | !! \n |
---|
617 | !! Where snowAge is snow age, tcstSnowa is a critical aging time (tcstSnowa=5 days) |
---|
618 | !! snowaIni and snowaIni+snowaDec corresponds to albedos measured for aged and |
---|
619 | !! fresh snow respectively, and their values for each PFT and each non-vegetative surfaces |
---|
620 | !! is precribed in in constantes_veg.f90.\n |
---|
621 | !! In order to estimate gridbox snow albedo, snow albedo values for each PFT and |
---|
622 | !! each non-vegetative surfaces with a grid box are weightedly summed up by their |
---|
623 | !! respective fractions.\n |
---|
624 | !! Secondly, the snow cover fraction is computed as: |
---|
625 | !! \latexonly |
---|
626 | !! \input{SnowFraction.tex} |
---|
627 | !! \endlatexonly |
---|
628 | !! \n |
---|
629 | !! Where fracSnow is the fraction of snow on total vegetative or total non-vegetative |
---|
630 | !! surfaces, snow is snow mass (kg/m^2) on total vegetated or total nobio surfaces.\n |
---|
631 | !! Finally, the surface albedo is then updated as the weighted sum of fracSnow, total |
---|
632 | !! vegetated fraction, total nobio fraction, gridbox snow albedo, and previous |
---|
633 | !! time step surface albedo. |
---|
634 | !! |
---|
635 | !! RECENT CHANGE(S): These calculations were previously done in condveg_albcalc and condveg_snow |
---|
636 | !! |
---|
637 | !! MAIN OUTPUT VARIABLE(S): :: albedo; surface albedo. :: albedo_snow; snow |
---|
638 | !! albedo |
---|
639 | !! |
---|
640 | !! REFERENCE(S) : |
---|
641 | !! Chalita, S. and H Le Treut (1994), The albedo of temperate and boreal forest and |
---|
642 | !! the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM, |
---|
643 | !! Climate Dynamics, 10 231-240. |
---|
644 | !! |
---|
645 | !! FLOWCHART : None |
---|
646 | !! \n |
---|
647 | !_ ================================================================================================================================ |
---|
648 | |
---|
649 | SUBROUTINE condveg_albedo (kjpindex, veget, veget_max, drysoil_frac, frac_nobio, & |
---|
650 | totfrac_nobio, snow, snow_age, snow_nobio, & |
---|
651 | snow_nobio_age, snowdz, snowrho, & |
---|
652 | tot_bare_soil, frac_snow_veg, frac_snow_nobio, & |
---|
653 | albedo, albedo_snow, alb_bare, alb_veget) |
---|
654 | |
---|
655 | |
---|
656 | !! 0. Variable and parameter declarations |
---|
657 | |
---|
658 | !! 0.1 Input variables |
---|
659 | |
---|
660 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
661 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT (in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
662 | !! (m^2 m^{-2}) |
---|
663 | REAL(r_std),DIMENSION (kjpindex,nvm), INTENT(in) :: veget_max |
---|
664 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: drysoil_frac !! Fraction of visibly Dry soil(between 0 and 1) |
---|
665 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, i.e. |
---|
666 | !! continental ice, lakes, etc. (unitless) |
---|
667 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, i.e. |
---|
668 | !! continental ice, lakes, etc. (unitless) |
---|
669 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow !! Snow mass in vegetation (kg m^{-2}) |
---|
670 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass on continental ice, lakes, etc. (kg m^{-2}) |
---|
671 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: snow_age !! Snow age (days) |
---|
672 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio_age !! Snow age on continental ice, lakes, etc. (days) |
---|
673 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth at each snow layer |
---|
674 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowrho !! Snow density at each snow layer |
---|
675 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
676 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: frac_snow_veg !! Fraction of snow on vegetation (unitless ratio) |
---|
677 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_snow_nobio !! Fraction of snow on continental ice, lakes, etc. (unitless ratio) |
---|
678 | |
---|
679 | !! 0.2 Output variables |
---|
680 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo !! Albedo (unitless ratio) |
---|
681 | REAL(r_std),DIMENSION (kjpindex,2), INTENT (out) :: albedo_snow !! Snow albedo (unitless ratio) |
---|
682 | REAL(r_std), DIMENSION(kjpindex,2), INTENT(out) :: alb_bare !! Mean bare soil albedo for visible and near-infrared |
---|
683 | !! range (unitless). Only calculated for .NOT. impaze |
---|
684 | REAL(r_std), DIMENSION(kjpindex,2), INTENT(out) :: alb_veget !! Mean vegetation albedo for visible and near-infrared |
---|
685 | !! range (unitless). Only calculated for .NOT. impaze |
---|
686 | |
---|
687 | !! 0.3 Local variables |
---|
688 | INTEGER(i_std) :: ji, jv, jb,ks !! indices (unitless) |
---|
689 | REAL(r_std), DIMENSION(kjpindex,2) :: snowa_veg !! Albedo of snow covered area on vegetation |
---|
690 | !! (unitless ratio) |
---|
691 | REAL(r_std), DIMENSION(kjpindex,nnobio,2) :: snowa_nobio !! Albedo of snow covered area on continental ice, |
---|
692 | !! lakes, etc. (unitless ratio) |
---|
693 | REAL(r_std), DIMENSION(kjpindex) :: fraction_veg !! Total vegetation fraction (unitless ratio) |
---|
694 | REAL(r_std), DIMENSION(kjpindex) :: agefunc_veg !! Age dependency of snow albedo on vegetation |
---|
695 | !! (unitless) |
---|
696 | REAL(r_std), DIMENSION(kjpindex,nnobio) :: agefunc_nobio !! Age dependency of snow albedo on ice, |
---|
697 | !! lakes, .. (unitless) |
---|
698 | REAL(r_std) :: alb_nobio !! Albedo of continental ice, lakes, etc. |
---|
699 | !!(unitless ratio) |
---|
700 | REAL(r_std),DIMENSION (nvm,2) :: alb_leaf_tmp !! Variables for albedo values for all PFTs and |
---|
701 | REAL(r_std),DIMENSION (nvm,2) :: snowa_aged_tmp !! spectral domains (unitless) |
---|
702 | REAL(r_std),DIMENSION (nvm,2) :: snowa_dec_tmp |
---|
703 | !_ ================================================================================================================================ |
---|
704 | |
---|
705 | |
---|
706 | |
---|
707 | !! 1. Preliminary calculation without considering snow |
---|
708 | snowa_aged_tmp(:,ivis) = snowa_aged_vis(:) |
---|
709 | snowa_aged_tmp(:,inir) = snowa_aged_nir(:) |
---|
710 | snowa_dec_tmp(:,ivis) = snowa_dec_vis(:) |
---|
711 | snowa_dec_tmp(:,inir) = snowa_dec_nir(:) |
---|
712 | |
---|
713 | IF ( impaze ) THEN |
---|
714 | !! No caluculation, set default value |
---|
715 | albedo(:,ivis) = albedo_scal(ivis) |
---|
716 | albedo(:,inir) = albedo_scal(inir) |
---|
717 | |
---|
718 | ! These variables are needed for snow albedo and for diagnostic output |
---|
719 | alb_veget(:,ivis) = albedo_scal(ivis) |
---|
720 | alb_veget(:,inir) = albedo_scal(inir) |
---|
721 | alb_bare(:,ivis) = albedo_scal(ivis) |
---|
722 | alb_bare(:,inir) = albedo_scal(inir) |
---|
723 | ELSE |
---|
724 | !! Preliminary calculation without considering snow (previously done in condveg_albcalc) |
---|
725 | ! Assign values of leaf and snow albedo for visible and near-infrared range |
---|
726 | ! to local variable (constantes_veg.f90) |
---|
727 | alb_leaf_tmp(:,ivis) = alb_leaf_vis(:) |
---|
728 | alb_leaf_tmp(:,inir) = alb_leaf_nir(:) |
---|
729 | |
---|
730 | !! 1.1 Calculation and assignment of soil albedo |
---|
731 | |
---|
732 | DO ks = 1, 2! Loop over # of spectra |
---|
733 | |
---|
734 | ! If alb_bg_modis=TRUE, the background soil albedo map for the current simulated month is used |
---|
735 | ! If alb_bg_modis=FALSE and alb_bare_model=TRUE, the soil albedo calculation depends on soil moisture |
---|
736 | ! If alb_bg_modis=FALSE and alb_bare_model=FALSE, the mean soil albedo is used without the dependance on soil moisture |
---|
737 | ! see subroutines 'condveg_soilalb' and 'condveg_background_soilalb' |
---|
738 | IF ( alb_bg_modis ) THEN |
---|
739 | alb_bare(:,ks) = soilalb_bg(:,ks) |
---|
740 | ELSE |
---|
741 | IF ( alb_bare_model ) THEN |
---|
742 | alb_bare(:,ks) = soilalb_wet(:,ks) + drysoil_frac(:) * (soilalb_dry(:,ks) - soilalb_wet(:,ks)) |
---|
743 | ELSE |
---|
744 | alb_bare(:,ks) = soilalb_moy(:,ks) |
---|
745 | ENDIF |
---|
746 | ENDIF |
---|
747 | |
---|
748 | ! Soil albedo is weighed by fraction of bare soil |
---|
749 | albedo(:,ks) = tot_bare_soil(:) * alb_bare(:,ks) |
---|
750 | |
---|
751 | !! 1.2 Calculation of mean albedo of over the grid cell |
---|
752 | |
---|
753 | ! Calculation of mean albedo of over the grid cell and |
---|
754 | ! mean albedo of only vegetative PFTs over the grid cell |
---|
755 | alb_veget(:,ks) = zero |
---|
756 | |
---|
757 | DO jv = 2, nvm ! Loop over # of PFTs |
---|
758 | |
---|
759 | ! Mean albedo of grid cell for visible and near-infrared range |
---|
760 | albedo(:,ks) = albedo(:,ks) + veget(:,jv)*alb_leaf_tmp(jv,ks) |
---|
761 | |
---|
762 | ! Mean albedo of vegetation for visible and near-infrared range |
---|
763 | alb_veget(:,ks) = alb_veget(:,ks) + veget(:,jv)*alb_leaf_tmp(jv,ks) |
---|
764 | ENDDO ! Loop over # of PFTs |
---|
765 | |
---|
766 | ENDDO |
---|
767 | END IF |
---|
768 | |
---|
769 | |
---|
770 | !! 2. Calculate snow albedos on both total vegetated and total nobio surfaces |
---|
771 | |
---|
772 | ! The snow albedo could be either prescribed (in condveg_init.f90) or |
---|
773 | ! calculated following Chalita and Treut (1994). |
---|
774 | ! Check if the precribed value fixed_snow_albedo exists |
---|
775 | IF (ABS(fixed_snow_albedo - undef_sechiba) .GT. EPSILON(undef_sechiba)) THEN |
---|
776 | snowa_veg(:,:) = fixed_snow_albedo |
---|
777 | snowa_nobio(:,:,:) = fixed_snow_albedo |
---|
778 | fraction_veg(:) = un - totfrac_nobio(:) |
---|
779 | ELSE ! calculated following Chalita and Treut (1994) |
---|
780 | |
---|
781 | !! 2.1 Calculate age dependence |
---|
782 | |
---|
783 | ! On vegetated surfaces |
---|
784 | DO ji = 1, kjpindex |
---|
785 | agefunc_veg(ji) = EXP(-snow_age(ji)/tcst_snowa) |
---|
786 | ENDDO |
---|
787 | |
---|
788 | ! On non-vegtative surfaces |
---|
789 | DO jv = 1, nnobio ! Loop over # nobio types |
---|
790 | DO ji = 1, kjpindex |
---|
791 | agefunc_nobio(ji,jv) = EXP(-snow_nobio_age(ji,jv)/tcst_snowa) |
---|
792 | ENDDO |
---|
793 | ENDDO |
---|
794 | |
---|
795 | !! 2.1 Calculate snow albedo |
---|
796 | ! For vegetated surfaces |
---|
797 | fraction_veg(:) = un - totfrac_nobio(:) |
---|
798 | snowa_veg(:,:) = zero |
---|
799 | ! Alternative formulation based on veget and not veget_max that needs to be tested |
---|
800 | ! See ticket 223 |
---|
801 | !!$ DO jb = 1, 2 |
---|
802 | !!$ DO ji = 1, kjpindex |
---|
803 | !!$ IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
804 | !!$ snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
805 | !!$ tot_bare_soil(ji)/fraction_veg(ji) * ( snowa_aged_tmp(1,jb)+snowa_dec_tmp(1,jb)*agefunc_veg(ji) ) |
---|
806 | !!$ END IF |
---|
807 | !!$ END DO |
---|
808 | !!$ END DO |
---|
809 | !!$ |
---|
810 | !!$ DO jb = 1, 2 |
---|
811 | !!$ DO jv = 2, nvm |
---|
812 | !!$ DO ji = 1, kjpindex |
---|
813 | !!$ IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
814 | !!$ snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
815 | !!$ veget(ji,jv)/fraction_veg(ji) * ( snowa_aged_tmp(jv,jb)+snowa_dec_tmp(jv,jb)*agefunc_veg(ji) ) |
---|
816 | !!$ ENDIF |
---|
817 | !!$ ENDDO |
---|
818 | !!$ ENDDO |
---|
819 | !!$ ENDDO |
---|
820 | DO jb = 1, 2 |
---|
821 | DO jv = 1, nvm |
---|
822 | DO ji = 1, kjpindex |
---|
823 | IF ( fraction_veg(ji) .GT. min_sechiba ) THEN |
---|
824 | snowa_veg(ji,jb) = snowa_veg(ji,jb) + & |
---|
825 | veget_max(ji,jv)/fraction_veg(ji) * ( snowa_aged_tmp(jv,jb)+snowa_dec_tmp(jv,jb)*agefunc_veg(ji) ) |
---|
826 | ENDIF |
---|
827 | ENDDO |
---|
828 | ENDDO |
---|
829 | ENDDO |
---|
830 | |
---|
831 | ! |
---|
832 | ! snow albedo on other surfaces |
---|
833 | ! |
---|
834 | DO jb = 1, 2 |
---|
835 | DO jv = 1, nnobio |
---|
836 | DO ji = 1, kjpindex |
---|
837 | snowa_nobio(ji,jv,jb) = ( snowa_aged_tmp(1,jb) + snowa_dec_tmp(1,jb) * agefunc_nobio(ji,jv) ) |
---|
838 | ENDDO |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | ENDIF |
---|
842 | |
---|
843 | !! 3. Update surface albedo |
---|
844 | |
---|
845 | ! Update surface albedo using the weighted sum of previous time step surface albedo, |
---|
846 | ! total vegetated fraction, total nobio fraction, snow cover fraction (both vegetated and |
---|
847 | ! non-vegetative surfaces), and snow albedo (both vegetated and non-vegetative surfaces). |
---|
848 | ! Although both visible and near-infrared surface albedo are presented, their calculations |
---|
849 | ! are the same. |
---|
850 | DO jb = 1, 2 |
---|
851 | |
---|
852 | albedo(:,jb) = ( fraction_veg(:) ) * & |
---|
853 | ( (un-frac_snow_veg(:)) * albedo(:,jb) + & |
---|
854 | ( frac_snow_veg(:) ) * snowa_veg(:,jb) ) |
---|
855 | DO jv = 1, nnobio ! Loop over # nobio surfaces |
---|
856 | |
---|
857 | IF ( jv .EQ. iice ) THEN |
---|
858 | alb_nobio = alb_ice(jb) |
---|
859 | ELSE |
---|
860 | WRITE(numout,*) 'jv=',jv |
---|
861 | WRITE(numout,*) 'DO NOT KNOW ALBEDO OF THIS SURFACE TYPE' |
---|
862 | CALL ipslerr_p(3,'condveg_snow','DO NOT KNOW ALBEDO OF THIS SURFACE TYPE','','') |
---|
863 | ENDIF |
---|
864 | |
---|
865 | albedo(:,jb) = albedo(:,jb) + & |
---|
866 | ( frac_nobio(:,jv) ) * & |
---|
867 | ( (un-frac_snow_nobio(:,jv)) * alb_nobio + & |
---|
868 | ( frac_snow_nobio(:,jv) ) * snowa_nobio(:,jv,jb) ) |
---|
869 | ENDDO |
---|
870 | |
---|
871 | END DO |
---|
872 | |
---|
873 | ! Calculate snow albedo |
---|
874 | DO jb = 1, 2 |
---|
875 | albedo_snow(:,jb) = fraction_veg(:) * frac_snow_veg(:) * snowa_veg(:,jb) |
---|
876 | DO jv = 1, nnobio |
---|
877 | albedo_snow(:,jb) = albedo_snow(:,jb) + & |
---|
878 | frac_nobio(:,jv) * frac_snow_nobio(:,jv) * snowa_nobio(:,jv,jb) |
---|
879 | ENDDO |
---|
880 | ENDDO |
---|
881 | |
---|
882 | IF (printlev>=3) WRITE (numout,*) ' condveg_albedo done ' |
---|
883 | |
---|
884 | END SUBROUTINE condveg_albedo |
---|
885 | |
---|
886 | |
---|
887 | |
---|
888 | !! ============================================================================================================================== |
---|
889 | !! SUBROUTINE : condveg_frac_snow |
---|
890 | !! |
---|
891 | !>\BRIEF This subroutine calculates the fraction of snow on vegetation and nobio |
---|
892 | !! |
---|
893 | !! DESCRIPTION |
---|
894 | !! |
---|
895 | !! RECENT CHANGE(S): These calculations were previously done in condveg_snow. |
---|
896 | !! |
---|
897 | !! REFERENCE(S) : |
---|
898 | !! |
---|
899 | !! FLOWCHART : None |
---|
900 | !! \n |
---|
901 | !_ ================================================================================================================================ |
---|
902 | |
---|
903 | SUBROUTINE condveg_frac_snow(kjpindex, snow_nobio, snowrho, snowdz, & |
---|
904 | frac_snow_veg, frac_snow_nobio) |
---|
905 | !! 0. Variable and parameter declaration |
---|
906 | !! 0.1 Input variables |
---|
907 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size |
---|
908 | REAL(r_std),DIMENSION (kjpindex,nnobio), INTENT(in) :: snow_nobio !! Snow mass on continental ice, lakes, etc. (kg m^{-2}) |
---|
909 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowrho !! Snow density at each snow layer |
---|
910 | REAL(r_std),DIMENSION (kjpindex,nsnow),INTENT(in) :: snowdz !! Snow depth at each snow layer |
---|
911 | |
---|
912 | !! 0.2 Output variables |
---|
913 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: frac_snow_veg !! Fraction of snow on vegetation (unitless ratio) |
---|
914 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(out):: frac_snow_nobio !! Fraction of snow on continental ice, lakes, etc. |
---|
915 | |
---|
916 | !! 0.3 Local variables |
---|
917 | REAL(r_std), DIMENSION(kjpindex) :: snowrho_ave !! Average snow density |
---|
918 | REAL(r_std), DIMENSION(kjpindex) :: snowdepth !! Snow depth |
---|
919 | REAL(r_std), DIMENSION(kjpindex) :: snowrho_snowdz !! Snow rho time snowdz |
---|
920 | INTEGER(i_std) :: jv |
---|
921 | |
---|
922 | !! Calculate snow cover fraction for both total vegetated and total non-vegetative surfaces. |
---|
923 | snowdepth=sum(snowdz,2) |
---|
924 | snowrho_snowdz=sum(snowrho*snowdz,2) |
---|
925 | WHERE(snowdepth(:) .LT. min_sechiba) |
---|
926 | frac_snow_veg(:) = 0. |
---|
927 | ELSEWHERE |
---|
928 | snowrho_ave(:)=snowrho_snowdz(:)/snowdepth(:) |
---|
929 | frac_snow_veg(:) = tanh(snowdepth(:)/(0.025*(snowrho_ave(:)/50.))) |
---|
930 | END WHERE |
---|
931 | |
---|
932 | DO jv = 1, nnobio |
---|
933 | frac_snow_nobio(:,jv) = MIN(MAX(snow_nobio(:,jv),zero)/(MAX(snow_nobio(:,jv),zero)+snowcri_alb*sn_dens/100.0),un) |
---|
934 | ENDDO |
---|
935 | |
---|
936 | IF (printlev>=3) WRITE (numout,*) ' condveg_frac_snow done ' |
---|
937 | |
---|
938 | END SUBROUTINE condveg_frac_snow |
---|
939 | |
---|
940 | |
---|
941 | !! ============================================================================================================================== |
---|
942 | !! SUBROUTINE : condveg_soilalb |
---|
943 | !! |
---|
944 | !>\BRIEF This subroutine calculates the albedo of soil (without snow). |
---|
945 | !! |
---|
946 | !! DESCRIPTION This subroutine reads the soil colour maps in 1 x 1 deg resolution |
---|
947 | !! from the Henderson-Sellers & Wilson database. These values are interpolated to |
---|
948 | !! the model's resolution and transformed into |
---|
949 | !! dry and wet albedos.\n |
---|
950 | !! |
---|
951 | !! If the soil albedo is calculated without the dependence of soil moisture, the |
---|
952 | !! soil colour values are transformed into mean soil albedo values.\n |
---|
953 | !! |
---|
954 | !! The calculations follow the assumption that the grid of the data is regular and |
---|
955 | !! it covers the globe. The calculation for the model grid are based on the borders |
---|
956 | !! of the grid of the resolution. |
---|
957 | !! |
---|
958 | !! RECENT CHANGE(S): None |
---|
959 | !! |
---|
960 | !! CALCULATED MODULE VARIABLE(S): soilalb_dry for visible and near-infrared range, |
---|
961 | !! soilalb_wet for visible and near-infrared range, |
---|
962 | !! soilalb_moy for visible and near-infrared range |
---|
963 | !! |
---|
964 | !! REFERENCE(S) : |
---|
965 | !! -Wilson, M.F., and A. Henderson-Sellers, 1985: A global archive of land cover and |
---|
966 | !! soils data for use in general circulation climate models. J. Clim., 5, 119-143. |
---|
967 | !! |
---|
968 | !! FLOWCHART : None |
---|
969 | !! \n |
---|
970 | !_ ================================================================================================================================ |
---|
971 | |
---|
972 | SUBROUTINE condveg_soilalb(nbpt, lalo, neighbours, resolution, contfrac) |
---|
973 | |
---|
974 | USE interpweight |
---|
975 | |
---|
976 | IMPLICIT NONE |
---|
977 | |
---|
978 | |
---|
979 | !! 0. Variable and parameter declaration |
---|
980 | |
---|
981 | !! 0.1 Input variables |
---|
982 | |
---|
983 | INTEGER(i_std), INTENT(in) :: nbpt !! Number of points for which the data needs to be |
---|
984 | !! interpolated (unitless) |
---|
985 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (degree) |
---|
986 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
987 | !! (1=N, 2=E, 3=S, 4=W) |
---|
988 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid cell in X and Y (km) |
---|
989 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid cell (unitless) |
---|
990 | |
---|
991 | !! 0.4 Local variables |
---|
992 | |
---|
993 | CHARACTER(LEN=80) :: filename !! Filename of soil colour map |
---|
994 | INTEGER(i_std) :: i, ib, ip, nbexp !! Indices |
---|
995 | INTEGER :: ALLOC_ERR !! Help varialbe to count allocation error |
---|
996 | REAL(r_std), DIMENSION(nbpt) :: asoilcol !! Availability of the soilcol interpolation |
---|
997 | REAL(r_std), DIMENSION(:), ALLOCATABLE :: variabletypevals !! Values for all the types of the variable |
---|
998 | !! (variabletypevals(1) = -un, not used) |
---|
999 | REAL(r_std), DIMENSION(:,:), ALLOCATABLE :: soilcolrefrac !! soilcol fractions re-dimensioned |
---|
1000 | REAL(r_std) :: vmin, vmax !! min/max values to use for the |
---|
1001 | !! renormalization |
---|
1002 | CHARACTER(LEN=80) :: variablename !! Variable to interpolate |
---|
1003 | CHARACTER(LEN=80) :: lonname, latname !! lon, lat names in input file |
---|
1004 | CHARACTER(LEN=50) :: fractype !! method of calculation of fraction |
---|
1005 | !! 'XYKindTime': Input values are kinds |
---|
1006 | !! of something with a temporal |
---|
1007 | !! evolution on the dx*dy matrix' |
---|
1008 | LOGICAL :: nonegative !! whether negative values should be removed |
---|
1009 | CHARACTER(LEN=50) :: maskingtype !! Type of masking |
---|
1010 | !! 'nomask': no-mask is applied |
---|
1011 | !! 'mbelow': take values below maskvals(1) |
---|
1012 | !! 'mabove': take values above maskvals(1) |
---|
1013 | !! 'msumrange': take values within 2 ranges; |
---|
1014 | !! maskvals(2) <= SUM(vals(k)) <= maskvals(1) |
---|
1015 | !! maskvals(1) < SUM(vals(k)) <= maskvals(3) |
---|
1016 | !! (normalized by maskvals(3)) |
---|
1017 | !! 'var': mask values are taken from a |
---|
1018 | !! variable inside the file (>0) |
---|
1019 | REAL(r_std), DIMENSION(3) :: maskvals !! values to use to mask (according to |
---|
1020 | !! `maskingtype') |
---|
1021 | CHARACTER(LEN=250) :: namemaskvar !! name of the variable to use to mask |
---|
1022 | CHARACTER(LEN=250) :: msg |
---|
1023 | INTEGER :: fopt |
---|
1024 | INTEGER(i_std), DIMENSION(:), ALLOCATABLE :: vecpos |
---|
1025 | INTEGER(i_std), DIMENSION(:), ALLOCATABLE :: solt |
---|
1026 | |
---|
1027 | !_ ================================================================================================================================ |
---|
1028 | !! 1. Open file and allocate memory |
---|
1029 | |
---|
1030 | ! Open file with soil colours |
---|
1031 | |
---|
1032 | !Config Key = SOILALB_FILE |
---|
1033 | !Config Desc = Name of file from which the bare soil albedo |
---|
1034 | !Config Def = soils_param.nc |
---|
1035 | !Config If = NOT(IMPOSE_AZE) |
---|
1036 | !Config Help = The name of the file to be opened to read the soil types from |
---|
1037 | !Config which we derive then the bare soil albedos. This file is 1x1 |
---|
1038 | !Config deg and based on the soil colors defined by Wilson and Henderson-Seller. |
---|
1039 | !Config Units = [FILE] |
---|
1040 | ! |
---|
1041 | filename = 'soils_param.nc' |
---|
1042 | CALL getin_p('SOILALB_FILE',filename) |
---|
1043 | |
---|
1044 | |
---|
1045 | ALLOCATE(soilcolrefrac(nbpt, classnb), STAT=ALLOC_ERR) |
---|
1046 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable soilcolrefrac','','') |
---|
1047 | ALLOCATE(vecpos(classnb), STAT=ALLOC_ERR) |
---|
1048 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable vecpos','','') |
---|
1049 | ALLOCATE(solt(classnb), STAT=ALLOC_ERR) |
---|
1050 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variable solt','','') |
---|
1051 | |
---|
1052 | ! Assigning values to vmin, vmax |
---|
1053 | vmin = 1.0 |
---|
1054 | vmax = classnb |
---|
1055 | |
---|
1056 | ALLOCATE(variabletypevals(classnb),STAT=ALLOC_ERR) |
---|
1057 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'slowproc_init','Problem in allocation of variabletypevals','','') |
---|
1058 | variabletypevals = -un |
---|
1059 | |
---|
1060 | !! Variables for interpweight |
---|
1061 | ! Type of calculation of cell fractions |
---|
1062 | fractype = 'default' |
---|
1063 | ! Name of the longitude and latitude in the input file |
---|
1064 | lonname = 'nav_lon' |
---|
1065 | latname = 'nav_lat' |
---|
1066 | ! Should negative values be set to zero from input file? |
---|
1067 | nonegative = .FALSE. |
---|
1068 | ! Type of mask to apply to the input data (see header for more details) |
---|
1069 | maskingtype = 'mabove' |
---|
1070 | ! Values to use for the masking |
---|
1071 | maskvals = (/ min_sechiba, undef_sechiba, undef_sechiba /) |
---|
1072 | ! Name of the variable with the values for the mask in the input file (only if maskkingtype='var') (here not used) |
---|
1073 | namemaskvar = '' |
---|
1074 | |
---|
1075 | ! Interpolate variable soilcolor |
---|
1076 | variablename = 'soilcolor' |
---|
1077 | IF (printlev_loc >= 1) WRITE(numout,*) "condveg_soilalb: Read and interpolate " & |
---|
1078 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1079 | CALL interpweight_2D(nbpt, classnb, variabletypevals, lalo, resolution, neighbours, & |
---|
1080 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1081 | maskvals, namemaskvar, 0, 0, -1, fractype, & |
---|
1082 | -1., -1., soilcolrefrac, asoilcol) |
---|
1083 | IF (printlev_loc >= 5) WRITE(numout,*)' condveg_soilalb after interpweight_2D' |
---|
1084 | |
---|
1085 | ! Check how many points with soil information are found |
---|
1086 | nbexp = 0 |
---|
1087 | |
---|
1088 | soilalb_dry(:,:) = zero |
---|
1089 | soilalb_wet(:,:) = zero |
---|
1090 | soilalb_moy(:,:) = zero |
---|
1091 | IF (printlev_loc >= 5) THEN |
---|
1092 | WRITE(numout,*)' condveg_soilalb before starting loop nbpt:', nbpt |
---|
1093 | WRITE(numout,*)' condveg_soilalb initial values classnb: ',classnb |
---|
1094 | WRITE(numout,*)' condveg_soilalb vis_dry. SUM:',SUM(vis_dry),' vis_dry= ',vis_dry |
---|
1095 | WRITE(numout,*)' condveg_soilalb nir_dry. SUM:',SUM(nir_dry),' nir_dry= ',nir_dry |
---|
1096 | WRITE(numout,*)' condveg_soilalb vis_wet. SUM:',SUM(vis_wet),' vis_wet= ',vis_wet |
---|
1097 | WRITE(numout,*)' condveg_soilalb nir_wet. SUM:',SUM(nir_wet),' nir_wet= ',nir_wet |
---|
1098 | END IF |
---|
1099 | |
---|
1100 | DO ib=1,nbpt ! Loop over domain size |
---|
1101 | |
---|
1102 | ! vecpos: List of positions where textures were not zero |
---|
1103 | ! vecpos(1): number of not null textures found |
---|
1104 | vecpos = interpweight_ValVecR(soilcolrefrac(ib,:),classnb,zero,'neq') |
---|
1105 | fopt = vecpos(1) |
---|
1106 | IF (fopt == classnb) THEN |
---|
1107 | ! All textures are not zero |
---|
1108 | solt(:) = (/(i,i=1,classnb)/) |
---|
1109 | ELSE IF (fopt == 0) THEN |
---|
1110 | WRITE(numout,*)' condveg_soilalb: for point=', ib, ' no soil class!' |
---|
1111 | ELSE |
---|
1112 | DO ip = 1,fopt |
---|
1113 | solt(ip) = vecpos(ip+1) |
---|
1114 | END DO |
---|
1115 | END IF |
---|
1116 | |
---|
1117 | !! 3. Compute the average bare soil albedo parameters |
---|
1118 | |
---|
1119 | IF ( (fopt .EQ. 0) .OR. (asoilcol(ib) .LT. min_sechiba)) THEN |
---|
1120 | ! Initialize with mean value if no points were interpolated or if no data was found |
---|
1121 | nbexp = nbexp + 1 |
---|
1122 | soilalb_dry(ib,ivis) = (SUM(vis_dry)/classnb + SUM(vis_wet)/classnb)/deux |
---|
1123 | soilalb_dry(ib,inir) = (SUM(nir_dry)/classnb + SUM(nir_wet)/classnb)/deux |
---|
1124 | soilalb_wet(ib,ivis) = (SUM(vis_dry)/classnb + SUM(vis_wet)/classnb)/deux |
---|
1125 | soilalb_wet(ib,inir) = (SUM(nir_dry)/classnb + SUM(nir_wet)/classnb)/deux |
---|
1126 | soilalb_moy(ib,ivis) = SUM(albsoil_vis)/classnb |
---|
1127 | soilalb_moy(ib,inir) = SUM(albsoil_nir)/classnb |
---|
1128 | ELSE |
---|
1129 | ! If points were interpolated |
---|
1130 | DO ip=1, fopt |
---|
1131 | IF ( solt(ip) .LE. classnb) THEN |
---|
1132 | ! Set to zero if the value is below min_sechiba |
---|
1133 | IF (soilcolrefrac(ib,solt(ip)) < min_sechiba) soilcolrefrac(ib,solt(ip)) = zero |
---|
1134 | |
---|
1135 | soilalb_dry(ib,ivis) = soilalb_dry(ib,ivis) + vis_dry(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1136 | soilalb_dry(ib,inir) = soilalb_dry(ib,inir) + nir_dry(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1137 | soilalb_wet(ib,ivis) = soilalb_wet(ib,ivis) + vis_wet(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1138 | soilalb_wet(ib,inir) = soilalb_wet(ib,inir) + nir_wet(solt(ip))*soilcolrefrac(ib,solt(ip)) |
---|
1139 | soilalb_moy(ib,ivis) = soilalb_moy(ib,ivis) + albsoil_vis(solt(ip))* & |
---|
1140 | soilcolrefrac(ib,solt(ip)) |
---|
1141 | soilalb_moy(ib,inir) = soilalb_moy(ib,inir) + albsoil_nir(solt(ip))* & |
---|
1142 | soilcolrefrac(ib,solt(ip)) |
---|
1143 | ELSE |
---|
1144 | msg = 'The file contains a soil color class which is incompatible with this program' |
---|
1145 | CALL ipslerr_p(3,'condveg_soilalb',TRIM(msg),'','') |
---|
1146 | ENDIF |
---|
1147 | ENDDO |
---|
1148 | ENDIF |
---|
1149 | |
---|
1150 | ENDDO |
---|
1151 | |
---|
1152 | IF ( nbexp .GT. 0 ) THEN |
---|
1153 | WRITE(numout,*) 'condveg_soilalb _______' |
---|
1154 | WRITE(numout,*) 'condveg_soilalb: The interpolation of the bare soil albedo had ', nbexp |
---|
1155 | WRITE(numout,*) 'condveg_soilalb: points without data. This are either coastal points or' |
---|
1156 | WRITE(numout,*) 'condveg_soilalb: ice covered land.' |
---|
1157 | WRITE(numout,*) 'condveg_soilalb: The problem was solved by using the average of all soils' |
---|
1158 | WRITE(numout,*) 'condveg_soilalb: in dry and wet conditions' |
---|
1159 | WRITE(numout,*) 'condveg_soilalb: Use the diagnostic output field asoilcol to see location of these points' |
---|
1160 | ENDIF |
---|
1161 | |
---|
1162 | DEALLOCATE (soilcolrefrac) |
---|
1163 | DEALLOCATE (variabletypevals) |
---|
1164 | |
---|
1165 | ! Write diagnostics |
---|
1166 | CALL xios_orchidee_send_field("asoilcol",asoilcol) |
---|
1167 | |
---|
1168 | |
---|
1169 | IF (printlev_loc >= 3) WRITE(numout,*)' condveg_soilalb ended' |
---|
1170 | |
---|
1171 | END SUBROUTINE condveg_soilalb |
---|
1172 | |
---|
1173 | |
---|
1174 | !! ============================================================================================================================== |
---|
1175 | !! SUBROUTINE : condveg_background_soilalb |
---|
1176 | !! |
---|
1177 | !>\BRIEF This subroutine reads the albedo of bare soil |
---|
1178 | !! |
---|
1179 | !! DESCRIPTION This subroutine reads the background albedo map in 0.5 x 0.5 deg resolution |
---|
1180 | !! derived from JRCTIP product to be used as bare soil albedo. These values are then interpolated |
---|
1181 | !! to the model's resolution.\n |
---|
1182 | !! |
---|
1183 | !! RECENT CHANGE(S): None |
---|
1184 | !! |
---|
1185 | !! MAIN OUTPUT VARIABLE(S): soilalb_bg for visible and near-infrared range |
---|
1186 | !! |
---|
1187 | !! REFERENCES : None |
---|
1188 | !! |
---|
1189 | !! FLOWCHART : None |
---|
1190 | !! \n |
---|
1191 | !_ ================================================================================================================================ |
---|
1192 | |
---|
1193 | SUBROUTINE condveg_background_soilalb(nbpt, lalo, neighbours, resolution, contfrac) |
---|
1194 | |
---|
1195 | USE interpweight |
---|
1196 | |
---|
1197 | IMPLICIT NONE |
---|
1198 | |
---|
1199 | !! 0. Variable and parameter declaration |
---|
1200 | |
---|
1201 | !! 0.1 Input variables |
---|
1202 | |
---|
1203 | INTEGER(i_std), INTENT(in) :: nbpt !! Number of points for which the data needs to be |
---|
1204 | !! interpolated (unitless) |
---|
1205 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (degree) |
---|
1206 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
1207 | !! (1=N, 2=E, 3=S, 4=W) |
---|
1208 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid cell in X and Y (km) |
---|
1209 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid cell (unitless) |
---|
1210 | |
---|
1211 | !! 0.4 Local variables |
---|
1212 | |
---|
1213 | CHARACTER(LEN=80) :: filename !! Filename of background albedo |
---|
1214 | REAL(r_std), DIMENSION(nbpt) :: aalb_bg !! Availability of the interpolation |
---|
1215 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: lat_lu, lon_lu !! Latitudes and longitudes read from input file |
---|
1216 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lat_rel, lon_rel !! Help variable to read file data and allocate memory |
---|
1217 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: mask_lu !! Help variable to read file data and allocate memory |
---|
1218 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: mask |
---|
1219 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: soilalbedo_bg !! Help variable to read file data and allocate memory |
---|
1220 | INTEGER :: ALLOC_ERR !! Help varialbe to count allocation error |
---|
1221 | REAL(r_std) :: vmin, vmax !! min/max values to use for the |
---|
1222 | !! renormalization |
---|
1223 | CHARACTER(LEN=80) :: variablename !! Variable to interpolate |
---|
1224 | CHARACTER(LEN=250) :: maskvname !! Variable to read the mask from |
---|
1225 | !! the file |
---|
1226 | CHARACTER(LEN=80) :: lonname, latname !! lon, lat names in input file |
---|
1227 | CHARACTER(LEN=50) :: fractype !! method of calculation of fraction |
---|
1228 | !! 'XYKindTime': Input values are kinds |
---|
1229 | !! of something with a temporal |
---|
1230 | !! evolution on the dx*dy matrix' |
---|
1231 | LOGICAL :: nonegative !! whether negative values should be removed |
---|
1232 | CHARACTER(LEN=50) :: maskingtype !! Type of masking |
---|
1233 | !! 'nomask': no-mask is applied |
---|
1234 | !! 'mbelow': take values below maskvals(1) |
---|
1235 | !! 'mabove': take values above maskvals(1) |
---|
1236 | !! 'msumrange': take values within 2 ranges; |
---|
1237 | !! maskvals(2) <= SUM(vals(k)) <= maskvals(1) |
---|
1238 | !! maskvals(1) < SUM(vals(k)) <= maskvals(3) |
---|
1239 | !! (normalized by maskedvals(3)) |
---|
1240 | !! 'var': mask values are taken from a |
---|
1241 | !! variable inside the file (>0) |
---|
1242 | REAL(r_std), DIMENSION(3) :: maskvals !! values to use to mask (according to |
---|
1243 | !! `maskingtype') |
---|
1244 | CHARACTER(LEN=250) :: namemaskvar !! name of the variable to use to mask |
---|
1245 | REAL(r_std) :: albbg_norefinf !! No value |
---|
1246 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: albbg_default !! Default value |
---|
1247 | |
---|
1248 | !_ ================================================================================================================================ |
---|
1249 | |
---|
1250 | !! 1. Open file and allocate memory |
---|
1251 | |
---|
1252 | ! Open file with background albedo |
---|
1253 | |
---|
1254 | !Config Key = ALB_BG_FILE |
---|
1255 | !Config Desc = Name of file from which the background albedo is read |
---|
1256 | !Config Def = alb_bg.nc |
---|
1257 | !Config If = ALB_BG_MODIS |
---|
1258 | !Config Help = The name of the file to be opened to read background albedo |
---|
1259 | !Config Units = [FILE] |
---|
1260 | ! |
---|
1261 | filename = 'alb_bg.nc' |
---|
1262 | CALL getin_p('ALB_BG_FILE',filename) |
---|
1263 | |
---|
1264 | IF (xios_interpolation) THEN |
---|
1265 | |
---|
1266 | ! Read and interpolation background albedo using XIOS |
---|
1267 | CALL xios_orchidee_recv_field('bg_alb_vis_interp',soilalb_bg(:,ivis)) |
---|
1268 | CALL xios_orchidee_recv_field('bg_alb_nir_interp',soilalb_bg(:,inir)) |
---|
1269 | |
---|
1270 | aalb_bg(:)=1 |
---|
1271 | |
---|
1272 | ELSE |
---|
1273 | ! Read background albedo file using IOIPSL and interpolate using aggregate standard method |
---|
1274 | |
---|
1275 | ALLOCATE(albbg_default(2), STAT=ALLOC_ERR) |
---|
1276 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'condveg_background_soilalb','Pb in allocation for albbg_default','','') |
---|
1277 | |
---|
1278 | ! For this case there are not types/categories. We have 'only' a continuos field |
---|
1279 | ! Assigning values to vmin, vmax |
---|
1280 | vmin = 0. |
---|
1281 | vmax = 9999. |
---|
1282 | |
---|
1283 | !! Variables for interpweight |
---|
1284 | ! Type of calculation of cell fractions (not used here) |
---|
1285 | fractype = 'default' |
---|
1286 | ! Name of the longitude and latitude in the input file |
---|
1287 | lonname = 'longitude' |
---|
1288 | latname = 'latitude' |
---|
1289 | ! Default value when no value is get from input file |
---|
1290 | albbg_default(ivis) = 0.129 |
---|
1291 | albbg_default(inir) = 0.247 |
---|
1292 | ! Reference value when no value is get from input file (not used here) |
---|
1293 | albbg_norefinf = undef_sechiba |
---|
1294 | ! Should negative values be set to zero from input file? |
---|
1295 | nonegative = .FALSE. |
---|
1296 | ! Type of mask to apply to the input data (see header for more details) |
---|
1297 | maskingtype = 'var' |
---|
1298 | ! Values to use for the masking (here not used) |
---|
1299 | maskvals = (/ undef_sechiba, undef_sechiba, undef_sechiba /) |
---|
1300 | ! Name of the variable with the values for the mask in the input file (only if maskkingtype='var') |
---|
1301 | namemaskvar = 'mask' |
---|
1302 | |
---|
1303 | ! There is a variable for each chanel 'infrared' and 'visible' |
---|
1304 | ! Interpolate variable bg_alb_vis |
---|
1305 | variablename = 'bg_alb_vis' |
---|
1306 | IF (printlev_loc >= 2) WRITE(numout,*) "condveg_background_soilalb: Start interpolate " & |
---|
1307 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1308 | CALL interpweight_2Dcont(nbpt, 0, 0, lalo, resolution, neighbours, & |
---|
1309 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1310 | maskvals, namemaskvar, -1, fractype, albbg_default(ivis), albbg_norefinf, & |
---|
1311 | soilalb_bg(:,ivis), aalb_bg) |
---|
1312 | IF (printlev_loc >= 5) WRITE(numout,*)" condveg_background_soilalb after InterpWeight2Dcont for '" // & |
---|
1313 | TRIM(variablename) // "'" |
---|
1314 | |
---|
1315 | ! Interpolate variable bg_alb_nir in the same file |
---|
1316 | variablename = 'bg_alb_nir' |
---|
1317 | IF (printlev_loc >= 2) WRITE(numout,*) "condveg_background_soilalb: Start interpolate " & |
---|
1318 | // TRIM(filename) // " for variable " // TRIM(variablename) |
---|
1319 | CALL interpweight_2Dcont(nbpt, 0, 0, lalo, resolution, neighbours, & |
---|
1320 | contfrac, filename, variablename, lonname, latname, vmin, vmax, nonegative, maskingtype, & |
---|
1321 | maskvals, namemaskvar, -1, fractype, albbg_default(inir), albbg_norefinf, & |
---|
1322 | soilalb_bg(:,inir), aalb_bg) |
---|
1323 | IF (printlev_loc >= 5) WRITE(numout,*)" condveg_background_soilalb after InterpWeight2Dcont for '" // & |
---|
1324 | TRIM(variablename) // "'" |
---|
1325 | |
---|
1326 | IF (ALLOCATED(albbg_default)) DEALLOCATE(albbg_default) |
---|
1327 | |
---|
1328 | IF (printlev_loc >= 3) WRITE(numout,*)' condveg_background_soilalb ended' |
---|
1329 | |
---|
1330 | ENDIF |
---|
1331 | |
---|
1332 | CALL xios_orchidee_send_field("interp_diag_alb_vis",soilalb_bg(:,ivis)) |
---|
1333 | CALL xios_orchidee_send_field("interp_diag_alb_nir",soilalb_bg(:,inir)) |
---|
1334 | CALL xios_orchidee_send_field("aalb_bg",aalb_bg) |
---|
1335 | |
---|
1336 | END SUBROUTINE condveg_background_soilalb |
---|
1337 | |
---|
1338 | |
---|
1339 | !! ============================================================================================================================== |
---|
1340 | !! SUBROUTINE : condveg_z0cdrag |
---|
1341 | !! |
---|
1342 | !>\BRIEF Computation of grid average of roughness length by calculating |
---|
1343 | !! the drag coefficient. |
---|
1344 | !! |
---|
1345 | !! DESCRIPTION : This routine calculates the mean roughness height and mean |
---|
1346 | !! effective roughness height over the grid cell. The mean roughness height (z0) |
---|
1347 | !! is computed by averaging the drag coefficients \n |
---|
1348 | !! |
---|
1349 | !! \latexonly |
---|
1350 | !! \input{z0cdrag1.tex} |
---|
1351 | !! \endlatexonly |
---|
1352 | !! \n |
---|
1353 | !! |
---|
1354 | !! where C is the drag coefficient at the height of the vegetation, kappa is the |
---|
1355 | !! von Karman constant, z (Ztmp) is the height at which the fluxes are estimated and z0 the roughness height. |
---|
1356 | !! The reference level for z needs to be high enough above the canopy to avoid |
---|
1357 | !! singularities of the LOG. This height is set to minimum 10m above ground. |
---|
1358 | !! The drag coefficient increases with roughness height to represent the greater |
---|
1359 | !! turbulence generated by rougher surfaces. |
---|
1360 | !! The roughenss height is obtained by the inversion of the drag coefficient equation.\n |
---|
1361 | !! |
---|
1362 | !! The roughness height for the non-vegetative surfaces is calculated in a second step. |
---|
1363 | !! In order to calculate the transfer coefficients the |
---|
1364 | !! effective roughness height is calculated. This effective value is the difference |
---|
1365 | !! between the height of the vegetation and the zero plane displacement height.\nn |
---|
1366 | !! |
---|
1367 | !! RECENT CHANGE(S): None |
---|
1368 | !! |
---|
1369 | !! MAIN OUTPUT VARIABLE(S): :: roughness height(z0) and grid effective roughness height(roughheight) |
---|
1370 | !! |
---|
1371 | !! REFERENCE(S) : None |
---|
1372 | !! |
---|
1373 | !! FLOWCHART : None |
---|
1374 | !! \n |
---|
1375 | !_ ================================================================================================================================ |
---|
1376 | |
---|
1377 | SUBROUTINE condveg_z0cdrag (kjpindex,veget,veget_max,frac_nobio,totfrac_nobio,zlev, height, tot_bare_soil, frac_snow_veg, & |
---|
1378 | & z0m, z0h, roughheight) |
---|
1379 | |
---|
1380 | !! 0. Variable and parameter declaration |
---|
1381 | |
---|
1382 | !! 0.1 Input variables |
---|
1383 | |
---|
1384 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
1385 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
1386 | !! (m^2 m^{-2}) |
---|
1387 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget_max !! PFT "Maximal" coverage fraction of a PFT |
---|
1388 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1389 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, |
---|
1390 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1391 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, |
---|
1392 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1393 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
1394 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: height !! Vegetation height (m) |
---|
1395 | REAL(r_std), DIMENSION (kjpindex), INTENT(in) :: tot_bare_soil !! Total evaporating bare soil fraction |
---|
1396 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
1397 | |
---|
1398 | !! 0.2 Output variables |
---|
1399 | |
---|
1400 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0m !! Roughness height for momentum (m) |
---|
1401 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0h !! Roughness height for heat (m) |
---|
1402 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: roughheight !! Grid effective roughness height (m) |
---|
1403 | |
---|
1404 | !! 0.3 Modified variables |
---|
1405 | |
---|
1406 | !! 0.4 Local variables |
---|
1407 | |
---|
1408 | INTEGER(i_std) :: jv !! Loop index over PFTs (unitless) |
---|
1409 | REAL(r_std), DIMENSION(kjpindex) :: sumveg !! Fraction of bare soil (unitless) |
---|
1410 | REAL(r_std), DIMENSION(kjpindex) :: ztmp !! Max height of the atmospheric level (m) |
---|
1411 | REAL(r_std), DIMENSION(kjpindex) :: ave_height !! Average vegetation height (m) |
---|
1412 | REAL(r_std), DIMENSION(kjpindex) :: d_veg !! PFT coverage of vegetative PFTs |
---|
1413 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1414 | REAL(r_std), DIMENSION(kjpindex) :: zhdispl !! Zero plane displacement height (m) |
---|
1415 | REAL(r_std) :: z0_nobio !! Roughness height of non-vegetative fraction (m), |
---|
1416 | !! i.e. continental ice, lakes, etc. |
---|
1417 | REAL(r_std), DIMENSION(kjpindex) :: dragm !! Drag coefficient for momentum |
---|
1418 | REAL(r_std), DIMENSION(kjpindex) :: dragh !! Drag coefficient for heat |
---|
1419 | REAL(r_std), DIMENSION(kjpindex) :: z0_ground !! z0m value used for ground surface |
---|
1420 | !_ ================================================================================================================================ |
---|
1421 | |
---|
1422 | !! 1. Preliminary calculation |
---|
1423 | |
---|
1424 | ! Set maximal height of first layer |
---|
1425 | ztmp(:) = MAX(10., zlev(:)) |
---|
1426 | |
---|
1427 | z0_ground(:) = (1.-frac_snow_veg(:))*z0_bare + frac_snow_veg(:)*z0_bare/10. |
---|
1428 | |
---|
1429 | ! Calculate roughness for non-vegetative surfaces |
---|
1430 | ! with the von Karman constant |
---|
1431 | dragm(:) = tot_bare_soil(:) * (ct_karman/LOG(ztmp(:)/z0_ground))**2 |
---|
1432 | dragh(:) = tot_bare_soil(:) * (ct_karman/LOG(ztmp(:)/(z0_ground/ratio_z0m_z0h(1))))*(ct_karman/LOG(ztmp(:)/z0_ground)) |
---|
1433 | ! Fraction of bare soil |
---|
1434 | sumveg(:) = tot_bare_soil(:) |
---|
1435 | |
---|
1436 | ! Set average vegetation height to zero |
---|
1437 | ave_height(:) = zero |
---|
1438 | |
---|
1439 | !! 2. Calculate the mean roughness height |
---|
1440 | |
---|
1441 | ! Calculate the mean roughness height of |
---|
1442 | ! vegetative PFTs over the grid cell |
---|
1443 | DO jv = 2, nvm |
---|
1444 | |
---|
1445 | ! In the case of forest, use parameter veget_max because |
---|
1446 | ! tree trunks influence the roughness even when there are no leaves |
---|
1447 | IF ( is_tree(jv) ) THEN |
---|
1448 | ! In the case of grass, use parameter veget because grasses |
---|
1449 | ! only influence the roughness during the growing season |
---|
1450 | d_veg(:) = veget_max(:,jv) |
---|
1451 | ELSE |
---|
1452 | ! grasses only have an influence if they are really there! |
---|
1453 | d_veg(:) = veget(:,jv) |
---|
1454 | ENDIF |
---|
1455 | |
---|
1456 | ! Calculate the average roughness over the grid cell: |
---|
1457 | ! The unitless drag coefficient is per vegetative PFT |
---|
1458 | ! calculated by use of the von Karman constant, the height |
---|
1459 | ! of the first layer and the roughness. The roughness |
---|
1460 | ! is calculated as the vegetation height per PFT |
---|
1461 | ! multiplied by the roughness parameter 'z0_over_height= 1/16'. |
---|
1462 | ! If this scaled value is lower than 0.01 then the value for |
---|
1463 | ! the roughness of bare soil (0.01) is used. |
---|
1464 | ! The sum over all PFTs gives the average roughness |
---|
1465 | ! per grid cell for the vegetative PFTs. |
---|
1466 | dragm(:) = dragm(:) + d_veg(:) * (ct_karman/LOG(ztmp(:)/MAX(height(:,jv)*z0_over_height(jv),z0_ground)))**2 |
---|
1467 | dragh(:) = dragh(:) + d_veg(:) * (ct_karman/LOG(ztmp(:)/(MAX(height(:,jv)*z0_over_height(jv),z0_ground) / & |
---|
1468 | ratio_z0m_z0h(jv)))) * (ct_karman/LOG(ztmp(:)/MAX(height(:,jv)*z0_over_height(jv),z0_ground))) |
---|
1469 | |
---|
1470 | ! Sum of bare soil and fraction vegetated fraction |
---|
1471 | sumveg(:) = sumveg(:) + d_veg(:) |
---|
1472 | |
---|
1473 | ! Weigh height of vegetation with maximal cover fraction |
---|
1474 | ave_height(:) = ave_height(:) + veget_max(:,jv)*height(:,jv) |
---|
1475 | |
---|
1476 | ENDDO |
---|
1477 | |
---|
1478 | !! 3. Calculate the mean roughness height of vegetative PFTs over the grid cell |
---|
1479 | |
---|
1480 | ! Search for pixels with vegetated part to normalise |
---|
1481 | ! roughness height |
---|
1482 | WHERE ( sumveg(:) .GT. min_sechiba ) |
---|
1483 | dragm(:) = dragm(:) / sumveg(:) |
---|
1484 | dragh(:) = dragh(:) / sumveg(:) |
---|
1485 | ENDWHERE |
---|
1486 | ! Calculate fraction of roughness for vegetated part |
---|
1487 | dragm(:) = (un - totfrac_nobio(:)) * dragm(:) |
---|
1488 | dragh(:) = (un - totfrac_nobio(:)) * dragh(:) |
---|
1489 | |
---|
1490 | DO jv = 1, nnobio ! Loop over # of non-vegative surfaces |
---|
1491 | |
---|
1492 | ! Set rougness for ice |
---|
1493 | IF ( jv .EQ. iice ) THEN |
---|
1494 | z0_nobio = z0_ice |
---|
1495 | ELSE |
---|
1496 | WRITE(numout,*) 'jv=',jv |
---|
1497 | WRITE(numout,*) 'DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE' |
---|
1498 | CALL ipslerr_p(3,'condveg_z0cdrag','DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE','','') |
---|
1499 | ENDIF |
---|
1500 | |
---|
1501 | ! Sum of vegetative roughness length and non-vegetative |
---|
1502 | ! roughness length |
---|
1503 | dragm(:) = dragm(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio))**2 |
---|
1504 | dragh(:) = dragh(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio/ratio_z0m_z0h(1)))*(ct_karman/LOG(ztmp(:)/z0_nobio)) |
---|
1505 | |
---|
1506 | ENDDO ! Loop over # of non-vegative surfaces |
---|
1507 | |
---|
1508 | !! 4. Calculate the zero plane displacement height and effective roughness length |
---|
1509 | |
---|
1510 | ! Take the exponential of the roughness |
---|
1511 | z0m(:) = ztmp(:) / EXP(ct_karman/SQRT(dragm(:))) |
---|
1512 | z0h(:) = ztmp(:) / EXP((ct_karman**2.)/(dragh(:)*LOG(ztmp(:)/z0m(:)))) |
---|
1513 | |
---|
1514 | ! Compute the zero plane displacement height which |
---|
1515 | ! is an equivalent height for the absorption of momentum |
---|
1516 | zhdispl(:) = ave_height(:) * height_displacement |
---|
1517 | |
---|
1518 | ! In order to calculate the fluxes we compute what we call the grid effective roughness height. |
---|
1519 | ! This is the height over which the roughness acts. It combines the |
---|
1520 | ! zero plane displacement height and the vegetation height. |
---|
1521 | roughheight(:) = ave_height(:) - zhdispl(:) |
---|
1522 | |
---|
1523 | END SUBROUTINE condveg_z0cdrag |
---|
1524 | |
---|
1525 | |
---|
1526 | !! ============================================================================================================================== |
---|
1527 | !! SUBROUTINE : condveg_z0cdrag_dyn |
---|
1528 | !! |
---|
1529 | !>\BRIEF Computation of grid average of roughness length by calculating |
---|
1530 | !! the drag coefficient based on formulation proposed by Su et al. (2001). |
---|
1531 | !! |
---|
1532 | !! DESCRIPTION : This routine calculates the mean roughness height and mean |
---|
1533 | !! effective roughness height over the grid cell. The mean roughness height (z0) |
---|
1534 | !! is computed by averaging the drag coefficients \n |
---|
1535 | !! |
---|
1536 | !! \latexonly |
---|
1537 | !! \input{z0cdrag1.tex} |
---|
1538 | !! \endlatexonly |
---|
1539 | !! \n |
---|
1540 | !! |
---|
1541 | !! where C is the drag coefficient at the height of the vegetation, kappa is the |
---|
1542 | !! von Karman constant, z (Ztmp) is the height at which the fluxes are estimated and z0 the roughness height. |
---|
1543 | !! The reference level for z needs to be high enough above the canopy to avoid |
---|
1544 | !! singularities of the LOG. This height is set to minimum 10m above ground. |
---|
1545 | !! The drag coefficient increases with roughness height to represent the greater |
---|
1546 | !! turbulence generated by rougher surfaces. |
---|
1547 | !! The roughenss height is obtained by the inversion of the drag coefficient equation.\n |
---|
1548 | !! In the formulation of Su et al. (2001), one distinguishes the roughness height for |
---|
1549 | !! momentum (z0m) and the one for heat (z0h). |
---|
1550 | !! z0m is computed as a function of LAI (z0m increases with LAI) and z0h is computed |
---|
1551 | !! with a so-called kB-1 term (z0m/z0h=exp(kB-1)) |
---|
1552 | !! |
---|
1553 | !! RECENT CHANGE(S): Written by N. Vuichard (2016) |
---|
1554 | !! |
---|
1555 | !! MAIN OUTPUT VARIABLE(S): :: roughness height(z0) and grid effective roughness height(roughheight) |
---|
1556 | !! |
---|
1557 | !! REFERENCE(S) : |
---|
1558 | !! - Su, Z., Schmugge, T., Kustas, W.P., Massman, W.J., 2001. An Evaluation of Two Models for |
---|
1559 | !! Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere. J. Appl. |
---|
1560 | !! Meteorol. 40, 1933â1951. doi:10.1175/1520-0450(2001) |
---|
1561 | !! - Ershadi, A., McCabe, M.F., Evans, J.P., Wood, E.F., 2015. Impact of model structure and parameterization |
---|
1562 | !! on Penman-Monteith type evaporation models. J. Hydrol. 525, 521â535. doi:10.1016/j.jhydrol.2015.04.008 |
---|
1563 | !! |
---|
1564 | !! FLOWCHART : None |
---|
1565 | !! \n |
---|
1566 | !_ ================================================================================================================================ |
---|
1567 | |
---|
1568 | SUBROUTINE condveg_z0cdrag_dyn (kjpindex,veget,veget_max,frac_nobio,totfrac_nobio,zlev, height, & |
---|
1569 | & temp_air, pb, u, v, lai, frac_snow_veg, z0m, z0h, roughheight) |
---|
1570 | |
---|
1571 | !! 0. Variable and parameter declaration |
---|
1572 | |
---|
1573 | !! 0.1 Input variables |
---|
1574 | |
---|
1575 | INTEGER(i_std), INTENT(in) :: kjpindex !! Domain size - Number of land pixels (unitless) |
---|
1576 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget !! PFT coverage fraction of a PFT (= ind*cn_ind) |
---|
1577 | !! (m^2 m^{-2}) |
---|
1578 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: veget_max !! PFT "Maximal" coverage fraction of a PFT |
---|
1579 | !! (= ind*cn_ind) (m^2 m^{-2}) |
---|
1580 | REAL(r_std), DIMENSION(kjpindex,nnobio), INTENT(in) :: frac_nobio !! Fraction of non-vegetative surfaces, |
---|
1581 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1582 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: totfrac_nobio !! Total fraction of non-vegetative surfaces, |
---|
1583 | !! i.e. continental ice, lakes, etc. (unitless) |
---|
1584 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: zlev !! Height of first layer (m) |
---|
1585 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: height !! Vegetation height (m) |
---|
1586 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: temp_air !! 2m air temperature (K) |
---|
1587 | REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: pb !! Surface pressure (hPa) |
---|
1588 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: u !! Lowest level wind speed in direction u |
---|
1589 | !! @tex $(m.s^{-1})$ @endtex |
---|
1590 | REAL(r_std),DIMENSION (kjpindex), INTENT (in) :: v !! Lowest level wind speed in direction v |
---|
1591 | REAL(r_std), DIMENSION(kjpindex,nvm), INTENT(in) :: lai !! Leaf area index (m2[leaf]/m2[ground]) |
---|
1592 | REAL(r_std),DIMENSION (kjpindex), INTENT(in) :: frac_snow_veg !! Snow cover fraction on vegeted area |
---|
1593 | !! 0.2 Output variables |
---|
1594 | |
---|
1595 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0m !! Roughness height for momentum (m) |
---|
1596 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: z0h !! Roughness height for heat (m) |
---|
1597 | REAL(r_std), DIMENSION(kjpindex), INTENT(out) :: roughheight !! Grid effective roughness height (m) |
---|
1598 | |
---|
1599 | !! 0.3 Modified variables |
---|
1600 | |
---|
1601 | !! 0.4 Local variables |
---|
1602 | |
---|
1603 | INTEGER(i_std) :: jv !! Loop index over PFTs (unitless) |
---|
1604 | REAL(r_std), DIMENSION(kjpindex) :: sumveg !! Fraction of bare soil (unitless) |
---|
1605 | REAL(r_std), DIMENSION(kjpindex) :: ztmp !! Max height of the atmospheric level (m) |
---|
1606 | REAL(r_std), DIMENSION(kjpindex) :: ave_height !! Average vegetation height (m) |
---|
1607 | REAL(r_std), DIMENSION(kjpindex) :: zhdispl !! Zero plane displacement height (m) |
---|
1608 | REAL(r_std) :: z0_nobio !! Roughness height of non-vegetative fraction (m), |
---|
1609 | !! i.e. continental ice, lakes, etc. |
---|
1610 | REAL(r_std), DIMENSION(kjpindex) :: z0m_pft !! Roughness height for momentum for a specific PFT |
---|
1611 | REAL(r_std), DIMENSION(kjpindex) :: z0h_pft !! Roughness height for heat for a specific PFT |
---|
1612 | REAL(r_std), DIMENSION(kjpindex) :: dragm !! Drag coefficient for momentum |
---|
1613 | REAL(r_std), DIMENSION(kjpindex) :: dragh !! Drag coefficient for heat |
---|
1614 | REAL(r_std), DIMENSION(kjpindex) :: eta !! Ratio of friction velocity to the wind speed at the canopy top - See Ershadi et al. (2015) |
---|
1615 | REAL(r_std), DIMENSION(kjpindex) :: eta_ec !! Within-canopy wind speed profile estimation coefficient - See Ershadi et al. (2015) |
---|
1616 | REAL(r_std), DIMENSION(kjpindex) :: Ct_star !! Heat transfer coefficient of the soil - see Su et al. (2001) |
---|
1617 | REAL(r_std), DIMENSION(kjpindex) :: kBs_m1 !! Canopy model of Brutsaert (1982) for a bare soil surface - used in the calculation of kB_m1 (see Ershadi et al. (2015)) |
---|
1618 | REAL(r_std), DIMENSION(kjpindex) :: kB_m1 !! kB**-1: Term used in the calculation of z0h where B-1 is the inverse Stanton number (see Ershadi et al. (2015)) |
---|
1619 | REAL(r_std), DIMENSION(kjpindex) :: fc !! fractional canopy coverage |
---|
1620 | REAL(r_std), DIMENSION(kjpindex) :: fs !! fractional soil coverage |
---|
1621 | REAL(r_std), DIMENSION(kjpindex) :: Reynolds !! Reynolds number |
---|
1622 | REAL(r_std), DIMENSION(kjpindex) :: wind !! wind Speed (m) |
---|
1623 | REAL(r_std), DIMENSION(kjpindex) :: u_star !! friction velocity |
---|
1624 | REAL(r_std), DIMENSION(kjpindex) :: z0_ground !! z0m value used for ground surface |
---|
1625 | !_ ================================================================================================================================ |
---|
1626 | |
---|
1627 | !! 1. Preliminary calculation |
---|
1628 | |
---|
1629 | ! Set maximal height of first layer |
---|
1630 | ztmp(:) = MAX(10., zlev(:)) |
---|
1631 | |
---|
1632 | z0_ground(:) = (1.-frac_snow_veg(:))*z0_bare + frac_snow_veg(:)*z0_bare/10. |
---|
1633 | |
---|
1634 | ! Calculate roughness for non-vegetative surfaces |
---|
1635 | ! with the von Karman constant |
---|
1636 | dragm(:) = veget_max(:,1) * (ct_karman/LOG(ztmp(:)/z0_ground(:)))**2 |
---|
1637 | |
---|
1638 | wind(:) = SQRT(u(:)*u(:)+v(:)*v(:)) |
---|
1639 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG(zlev(:)/z0_ground(:)) |
---|
1640 | Reynolds(:) = z0_ground(:) * u_star(:) & |
---|
1641 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1642 | |
---|
1643 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1644 | |
---|
1645 | dragh(:) = veget_max(:,1) * (ct_karman/LOG(ztmp(:)/z0_ground(:)))*(ct_karman/LOG(ztmp(:)/(z0_ground(:)/ exp(kBs_m1(:))) )) |
---|
1646 | |
---|
1647 | ! Fraction of bare soil |
---|
1648 | sumveg(:) = veget_max(:,1) |
---|
1649 | |
---|
1650 | ! Set average vegetation height to zero |
---|
1651 | ave_height(:) = zero |
---|
1652 | |
---|
1653 | !! 2. Calculate the mean roughness height |
---|
1654 | |
---|
1655 | ! Calculate the mean roughness height of |
---|
1656 | ! vegetative PFTs over the grid cell |
---|
1657 | DO jv = 2, nvm |
---|
1658 | |
---|
1659 | WHERE(veget_max(:,jv) .GT. zero) |
---|
1660 | ! Calculate the average roughness over the grid cell: |
---|
1661 | ! The unitless drag coefficient is per vegetative PFT |
---|
1662 | ! calculated by use of the von Karman constant, the height |
---|
1663 | ! of the first layer and the roughness. The roughness |
---|
1664 | ! is calculated as the vegetation height per PFT |
---|
1665 | ! multiplied by the roughness parameter 'z0_over_height= 1/16'. |
---|
1666 | ! If this scaled value is lower than 0.01 then the value for |
---|
1667 | ! the roughness of bare soil (0.01) is used. |
---|
1668 | ! The sum over all PFTs gives the average roughness |
---|
1669 | ! per grid cell for the vegetative PFTs. |
---|
1670 | eta(:) = c1 - c2 * exp(-c3 * Cdrag_foliage * lai(:,jv)) |
---|
1671 | |
---|
1672 | z0m_pft(:) = (height(:,jv)*(1-height_displacement)*(exp(-ct_karman/eta(:))-exp(-ct_karman/(c1-c2)))) & |
---|
1673 | + z0_ground(:) |
---|
1674 | |
---|
1675 | dragm(:) = dragm(:) + veget_max(:,jv) * (ct_karman/LOG(ztmp(:)/z0m_pft(:)))**2 |
---|
1676 | |
---|
1677 | fc(:) = veget(:,jv)/veget_max(:,jv) |
---|
1678 | fs(:) = 1. - fc(:) |
---|
1679 | |
---|
1680 | eta_ec(:) = ( Cdrag_foliage * lai(:,jv)) / (2 * eta(:)*eta(:)) |
---|
1681 | wind(:) = SQRT(u(:)*u(:)+v(:)*v(:)) |
---|
1682 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG((zlev(:)+(height(:,jv)*(1-height_displacement)))/z0m_pft(:)) |
---|
1683 | Reynolds(:) = z0_ground(:) * u_star(:) & |
---|
1684 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1685 | |
---|
1686 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1687 | Ct_star(:) = Prandtl**(-2./3.) * SQRT(1./Reynolds(:)) |
---|
1688 | |
---|
1689 | WHERE(lai(:,jv) .GT. min_sechiba) |
---|
1690 | kB_m1(:) = (ct_karman * Cdrag_foliage) / (4 * Ct * eta(:) * (1 - exp(-eta_ec(:)/2.))) * fc(:)**2. & |
---|
1691 | + 2*fc(:)*fs(:) * (ct_karman * eta(:) * z0m_pft(:) / height(:,jv)) / Ct_star(:) & |
---|
1692 | + kBs_m1(:) * fs(:)**2. |
---|
1693 | ELSEWHERE |
---|
1694 | kB_m1(:) = kBs_m1(:) * fs(:)**2. |
---|
1695 | ENDWHERE |
---|
1696 | |
---|
1697 | z0h_pft(:) = z0m_pft(:) / exp(kB_m1(:)) |
---|
1698 | |
---|
1699 | dragh(:) = dragh(:) + veget_max(:,jv) * (ct_karman/LOG(ztmp(:)/z0m_pft(:)))*(ct_karman/LOG(ztmp(:)/z0h_pft(:))) |
---|
1700 | |
---|
1701 | ! Sum of bare soil and fraction vegetated fraction |
---|
1702 | sumveg(:) = sumveg(:) + veget_max(:,jv) |
---|
1703 | |
---|
1704 | ! Weigh height of vegetation with maximal cover fraction |
---|
1705 | ave_height(:) = ave_height(:) + veget_max(:,jv)*height(:,jv) |
---|
1706 | |
---|
1707 | ENDWHERE |
---|
1708 | ENDDO |
---|
1709 | |
---|
1710 | !! 3. Calculate the mean roughness height of vegetative PFTs over the grid cell |
---|
1711 | |
---|
1712 | ! Search for pixels with vegetated part to normalise |
---|
1713 | ! roughness height |
---|
1714 | WHERE ( sumveg(:) .GT. min_sechiba ) |
---|
1715 | dragh(:) = dragh(:) / sumveg(:) |
---|
1716 | dragm(:) = dragm(:) / sumveg(:) |
---|
1717 | ENDWHERE |
---|
1718 | |
---|
1719 | ! Calculate fraction of roughness for vegetated part |
---|
1720 | dragh(:) = (un - totfrac_nobio(:)) * dragh(:) |
---|
1721 | dragm(:) = (un - totfrac_nobio(:)) * dragm(:) |
---|
1722 | |
---|
1723 | DO jv = 1, nnobio ! Loop over # of non-vegative surfaces |
---|
1724 | |
---|
1725 | ! Set rougness for ice |
---|
1726 | IF ( jv .EQ. iice ) THEN |
---|
1727 | z0_nobio = z0_ice |
---|
1728 | ELSE |
---|
1729 | WRITE(numout,*) 'jv=',jv |
---|
1730 | WRITE(numout,*) 'DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE' |
---|
1731 | CALL ipslerr_p(3,'condveg_z0cdrag_dyn','DO NOT KNOW ROUGHNESS OF THIS SURFACE TYPE','','') |
---|
1732 | ENDIF |
---|
1733 | |
---|
1734 | ! Sum of vegetative roughness length and non-vegetative roughness length |
---|
1735 | ! Note that z0m could be made dependent of frac_snow_nobio |
---|
1736 | dragm(:) = dragm(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio))**2 |
---|
1737 | |
---|
1738 | u_star(:)= ct_karman * MAX(min_wind,wind(:)) / LOG(zlev(:)/z0_nobio) |
---|
1739 | Reynolds(:) = z0_nobio * u_star(:) & |
---|
1740 | / (1.327*1e-5 * (pb_std/pb(:)) * (temp_air(:)/ZeroCelsius)**(1.81)) |
---|
1741 | |
---|
1742 | kBs_m1(:) = 2.46 * reynolds**(1./4.) - LOG(7.4) |
---|
1743 | |
---|
1744 | dragh(:) = dragh(:) + frac_nobio(:,jv) * (ct_karman/LOG(ztmp(:)/z0_nobio)) * & |
---|
1745 | (ct_karman/LOG(ztmp(:)/(z0_nobio/ exp(kBs_m1(:))) )) |
---|
1746 | ENDDO ! Loop over # of non-vegative surfaces |
---|
1747 | |
---|
1748 | !! 4. Calculate the zero plane displacement height and effective roughness length |
---|
1749 | ! Take the exponential of the roughness |
---|
1750 | z0m(:) = ztmp(:) / EXP(ct_karman/SQRT(dragm(:))) |
---|
1751 | z0h(:) = ztmp(:) / EXP((ct_karman**2.)/(dragh(:)*LOG(ztmp(:)/z0m(:)))) |
---|
1752 | |
---|
1753 | ! Compute the zero plane displacement height which |
---|
1754 | ! is an equivalent height for the absorption of momentum |
---|
1755 | zhdispl(:) = ave_height(:) * height_displacement |
---|
1756 | |
---|
1757 | ! In order to calculate the fluxes we compute what we call the grid effective roughness height. |
---|
1758 | ! This is the height over which the roughness acts. It combines the |
---|
1759 | ! zero plane displacement height and the vegetation height. |
---|
1760 | roughheight(:) = ave_height(:) - zhdispl(:) |
---|
1761 | |
---|
1762 | END SUBROUTINE condveg_z0cdrag_dyn |
---|
1763 | |
---|
1764 | |
---|
1765 | END MODULE condveg |
---|